EXPERIMENTO DE J. J. THOMSON
|
|
|
- María del Rosario Herrera Zúñiga
- hace 8 años
- Vistas:
Transcripción
1 U N A M DIVISIÓN DE CIENCIAS BÁSICAS LABORATORIO DE QUÍMICA Práctica: EXPERIMENTO DE J. J. THOMSON
2 Objetivos de la práctica El alumno: 1. Conocerá el principio de funcionamiento del aparato para la determinación de la relación entre la carga y la masa (q/m) de los rayos catódicos, su manejo y las precauciones que deben observarse al utilizarlo. 2. Determinará experimentalmente el valor de la relación q/m de los rayos catódicos empleando dos metodologías, una con voltaje constante y otra con intensidad de corriente constante. 3. Determinará el error experimental de la relación q/m de los rayos catódicos.
3 Tubo de rayos catódicos _ +
4 Tubo de rayos catódicos _ + Fuerza eléctrica (F e ) + _
5 Tubo de rayos catódicos Fuerza magnética (F m ) _ +
6 J. J. THOMSON en 1897 _ + +? _
7 J. J. THOMSON en 1897 _ + F e > F m + _
8 J. J. THOMSON en 1897 _ + F e < F m + _
9 J. J. THOMSON en 1897 _ + F e = F m + _
10 Desarrollo matemático La fuerza magnética que se ejerce sobre los electrones se determina con la expresión de Lorentz. F m = q v B senθ La fuerza eléctrica que se ejerce sobre una partícula que pasa a través de un campo eléctrico se determina con: 4 F e = q E Cuando el ángulo θ es de 90º, la expresión se simplifica. 1 F m = q v B Como los electrones se mueven describiendo una trayectoria circular, se ejerce sobre éstos una fuerza centrípeta: Cuando actúan los campos eléctrico y magnético, y el haz describe una trayectoria recta, las fuerzas eléctrica y magnética son de igual magnitud y sus expresiones se pueden igualar: q v B = q E 2 F c = m v2 r Igualando F m y F c se obtiene: Simplificando y despejando v, se obtiene: 5 v = E B q B = m v r Despejando q/m, se obtiene: 3 q m = v B r
11 Aparato Daedalon
12 Aparato Daedalon _ +
13 Desarrollo matemático La fuerza magnética que se ejerce sobre los electrones se determina con la expresión de Lorentz. F m = q v B senθ La fuerza eléctrica que se ejerce sobre una partícula que pasa a través de un campo eléctrico se determina con: 4 F e = q E Cuando el ángulo θ es de 90º, la expresión se simplifica. 1 F m = q v B Como los electrones se mueven describiendo una trayectoria circular, se ejerce sobre éstos una fuerza centrípeta: Cuando actúan los campos eléctrico y magnético, y el haz describe una trayectoria recta, las fuerzas eléctrica y magnética son de igual magnitud y sus expresiones se pueden igualar: q v B = q E 2 F c = m v2 r Igualando F m y F c se obtiene: Simplificando y despejando v, se obtiene: 5 v = E B q B = m v r Despejando q/m, se obtiene: 3 q m = v B r
14 Desarrollo matemático La fuerza magnética que se ejerce sobre los electrones se determina con la expresión de Lorentz. Cuando una partícula cargada es acelerada por una diferencia de potencial, adquiere una energía cinética. F m = q v B senθ 4 E c = q V Cuando el ángulo θ es de 90º, la expresión se simplifica. 1 F m = q v B Como los electrones se mueven describiendo una trayectoria circular, se ejerce sobre éstos una fuerza centrípeta: 2 F c = m v2 r Igualando F m y F c se obtiene: q B = m v r Despejando q/m, se obtiene: 3 q m = v B r 5 E c = ½ m v 2 Las expresiones se pueden igualar para obtener: 6 7 q V = ½ m v 2 q v 2 m = 2 V v = q 2 V m De esta forma se puede sustituir la expresión 7 en la 3 para obtener: 8 q 2 V m = B r 2
15 Desarrollo matemático Si el campo magnético se genera con un par de bobinas de Helmholtz, entonces la intensidad del campo generado se determinaría con la expresión: 9 Sustituyendo la expresión 9 en la 8, se tendría: 10 a = 0.14 [m] N = 130 B = q m = µ o = 4πx10-7 [T m A -2 ] N µ o I a 2 V a (N µ o I r) Se requieren solo dos variables para obtener un modelo matemático lineal. Una opción es mantener el voltaje constante y otra es mantener la corriente constante. En tales casos se obtendrían las expresiones siguientes: 2 2 r 2 = y r 2 = y 2 V 5 4 (N µ o ) = m x + b 3 (N µ o I) a 2 q m a q m I -2 V = m x + b
16 Equipo y material 1 aparato marca DAEDALON para la medición de la relación q/m de los rayos catódicos con xenón como gas residual a...
17 Desarrollo ACTIVIDAD 1. El profesor verificará que los alumnos posean los conocimientos teóricos necesarios para la realización de la práctica y dará las recomendaciones necesarias para el manejo del equipo.
18 Desarrollo ACTIVIDAD 2. Encendido y puesta a punto del aparato marca DAEDALON El procedimiento para el uso de este aparato es sencillo; aun así deben observarse ciertas precauciones en su manejo, con objeto de no dañar el aparato. El aparato que se empleará, se muestra en la figura siguiente:
19 Desarrollo El Compruebe que el botón de encendido esté en la posición OFF y posteriormente conecte el aparato a la toma de corriente. Encienda el aparato. La unidad realizará un auto-diagnóstico durante 30 segundos. Cuando el auto-diagnóstico se completa, las pantallas se estabilizan a 0. De esta manera la unidad se encuentra lista para operar
20 Desarrollo ACTIVIDAD 3. Toma de lecturas con voltaje constante. 1. Gire la perilla VOLTAGE ADJUST hasta obtener una lectura de 250 [V] en la pantalla correspondiente. 2. Gire la perilla CURRENT ADJUST y observe la deflexión circular del haz de rayos catódicos. Cuando la corriente es lo suficientemente alta, el haz formará un círculo completo. El diámetro del haz se determinará empleando la escala que se encuentra dentro del tubo. 3. Determine el valor de la intensidad de corriente necesaria para que el diámetro del haz sea 11 [cm]. Varíe el diámetro del haz modificando la intensidad de corriente en las bobinas de tal manera que pueda completar la tabla siguiente con los valores obtenidos.
21 Desarrollo 4. Cuando haya terminado la toma de lecturas, proceda inmediatamente a realizar la actividad siguiente.
22 ACTIVIDAD 4. Toma de lecturas con corriente constante. Desarrollo 1. Gire la perilla CURRENT ADJUST hasta obtener una lectura de 1.2 [A] en la pantalla correspondiente. 2. Gire la perilla VOLTAGE ADJUST hasta que el haz de rayos catódicos tenga un diámetro de 11 [cm] y anote la lectura; posteriormente, varíe el diámetro del haz modificando la diferencia de potencial, tal manera que pueda completar la tabla siguiente con los valores obtenidos. 3. Una vez finalizada la toma de lecturas, puede apagar el aparato sin necesidad de poner en cero las lecturas.
23 Desarrollo ACTIVIDAD 5. El profesor indicará el procedimiento teórico para obtener los resultados de los puntos siguientes: 1. Con los datos obtenidos a diferencia de potencial constante, obtenga: La gráfica de r 2 = f (I -2 ). El modelo matemático correspondiente, donde r 2 = f(i -2 ). El valor de la relación q/m de los rayos catódicos. El porcentaje de error de la relación q/m de los rayos catódicos. 2. Con los datos obtenidos a corriente eléctrica constante, obtenga: La gráfica de r 2 = f (V). El modelo matemático correspondiente, donde r 2 = f (V). El valor de la relación q/m de los rayos catódicos. El porcentaje de error de la relación q/m de los rayos catódicos.
24 Cálculos y resultados con V cte V = 250 [V] = cte. D [cm] I [A]
25 Cálculos y resultados con V cte V = 250 [V] = cte. x y D [cm] r [cm] I [A] VV rr 2 4 = NN μμ 2 0 y 3 aa 2 qq II 2 mm x I -2 [A -2 ] r 2 [m 2 ] x x x x x x x x x10-4
26 Cálculos y resultados con V cte x I -2 [A -2 ] y r 2 [m 2 ] x x x x x x x x x10-4 r 2 [m 2 ] I -2 [A -2 ] r 2 [m 2 ] = (4.0888x10-3 [m 2 A 2 ]) I -2 [A -2 ] 5.11x10-6 [m 2 ] 5 2 VV 4 mm = NN μμ aa 2 qq mm qq mm = xx1011 CC kkkk 1 % dddd eeeeeeeeee = VV PP VV LL VV PP % dddd eeeeeeeeee = xxxxx
27 Cálculos y resultados con I cte I = 1.2 [A] = cte. D [cm] V [V]
28 Cálculos y resultados con I cte I = 1.2 [A] = cte. D [cm] r [cm] V [V] rr 2 = y NN μμ 0 II 2 aa 2 qq mm VV x x V [V] y r 2 [m 2 ] x x x x x x x x x10-4
29 Cálculos y resultados con I cte x V [V] y r 2 [m 2 ] x x x x x x x x x10-4 r 2 [m 2 ] V [V] mm = NN μμ 0 II 2 aa 2 qq mm r 2 [m 2 ] = (1.0427x10-5 [m 2 V]) V [V] x10-4 [m 2 ] qq mm = xx1011 CC kkkk 1 % dddd eeeeeeeeee = VV PP VV LL VV PP % dddd eeeeeeeeee = xxxxx
30 Conclusiones Cuál es el mejor procedimiento para determinar el valor de la relación carga/masa de los electrones? Por qué?
31 Créditos Autor: M. C. Q. Alfredo Velásquez Márquez Actualización y autorización: Q. Antonia del Carmen Pérez León Jefa de la Academia de Química Revisores (2017): Dra. Arianee Sainz Vidal Ing. Dulce María Cisneros Peralta Q. Adriana Ramírez González Q. F. B. Nidia García Arrollo Dra. Patricia García Vázquez Dr. Alberto Sandoval García M. en A. Violeta Luz María Bravo Hernández M. en C. Luis Edgardo Vigueras Rueda Dra. María del Carmen Gutiérrez Hernández M. en C. Miguel Ángel Jaime Vasconcelos M. A. I. Claudia Elisa Sánchez Navarro Biol. Miguel Alejandro Maldonado Gordillo Q. Yolia Judith León Paredes I. Q. Guillermo Pérez Quintero I. Q. Hermelinda C. Sánchez Tlaxqueño I. Q. José Luis Morales Salvatierra Profesores de la, UNAM
RELACIÓN CARGA - MASA DEL ELECTRÓN
Práctica 5 RELACIÓN CARGA - MASA DEL ELECTRÓN OBJETIVO Determinar la relación carga-masa del electrón (e/m e ), a partir de las trayectorias observadas de un haz de electrones que cruza una región en la
RELACIÓN CARGA/MASA DEL ELECTRÓN
RELACIÓN CARGA/MASA DEL ELECTRÓN Objetivo Determinar el cociente de la carga eléctrica del electrón entre su masa. Introducción En 1897 J. J. Thomson realizó un experimento crucial que consistió en medir
Cálculo aproximado de la carga específica del electrón Fundamento
Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta
Fundamentos del magnetismo
Práctica 9 Fundamentos del magnetismo Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel Pérez Ramírez M.I.
Fuerza de origen magnético en conductores
Práctica 10 Fuerza de origen magnético en conductores Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel
U N A M. Facultad de Ingeniería MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON
MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON M. C. Q. Alfredo Velásquez Márquez Modelo Atómico de J. J. Thomson Electrones de Carga Negativa
DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS.
PRÁCTICA Nº 1. DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS. 1. OBJETIVOS: a) Observar la trayectoria de partículas cargadas en el seno de campos eléctricos y magnéticos. b) Determinar
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica
1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre
CAMPO MAGNÉTICO SOLENOIDE
No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE
DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME
DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME Maicol Llano Moncada, Alex Rollero Dita, Carlos Martínez Agudelo, Luis Santos ID: 000294172, ID: 000293236, ID: 000170111, ID: 000292336 [email protected],
ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1. Coordinación Curso Agosto de 2016
ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1 Coordinación Curso Agosto de 2016 TEMA : MOVIMIENTO DE ELECTRONES EN UN CAMPO ELÉCTRICO UNIFORME Hipótesis de trabajo: Siempre que un electrón entre a
1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme
1 PRÁCTICA DE LABORATORIO: MOVIMIENTO DE ELCTRONES EN UN CAMPO ELÉCTRICO UNIFORME 1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1.2. OBJETIVOS ESPECÍFICOS -
Introducción a la Física Experimental Guía de la experiencia. Relación carga masa del electrón.
Introducción a la Física Experimental Guía de la experiencia Relación carga masa del electrón. Departamento de Física Aplicada. Universidad de Cantabria Junio 9, 005 Resumen Se indica cómo utilizar un
Magnetismo e inducción electromagnética. Ejercicios PAEG
1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se
Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:
Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para
Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996
1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la
PRÁCTICA NÚMERO 5 REFLEXIÓN Y REFRACCIÓN
PRÁCTICA NÚMERO 5 REFLEXIÓN Y REFRACCIÓN I. Objetivos. 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. II. Material. 1. Riel óptico. 2. Fuente de luz.
PRÁCTICA 14. Reflexión y refracción
PRÁCTICA 14 Reflexión y refracción Laboratorio de Física General Objetivos Generales 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. Equipo y materiales
ROTACIÓN. Datos: v, ω y x. Calcular: n. Solución:
1. Una bola de béisbol se lanza a 88 mi/h y con una velocidad de giro de 1.500 rev/min. Si la distancia entre el punto de lanzamiento y el receptor es de 61 pies, estimar las revoluciones completadas por
PRÁCTICA Nº 2: CAMPOS MAGNÉTICOS
PRÁCTICA Nº 2: CAMPOS MAGNÉTICOS OBJETIVO: Medida de campos magnéticos. Determinación del campo magnético MATERIAL Par de bobinas de Helmoltz; fuente de alimentación de cc (máximo 5 A); sonda Hall transversal
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la
Movimiento de electrones en campos E y B: el ciclotrón
DEMO 25 Movimiento de electrones en campos E y B: el ciclotrón GUÍA DETALLADA DE LA DEMOSTRACIÓN INTRODUCCIÓN La Fuerza de Lorentz determina el movimiento de las cargas eléctricas en campos eléctricos
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación
Tema 2: Campo magnético
Tema 2: Campo magnético A. Fuentes del campo magnético A1. Magnetismo e imanes Magnetismo. Imán: características. Acción a distancia. Campo magnético. Líneas de campo. La Tierra: gran imán. Campo magnético
FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN
FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:
GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.
de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.
1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de
3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular.
Objetivos: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER Al terminar la práctica el alumno estará capacitado para: 1. El manejo de los controles del osciloscopio (encendido, ajuste de intensidad, barrido vertical,
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA UPB FÍSICA II: FUNDAMENTOS DE ELECTROMAGNETISMO PRÁCTICA 6: CAMPO MAGNÉTICO EN BOBINAS
1 PÁCTIC 6: CMPO MGNÉTICO EN BOBINS 1. OBJETIVOS 1.1. Objetivo General: Estudiar las características de los campos magnéticos generados por corrientes eléctricas continuas que circulan en bobinas 1.2.
Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A
1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital
Campo magnético Ejercicios de la PAU Universidad de Oviedo Página 1
Página 1 Junio 98 1. 4) (a) Explicar el funcionamiento del dispositivo experimental utilizado para la definición del amperio, la unidad de corriente eléctrica en el Sistema Internacional de Unidades, que
El átomo: sus partículas elementales
El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era
I I 5. MAGNETISMO. Representación gráfica útil:
5. MAGNETSMO 5. Cargas en un campo magnético. (Origen relativista del campo magnético). 5. Efecto del campo magnético sobre una corriente. 5.3 Dinámica de una carga en presencia de campos magnéticos y
ESTRUCTURA DE LOS ATOMOS Ing. Alfredo Luis Rojas B.
CAPITULO 4 ESTRUCTURA DE LOS ATOMOS Ing. Alfredo Luis Rojas B. Aproximadamente 400 a.c. el filosofo griego Democrito sugirió que toda la materia esta formada por partículas minúsculas, discretas e indivisibles,
Integrantes: 2. Introducción
Facultad de Ciencias Departamento de Física Fundamentos de Electricidad y Magnetismo Laboratorio N 7 Campo Magnético Ovidio Almanza Noviembre 28 de 2011 Integrantes: Diana Milena Ramírez Gutiérrez Cod.
Campo Magnético creado por un Solenoide
Campo Magnético creado por un Solenoide Ejercicio resuelto nº 1 Un solenoide se forma con un alambre de 50 cm de longitud y se embobina con 400 vueltas sobre un núcleo metálico cuya permeabilidad magnética
FÍSICA. 6 horas a la semana 10 créditos. 4 horas teoría y 2 laboratorio
FÍSICA 6 horas a la semana 10 créditos 4 horas teoría y 2 laboratorio Semestre: 3ero. Objetivo del curso: El alumno será capaz de obtener y analizar modelos matemáticos de fenómenos físicos, a través del
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar
Manual de Prácticas. Práctica número 2 Propiedades de las sustancias
Práctica número 2 Propiedades de las sustancias Tema Correspondiente: Conceptos básicos Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Revisado
Manual de Prácticas. Práctica número 5 Algunas propiedades térmicas del agua
Práctica número 5 Algunas propiedades térmicas del agua Tema Correspondiente: Termodinámica Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por:
Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II
Física II Osciloscopio y Generador de señales Objetivos: Familiarizar al estudiante con el manejo del osciloscopio y del generador de señales. Medir las características de una señal eléctrica alterna (periodo
PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO
Ing. Gerardo Sarmiento Díaz de León CETis 63 PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO TRABAJO DE LABORATORIO Ley de Ohm Asociación de Resistencias OBJETO DE LA EXPERIENCIA: Comprobar la
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y
Equilibrio y Movimiento de los objetos
Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento
Campo Magnético. Cuestiones y problemas de las PAU-Andalucía
Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Cuestiones 1. a) (12) Fuerza magnética sobre una carga en movimiento; ley de Lorentz. b) Si la fuerza magnética sobre una partícula cargada
Practica 7. Medición del campo magnético de una bobina Solenoide
Practica 7. Medición del campo magnético de una bobina Solenoide A. Amud 1, L. Correa 2, K. Chacon 3 Facultad de Ciencias, Fundamentos de Electricidad y Magnetismo Universidad Nacional de Colombia, Bogotá
Difracción e Interferencia: Experimento de Young
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción
CUESTIONARIO 2 DE FISICA 2
CUESTIONARIO 2 DE FISICA 2 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener
UNIDAD 4. CAMPO MAGNÉTICO
UNIDAD 4. CAMPO MAGNÉTICO P.IV- 1. Un protón se mueve con una velocidad de 3 10 7 m/s a través de un campo magnético de 1.2 T. Si la fuerza que experimenta es de 2 10 12 N, qué ángulo formaba su velocidad
Mapeo del Campo Magnético de un Solenoide Finito
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Mapeo del Campo Magnético de un Solenoide Finito Elaborado por: Roberto Ortiz Introducción Se tiene un Solenoide de N 1
Momento de Torsión Magnética
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento
PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández
Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una
TEMARIO EXAMEN DIAGNÓSTICO INICIAL ADMISIÓN MATEMÁTICA
POSTULACIÓN A PRIMER AÑO MEDIO N 1.- Resolver operaciones con números, ecuaciones y potencias. N 2.- Aplicar transformaciones isométricas y teselaciones. N 3.- Evaluar problemas de cálculo de perímetro
ELECTRICIDAD Y MAGNETISMO. PRÁCTICA DE LABORATORIO No. 6 BALANZA DE CORRIENTE
ELECTRICIDAD Y MAGNETISMO PRÁCTICA DE LABORATORIO No. 6 BALANZA DE CORRIENTE 1. OBJETIVOS 1.1 Corroborar que una corriente eléctrica genera un campo magnético. 1.2 Observar que un campo magnético ejerce
MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π
1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital
ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO
ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.
Practica nº n 5: Fenómenos de Difracción.
Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular
Distancia focal de una lente convergente (método del desplazamiento) Fundamento
Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.
Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO
FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito
MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V
SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía
FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y
Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos)
Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Por favor asegúrese de leer las instrucciones generales dentro del sobre adjunto antes de comenzar a resolver este problema. En
masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg
MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en
SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,
PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión
PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUÍMICA FARMACÉUTICA LABORATORIO DE QUÍMICA GENERAL Profesor: Jaime O. Pérez
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUÍMICA FARMACÉUTICA LABORATORIO DE QUÍMICA GENERAL Profesor: Jaime O. Pérez Práctica: Determinación de Densidades. Fecha: 24 de noviembre de 2009 DEYMER GÓMEZ CORREA:
Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione
Laboratorio de Mecánica de Fluidos I
Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento
Electricidad y Magnetismo. Ley de Coulomb.
Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es
LEY DE OHM Y PUENTE DE WHEATSTONE
uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor
PRÁCTICA NÚMERO 5 LEY DE OHM
PRÁCTICA NÚMERO 5 LEY DE OHM I. Objetivos. 1. Investigar si los siguientes elementos eléctricos son óhmicos o no: - Una resistencia comercial. - Un diodo rectificador. II. Material. 1. Dos multímetros.
EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON
EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON INTRODUCCIÓN La segunda ley de Newton relaciona la fuerza total y la aceleración. Una fuerza neta ejercida sobre un objeto lo acelerará, es decir, cambiará su velocidad.
EXPRESION MATEMATICA
TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales
Midiendo la longitud de onda de la luz
Midiendo la longitud de onda de la luz Hoja de trabajo: Objetivo: calcular la longitud de onda de la luz de un láser por interferometría de Young e interferometría de Michelson Primera parte: Cálculo de
COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO
1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE
LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte
ELECTRICIDAD IMANES LA ELECTRICIDAD Y LOS IMANES Tema 3 2ª Parte CORRIENTE ELÉCTRICA MAGNETISMO ELECTROMAGNETISMO Magnetismo Consiste en atraer objetos de hierro, cobalto o níquel Imán es el cuerpo que
T-2) LA FUERZA DE LORENTZ (10 puntos)
T-2) LA FUERZA DE LORENTZ (10 puntos) Un móvil se desliza por un plano inclinado sobre el que pende el conductor cilíndrico AC a una distancia h de la línea de máxima pendiente, tal como indica la figura.
CONVOCATORIA DE PRUEBAS DE ACCESO
ESPECIALIDAD Guitarra Hora: 10:00 Lugar: C.E.M. "Ana Valler" TRIBUNAL: GUITARRA CURSO: 2º Curso de 2º Ciclo de E.B.M. (Guitarra) 49164798K 53838114J José Hernández, Alejandro Agustín Lobato Romero, Paula
DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD
DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD - 24.11.15 NOMBRE: GRUPO: INSTRUCCIONES: Este examen consta de de cuatro componentes: Componente conceptual de 10
FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA
FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA UNIDAD DIDÁCTICA : MOVIMIENTO 01.- Movimiento rectilíneo uniforme Duración Estimada: 1 h Capacidad Terminal Conocer las características de un movimiento rectilíneo
Práctica de Inducción electromagnética.
Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX
La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.
FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos
Guía 01. La ley de Ohm
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-5 A Guía 0 La ley de Ohm Objetivos Conocer la Ley de Ohm y las Leyes de Kirchoff - Estudiar
LEY DE COULOMB. Demostrar experimentalmente la Ley de Coulomb.
LEY DE COULOMB Objetivo: Demostrar experimentalmente la Ley de Coulomb. Material: 1.- Balanza de Coulomb..- Fuente de voltaje (0-6 KV). 3.- Jaula de Faraday. 4.- Electrómetro. Introducción: La balanza
Corriente y Circuitos Eléctricos
Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando
Intensidad del campo eléctrico
Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través
ELECTRICIDAD Y MAGNETISMO. (00 7 1)
1010 ELECTRICIDAD Y MAGNETISMO. (00 7 1) Actividades relevantes del Semestre 201 1-2 1. Calendario escolar y de actividades semestre 2011-2 2. Relación de grupos y profesores - Teoría. 3. Fechas de exámenes
[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la
Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos
INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B
INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto
PRÁCTICA 13 Campo magnético
PRÁCTICA 13 Campo magnético Objetivos Generales 1. Investigar cómo son las líneas de inducción del campo magnético B debido a las siguientes configuraciones: a) Un alambre conductor recto. b) Una espira.
PROGRAMA DE ASIGNATURA CLAVE: 1215 SEMESTRE: 2º TOPOGRAFÍA. HORAS SEMESTRE CARACTER DIBUJO E INTERPRETACIÓN DE PLANOS. NINGUNO
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1215 SEMESTRE:
