GRÁFICAS EN FÍSICA Y QUÍMICA. Ejemplos resueltos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GRÁFICAS EN FÍSICA Y QUÍMICA. Ejemplos resueltos."

Transcripción

1 GRÁFICAS EN FÍSICA Y QUÍMICA. Ejemplos resueltos. Antes de empezar con las gráficas vamos a establecer el concepto de magnitudes directamente proporcionales y magnitudes inversamente proporcionales. Cuando hacemos un estudio y observamos que las dos magnitudes estudiadas aumentan en la misma proporción decimos que son MAGNITUDES DIRECTAMENTE PROPORCIONALES, ya que al aumentar una, la segunda también lo hace. En este caso se cumplirá que EL COCIENTE O RAZÓN DE AMBAS MAGNITUDES ES CONSTANTE, y a ese valor constante le llamaremos CONSTANTE DE PROPORCIONALIDAD DIRECTA, que no es otra cosa que la pendiente de la recta en la representación gráfica de ese estudio. Por ejemplo: imaginamos que vamos a la frutería a comprar tomates. El kg de tomates cuesta 2. Podemos hacer una tabla en la que se relacionen ambas magnitudes, masa de tomates en kg y precio de los tomates en euros. Masa de tomates (kg) Precio ( ) Aquí se observa que ambas magnitudes aumentan, y lo hacen en la misma proporción. Vamos a comprobar si las razones de ambas son constantes. 2 1 = 4 2 = 6 3 = 8 4 = 2 Efectivamente, la razón es constante e igual a 2. Por tanto deducimos que ambas magnitudes son DIRECTAMENTE PROPORCIONALES. Si al hacer el estudio de dos magnitudes observamos que al aumentar la primera magnitud la segunda disminuye, deberemos pensar que guardan otro tipo de relación diferente. En este caso diremos que se trata de magnitudes INVERSAMENTE PROPORCIONALES, y se cumplirá que EL PRODUCTO DE SUS CANTIDADES CORRESPONDIENTES SE MANTIENE CONSTANTE. A ese valor constante le llamaremos CONSTANTE DE PROPORCIONALIDAD INVERSA. Por ejemplo: Un tren circula a 60 km/h y emplea 5 horas en recorrer un trayecto. Cuántas horas empleará en recorrer dicho trayecto si su velocidad es de 30 km/h? y si es de 10 km/h? Podemos reflejar esta situación mediante una tabla de valores Velocidad (km/h) Tiempo (h) Observamos que al aumentar la velocidad el tiempo en recorrer el trayecto va disminuyendo. Comprobamos los productos de ambas magnitudes: 60 5 = = = 300 Efectivamente el producto es constante e igual a 300. Por tanto deducimos que ambas magnitudes son INVERSAMENTE PROPORCIONALES.

2 Velocidad (km/h) Ahora vayamos con las representaciones gráficas. 1. Un paracaidista se lanza desde un helicóptero situado a gran altura. Sabiendo que cada segundo que cae sin abrir el paracaídas su velocidad aumenta en 36 km/h: a. Haz una tabla de datos. Tiempo (s) Velocidad (km/h) b. Señala la variable independiente y la variable dependiente Variable independiente: tiempo (toma los valores que se determinen para el estudio del fenómeno) Variable dependiente: velocidad (los valores que toma dependen de los elegidos para la variable independiente) c. Dibuja la gráfica velocidad tiempo desde el primer segundo hasta los 6 segundos Tiempo (s) d. Cómo es la gráfica obtenida? La gráfica es una línea recta que pasa por el origen de coordenadas, y observamos que cuando una de las magnitudes aumenta, la otra magnitud aumenta en la misma proporción, y por tanto se dice que existe una relación de proporcionalidad directa entre las dos magnitudes. e. Deduce la ecuación que representa este fenómeno. La ecuación matemática para este tipo de relación se expresa como: y= k x donde: y es la variable dependiente x es la variable independiente k es la constante de proporcionalidad o pendiente de la recta.

3 Si observamos la tabla de datos, la variación de ambas magnitudes sigue un patrón determinado. Vemos que, al aumentar el tiempo, aumenta la velocidad del móvil. Ahora hay que determinar cómo es ese aumento. Determinaremos si es un aumento proporcional dividiendo la velocidad entre su valor correspondiente para el tiempo: Vemos que todos los cocientes y x = v t = 36 1 = 72 2 = = = = = 36 velocidad tiempo constante para todos los cocientes velocidad tiempo dan el mismo resultado. Este resultado que es se llama CONSTANTE DE PROPORCIONALIDAD DIRECTA o PENDIENTE DE LA RECTA y se representa por la letra k. Esto significa que cada segundo la velocidad del móvil aumenta en 36 km/h. Por tanto la ecuación matemática quedaría: v= 36 t Ahora, inténtalo tú. 2. Observa los datos de la tabla que relacionan la masa de unos montones de monedas de un euro. Nº de monedas Masa (g) b. Representa la gráfica masa - Nº de monedas y Nº de monedas-masa 3. La siguiente tabla muestra cómo varía la temperatura de un líquido al introducirlo en la nevera: Tiempo(min) Temperatura ( o C) b. Representa la gráfica temperatura tiempo

4 Presión (atm) 4. Nuestros pulmones contienen aire. Por esa razón se comprimen cuando buceamos. Para comprobar este hecho sumergimos un globo que contiene un litro de aire y se obtienen los valores para la presión y volumen dl globo que se indican en la tabla de datos. Volumen (L) 1 0,50 0,33 0,25 0,20 Presión (atm) Variable independiente: volumen (toma los valores que se determinen para el estudio del fenómeno) Variable dependiente: presión (los valores que toma dependen de los elegidos para la variable independiente) b. Representa la gráfica presión volumen ,00 0,20 0,40 0,60 0,80 1,00 1,20 Volumen (L) Es una curva del tipo hipérbola equilátera, ya que cuando una de ellas aumenta, la otra disminuye en la misma proporción, por lo que podemos decir que ambas magnitudes son inversamente proporcionales. Como vemos, se cumple que EL PRODUCTO DE LAS CANTIDADES correspondientes a ambas magnitudes ES CONSTANTE, y se cumple que: 1 1 = 2 0,50 = 3 0,33 = 4 0,25= 5 0,20 = 1,00

5 volumen (L) Vemos que todos los productos presión volumen dan el mismo resultado. Este resultado, que es constante para todos los productos presión volumen, se llama CONSTANTE DE PROPORCIONALIDAD INVERSA y se representa por la letra k. La ecuación GENERAL para dos magnitudes que son INVERSAMENTE PROPORCIONALES es: y x = k Para nuestro problema concreto, la expresión es: Cuya ecuación matemática es: presión volumen = k P V = k Te preguntarás si es posible representar la gráfica volumen-presión y, en caso afirmativo, qué gráfica se obtendría. Pues, vamos allá: 1,20 1,00 0,80 0,60 0,40 0,20 0, presión (atm) Se obtendría igualmente una hipérbola equilátera. En este caso las variables han cambiado. Hemos tomado valores de presión del 1 a 6 atmósferas, y hemos estudiado el comportamiento del volumen. En ambos casos las magnitudes son inversamente proporcionales y las dos gráficas son correctas. Ahora, inténtalo tú. 5. A una profundidad de 30 m (en agua) llenamos nuestros pulmones con dos litros de aire. Si en estas condiciones ascendiéramos hasta la superficie sin expulsarlo, los datos que se obtendrían serían los de la tabla:

6 Volumen (L) 2 2, Presión (atm) b. Representa la gráfica volumen presión

FUNCIONES Y GRÁFICAS

FUNCIONES Y GRÁFICAS FUNCIONES Y GRÁFICAS Material de clase INTRODUCCIÓN: EJEMPLOS Una función es una correspondencia (relación) entre dos conjuntos (magnitudes ), de forma que a cada elemento (objeto) del primer conjunto

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

unidad 8 Funciones lineales

unidad 8 Funciones lineales Cuando dos magnitudes son proporcionales Página Dos magnitudes son proporcionales cuando los valores de una de ellas se obtienen a partir de los de la otra, multiplicándolos por un número fijo llamado

Más detalles

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3 PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

1. MEDIDA Y MÉTODO CIENTÍFICO

1. MEDIDA Y MÉTODO CIENTÍFICO 1. MEDIDA Y MÉTODO CIENTÍFICO 1. Introduce un recipiente con agua caliente en el congelador del frigorífico. Observa y describe lo que sucede con el tiempo. En la superficie libre del agua aparece una

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

Interpretación de gráficas 1

Interpretación de gráficas 1 Interpretación de gráficas 1 Dos ejemplos sencillos. 1. El precio de un bolígrafo en la papelería cercana es de 0,30. Calcula y escribe en la tabla siguiente el precio de los bolígrafos que se indican.

Más detalles

Los gases y la Teoría Cinética

Los gases y la Teoría Cinética Para practicar Utiliza tu cuaderno y trata de resolver los siguientes ejercicios: 1.-En una tabla similar a la siguiente, introduce las propiedades características de un SÓLIDO, un LÍQUDO o un GAS, como

Más detalles

GUIA: GASES y LEYES QUE LOS RIGEN

GUIA: GASES y LEYES QUE LOS RIGEN DEPARTAMENTO DE CIENCIAS QUÍMICA Sèptimo Básico GUIA: GASES y LEYES QUE LOS RIGEN 1_ La ley de Gay-Lussac nos dice que, a volumen constante, la presión y la temperatura de un gas son directamente proporcionales

Más detalles

Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón. Trabajo Práctico: Leyes de los gases

Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón. Trabajo Práctico: Leyes de los gases Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón Trabajo Práctico: Leyes de los gases 1) La ley de Boyle establece que, a temperatura constante, la presión

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

Definición matemática de Relación y de Función

Definición matemática de Relación y de Función Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,

Más detalles

9. Rectas e hipérbolas

9. Rectas e hipérbolas 08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente

Más detalles

FUNCIONES LINEALES Y AFINES

FUNCIONES LINEALES Y AFINES www.matesronda.net José A. Jiménez Nieto FUNCIONES LINEALES Y AFINES. LA FUNCIÓN LINEAL = m El tren AVE lleva una velocidad media de 40 km/h. La siguiente tabla nos da el espacio que recorre en función

Más detalles

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha:

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha: Sector: Naturaleza Nivel: 8 Básico Nombre Profesora: Nancy Erazo Rosa Unidad V : Leyes de los gases GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso:

Más detalles

< variable independiente < variable dependiente

< variable independiente < variable dependiente Estudiar en el libro de Texto: Pág. 152 y 156 EL MODELO LINEAL : y = mx + n Algunos ejemplos Una empresa decide alquilar una fotocopiadora por una cantidad fija anual de 2000 euros, más un coste de 0,05

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

Tema 5: La energía mecánica

Tema 5: La energía mecánica Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación

Más detalles

3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor: Profesor: Rafael Núñez Nogales

3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor:  Profesor: Rafael Núñez Nogales 3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS Página web del profesor: http://www.iesmontesorientales.es/mates/ 1.-LAS FUNCIONES Y SUS GRÁFICAS. (Págs: 13 y 133) 1.1.- Qué es una función? Esta gráfica representa

Más detalles

La materia. Los gases

La materia. Los gases 1 La materia. Los gases 1 La materia y sus estados de agregación Características de los estados de la materia La materia se puede presentar en varios estados de agregación: sólido, líquido y gas, que tienen

Más detalles

Ejes cartesianos. Coordenadas de un punto

Ejes cartesianos. Coordenadas de un punto Ejes cartesianos. Coordenadas de un punto Los elementos de una función son: la variable independiente la variable dependiente, que se representa sobre el eje horizontal o eje de abscisas,, que se representa

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

2. Polis y urbe: la ciudad como teatro de un mundo civilizado La ciudad como escenario; escenas de la ciudad

2. Polis y urbe: la ciudad como teatro de un mundo civilizado La ciudad como escenario; escenas de la ciudad 2. Polis y urbe: la ciudad como teatro de un mundo civilizado 2.1. La ciudad como escenario; escenas de la ciudad 2.1.1. Movimientos, distancias y el medio natural. Continuamente vemos cómo objetos, animales

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 4 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 22

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 4 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 22 1. ESQUEMA - RESUMEN Página 2 2. EJERIIOS DE INIIAIÓN Página 4 3. EJERIIOS DE DESARROLLO Página 10 4. EJERIIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN Página 1.1. OORDENADAS Y GRÁFIAS ARTESIANAS.

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Ley de Boyle. Resumen

Ley de Boyle. Resumen Ley de Boyle Dr. Guillermo Becerra Córdova Universidad Autónoma Chapingo Dpto. de Preparatoria Agrícola Área de Física Profesor-Investigador 5959521500 ext. 5239 E-mail: gllrmbecerra@yahoo.com Km. 38.5

Más detalles

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. 1. LEYES PONDERALES En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. Ley de conservación de la masa de Lavoisier Lavosier

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

133 ESO. «No esperes a tener sed para empezar a excavar el pozo»

133 ESO. «No esperes a tener sed para empezar a excavar el pozo» «No esperes a tener sed para empezar a ecavar el pozo» 1 ESO ÍNDICE: EDAD DEL UNIVERSO 1. PROPORCIONALIDAD. GRÁFICAS. RECTAS QUE NO COMIENZAN EN EL ORIGEN. FORMA EPLÍCITA E IMPLÍCITA DE UNA RECTA 5. INTERSECCIÓN

Más detalles

Nº Clavos : ; t 12.5h Tiempo 5 t

Nº Clavos : ; t 12.5h Tiempo 5 t MAGNITUDES DIRECTAMENTE PROPORCIONALES 1 de 14 DESCRIPCIÓN MATEMÁTICA: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

Una gráfica de puntos está constituida por 2 ejes perpendiculares de aproximadamente la misma

Una gráfica de puntos está constituida por 2 ejes perpendiculares de aproximadamente la misma GRÁFICAS Y PROPORCIONALIDAD. Una gráfica de puntos está constituida por ejes perpendiculares de aproximadamente la misma longitud. En sus extremos se indican con flechas, el sentido en que crecen las magnitudes.

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

Materia: Matemática de 5to Tema: Ecuación de la Recta. Marco Teórico

Materia: Matemática de 5to Tema: Ecuación de la Recta. Marco Teórico Materia: Matemática de 5to Tema: Ecuación de la Recta Marco Teórico Simplemente comenzar con la ecuación general de la forma pendiente-intersección de una línea, y luego conecte los valores dados de y

Más detalles

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades

Más detalles

Carlos Martínez B. Ley de Boyle. Carlos Javier Bernal Avila. Viernes, 29 de enero de 2010

Carlos Martínez B. Ley de Boyle. Carlos Javier Bernal Avila. Viernes, 29 de enero de 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS LABORATORIO DE FISICA B Profesor: Carlos Martínez B. Título de la práctica: Ley de Boyle Nombre: Carlos Javier Bernal Avila Grupo

Más detalles

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla: El objetivo al estudiar el concepto razón de cambio, es analizar tanto cuantitativa como cualitativamente las razones de cambio instantáneo y promedio de un fenómeno, lo cual nos permite dar solución a

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 898 _ 09-08.qd /9/0 :0 Página 9 Funciones INTRODUCCIÓN Partiendo de la representación de los números enteros en la recta numérica, introducimos la representación de puntos en el plano mediante la asignación

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2)

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2) MATEMÁTICAS.- PRIMER CURSO ESO. Repasa durante el verano estos objetivos, realiza estos ejercicios y preséntalos el día del examen de recuperación en Septiembre. La prueba de Septiembre serán ejercicios

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva

Más detalles

Las únicas funciones cuyas gráficas son rectas son las siguientes:

Las únicas funciones cuyas gráficas son rectas son las siguientes: Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

MAGISTRAL 3. Magnitudes proporcionales Regla de tres simple Porcentaje

MAGISTRAL 3. Magnitudes proporcionales Regla de tres simple Porcentaje MAGISTRAL 3 Magnitudes proporcionales Regla de tres simple Porcentaje CONTENIDO Proporcionalidad Directa entre dos cantidades. Proporcionalidad Inversa entre dos cantidades. Regla de tres simple Porcentaje

Más detalles

Chapter Audio Summary for McDougal Littell Algebra 2

Chapter Audio Summary for McDougal Littell Algebra 2 Chapter 8 Exponential and Logarithmic Functions Al principio del capítulo 8 representaste gráficamente funciones exponenciales generales. Luego aprendiste sobre la base natural e. Examinaste la relación

Más detalles

FUNCIONES CON DESCARTES. HOJA DE TRABAJO

FUNCIONES CON DESCARTES. HOJA DE TRABAJO FUNCIONES CON DESCARTES. HOJA DE TRABAJO Escena 1 a) Inventa un texto que ilustre de forma clara el gráfico. b) Cuál es la variable independiente y en qué unidad se mide? c) Cuál es la variable dependiente

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Funciones: Tablas, gráficos y fórmulas

Funciones: Tablas, gráficos y fórmulas Funciones: Tablas, gráficos y fórmulas TEMA: FUNCIONES Una función es una relación entre dos magnitudes de forma que a cada valor de la primera magnitud, llamada variable independiente, le corresponde

Más detalles

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA

Más detalles

Para analizar datos económicos a menudo es necesario buscar relaciones entre las variables económicas. Para estas relaciones podemos usar:

Para analizar datos económicos a menudo es necesario buscar relaciones entre las variables económicas. Para estas relaciones podemos usar: Comparación de las Variables Económicas Para analizar datos económicos a menudo es necesario buscar relaciones entre las variables económicas. Para estas relaciones podemos usar: Cocientes Proporciones

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA El éxito no se logra sólo con cualidades especiales. Es sobre todo un trabajo de constancia, de método y de organización. J.P.

Más detalles

Ley de Charles. Por qué ocurre esto?

Ley de Charles. Por qué ocurre esto? Ley de Charles En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y, observó que cuando se aumentaba la temperatura el

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Departamento de Matemáticas. Nombre:.Grupo:..

Departamento de Matemáticas. Nombre:.Grupo:.. I.E.S. Mar Mediterráneo Matemáticas º E.S.O e) 2 [5 (7 2)] f) 22 - [5 - (8 - )] - 6 g) (-5) 2 - (-2) + (-) 6 h) 8 0 : 5 + 6 : 2 i) 5 : [2 + (2-7) + 5] j) 5 (8 - ) (2-7) 5 ( - 6) k) + 6 : 9 50 : [2 + (7

Más detalles

Función grado 1. a) b) c) x y x y x y 2 5 3 3 2 3 3 7,5 7 7 3 4 7 17,5 9 9 5 6. 1 Proporcionalidad

Función grado 1. a) b) c) x y x y x y 2 5 3 3 2 3 3 7,5 7 7 3 4 7 17,5 9 9 5 6. 1 Proporcionalidad Función grado 1 1 Proporcionalidad 1 Qué son variables proporcionales? Sabiendo que Kgs de fruta cuestan 500 Pts haz una tabla con 4 valores que relacione precio con kilos de fruta. Cuánto vale la constante

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Ecuación de estado del gas ideal

Ecuación de estado del gas ideal Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura

Más detalles

Pág. 166

Pág. 166 Pág. 166 Pág. 166 Pág. 166 Pág. 166 Pág. 166 Pág. 166 Qué es el movimiento? Es el cambio de posición que experimenta un cuerpo, al transcurrir el tiempo, respecto de un sistema de referencia que consideramos

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

Diagrama de fases de una sustancia pura: el agua

Diagrama de fases de una sustancia pura: el agua Diagrama de fases de una sustancia pura: el agua Apellidos, nombre Departamento Centro Lorena Atarés Huerta (loathue@tal.upv.es) Tecnología de Alimentos Escuela Técnica Superior de Ingeniería Agronómica

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

Qué entiendes por razón? Las razones son lo mismo que las fracciones?

Qué entiendes por razón? Las razones son lo mismo que las fracciones? I.E.T.I. COMUNA 17 AREA MATEMÁTICAS RAZONES Y PROPORCIONES Docente: Esmeralda Bocanegra Grado Séptimo IVPERIODO Actividad. 1.- Suponga que en un curso hay 13 hombres y 25 mujeres. Entonces la razón entre

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

UNIDAD 7. SISTEMA MÉTRICO DECIMAL

UNIDAD 7. SISTEMA MÉTRICO DECIMAL UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,

Más detalles

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego Apuntes de Matemáticas Proporcionalidad y porcentajes Fecha: MAGNITUD: Llamaremos magnitud a todo aquello que se puede pesar, contar o medir de alguna manera. Por tanto, son magnitudes el tiempo, el peso,

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución:

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución: 1.- Resuelve las siguientes ecuaciones: 2.-Resuelve las siguientes ecuaciones: 3.- En el último examen de Matemáticas mi amigo Juan sacó tres puntos menos que yo, y la nota de mi amiga Sara fue el doble

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

La derivada. Razón de cambio promedio e instantánea

La derivada. Razón de cambio promedio e instantánea La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,

Más detalles

Proporcionalidad. En la introducción del tema planteábamos la siguiente situación de proporcionalidad:

Proporcionalidad. En la introducción del tema planteábamos la siguiente situación de proporcionalidad: Proporción y porcentajes Proporcionalidad En la introducción del tema planteábamos la siguiente situación de proporcionalidad: La proporción de agua requerida para la preparación de un zumo a partir de

Más detalles

LA MATERIA: ESTADOS DE AGREGACIÓN

LA MATERIA: ESTADOS DE AGREGACIÓN LA MATERIA: ESTADOS DE AGREGACIÓN 1. PROPIEDADES DE LA MATERIA Materia: es todo aquello que existe, tiene masa y ocupa un volumen, los distintos tipos de materia se llaman sustancias. El sistema material

Más detalles

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES OBJETIVO IDENTIICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES NOMBRE: CURSO: ECHA: Para multiplicar un número por 0, 00,.000... se desplaza la coma a la derecha tantos lugares como ceros tenga la

Más detalles

EQUILIBRIO QUÍMICO. 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1

EQUILIBRIO QUÍMICO. 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1 EQUILIBRIO QUÍMICO 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1 0. CONOCIMIENTOS Los conocimientos previos que son

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

() 30 de marzo de / 13

() 30 de marzo de / 13 MODELOS MATEMÁTICOS Un modelo matemático es una descripción matemática de un fenómeno o situación del mundo real, como por ejemplo el tamaño de una pobalción, la demanda por un producto, etc. El propósito

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD Ejercicio nº 1.- Subraya los pares de magnitudes que sean proporcionales: a) El peso de las naranjas compradas y el precio pagado por ellas. b) La estatura

Más detalles

Lección 1.2 OPERACIONES CON NÚMEROS ENTEROS. Objetivos: 1.- Deducir las operaciones básicas de los números con signo.

Lección 1.2 OPERACIONES CON NÚMEROS ENTEROS. Objetivos: 1.- Deducir las operaciones básicas de los números con signo. Lección 1.2 OPERACIONES CON NÚMEROS ENTEROS Objetivos: 1.- Deducir las operaciones básicas de los números con signo. 2.- Inferir las leyes de los signos. Introducción: Los matemáticos tuvieron que pasar

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

10 Funciones polinómicas y racionales

10 Funciones polinómicas y racionales 8966 _ 009-06.qd 7/6/08 : Página 9 0 Funciones polinómicas racionales INTRDUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos puntos por

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 15 / 09 / 15 Guía Didáctica 4-2 Desempeño: Reconoce y aplica las propiedades

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PRUEBAS EXTRAORDINARIAS DE SEPTIEMBRE PARA LA E.S.O. INFORME SOBRE LOS OBJETIVOS Y LOS CONTENIDOS EN MATEMÁTICAS CURSO 2º ESO A

PRUEBAS EXTRAORDINARIAS DE SEPTIEMBRE PARA LA E.S.O. INFORME SOBRE LOS OBJETIVOS Y LOS CONTENIDOS EN MATEMÁTICAS CURSO 2º ESO A I.E.S. MIRAFLORES DE LOS ÁNGELES CURSO 04/05 PRUEBAS EXTRAORDINARIAS DE SEPTIEMBRE PARA LA E.S.O. INFORME SOBRE LOS OBJETIVOS Y LOS CONTENIDOS EN MATEMÁTICAS CURSO º ESO A Estimados Señores: En este informe

Más detalles

Contenidos y actividades de refuerzo. Ciencias Naturales. 2º ESO.

Contenidos y actividades de refuerzo. Ciencias Naturales. 2º ESO. Contenidos y actividades de refuerzo. Ciencias Naturales. 2º ESO. El alumno deberá entregar todas las actividades correctamente realizadas en septiembre cuando se presente al examen. Es imprescindible

Más detalles

Distancia focal de una lente convergente (método del desplazamiento) Fundamento

Distancia focal de una lente convergente (método del desplazamiento) Fundamento Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. ENUNCIADOS Indica si los siguientes pares de magnitudes son directa o inversamente proporcionales: a) La distancia recorrida por un caminante, a velocidad constante, y la duración del paseo. b) El

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración.

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración. Las magnitudes físicas Las magnitudes fundamentales Magnitudes Derivadas son: longitud, la masa y el tiempo, velocidad, área, volumen, temperatura, etc. son aquellas que para anunciarse no dependen de

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo.

1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo. EJERCICIOS de CINEMÁTICA 1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo. 2. De las gráficas de la figura, cuáles corresponden a un MRU? Cuáles a un MUA? Por qué? Hay alguna

Más detalles

Relación entre la altura y la distancia del suelo al ombligo

Relación entre la altura y la distancia del suelo al ombligo Relación entre la altura y la distancia del suelo al ombligo JULIA VIDAL PIÑEIRO Los 79 datos usados para realizar el estudio estadístico de la relación altura- distancia al ombligo, se tomaron a personas

Más detalles