EL PROBLEMA DE LA TANGENTE
|
|
|
- Gustavo Caballero Rojas
- hace 9 años
- Vistas:
Transcripción
1 EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar la tangente a una curva en un punto, pero como definirla?. Una forma posible podría ser : La recta que pasando por el punto y que sólo toca a la curva en dicho punto, definición que no se satisface en el siguiente caso: P x Una manera en que quedaría unívocamente determinada la recta tangente sería conociendo las coordenadas del punto P ( x, y ) y la pendiente de la recta. Cómo calcular dicha pendiente? Un ejemplo: Cuál es la pendiente de la recta tangente en el punto P (,4) al gráfico de y f ( x) x? Un método consiste en dibujar la parábola y f ( x) x con cuidado y su recta tangente en (,4). Aunque el método es razonable, su precisión es escasa, ya que un pequeño error en el ángulo que la tangente forma con el eje x puede causar un error grande al estimar la pendiente Escogeremos otro método más seguro. Para empezar, calculemos la pendiente de una recta secante que aproxime la recta tangente en P(,4). Para ello tomamos un 1
2 punto Q cerca del P sobre la curva y f ( x) x calculamos la pendiente de la recta que pasa por P y Q, por ejemplo Q ( 1, 1 ), y f (,1) f (),1,41 Su pendiente es: m 4, 1 que sería una,1,1,1 aproximación de la pendiente de la recta tangente. Podemos mejorar la estimación considerando el punto Q ( 1, 1 ) es decir haciendo que el punto Q sea aún más próximo a P, entonces la estimación de la pendiente será mejor. Aún más, consideremos un punto típico Q. Es decir, consideremos la recta que pasa por P(,4) y por Q( x, x ) cuándo Q es muy próximo a P o lo que es los mismo x es próximo a Esta recta tiene de pendiente f ( x) f () x m lim lim x x x x usando las técnicas de límites. lim x ( x )( x + ) x 4 resultado obtenido A f ( x) f () m lim se le llamará derivada de f en x y se representará x x f por: ( ) LA VELOCIDAD Intentemos resolver el problema de calcular la velocidad en un instante dado.
3 Una piedra cae segundos? s ( t) 16t cm en t segundos. Cuál es la velocidad después de dos Cómo práctica, hagamos una estimación calculando la velocidad media de la piedra durante un breve período de tiempo, por ejemplo entre y,1 segundos. Al comienzo de este lapso, la piedra ha caído ya 16( ) 64 cm.- Y al final 16 (,1 ) 64, 6416 cm. Osea, que durante,1 segundos ha caido,6416 cm. Su ( ) ( ) 16 16,1 16 velocidad media en este período ha sido: v[, 1] 64, cm por 1 segundo, que sería una estimación de la velocidad en el instante t segundos. Consideremos el intervalo de tiempo [,t] con t>. La velocidad media en este intervalo de tiempo sería: s( t) s( ) 16( t ) 16 16( t )( t + ) v m 16( t + ) cm por segundo t t t Cuando t, la velocidad media sería la velocidad en el instante t: s ( ) ( t) s( ) v lim 16( + ) 64 cm por segundo t t LA DENSIDAD La densidad es una medidad local de la masa de un material. La densidad se define masa total como densidad volumen total La densidad de un objetivo puede variar de un punto a otro. Por ejemplo, la tierra tiene mayor densidad cerca de su centro que cerca de su superficie. De hecho, la densidad media de la tierra es 5,5 gramos por centímetro cúbico, más de cinco veces la del agua Problema: La masa de los x centímetros de la izquierda en una barra no homogénea de 1 cm de longitud es de m(x) x gramos. Cuál es la densidad ( en gramos por cm) del material en x? Solución: Para estimarla, examinemos la masa de material en el intervalo [, 1] El material del intervalo [, 1] tiene una masa de m,1 m,1, gramos. Así que su densidad media es: ( ) ( ) 41 m(,1) m( ),1,41 d[, 1] 4,1 gramos por cm,1,1,1 Si en lugar de realizar otra estimación, tomamos un intervalo genérico [,x] 3
4 tendremos como densidad media en este intervalo: m( x) m( ) x ( x )( x + ) d[, x ] x + gramos por cm x x x Cuando x, esa densidad sería la correspondiente a x : m( x) m( ) d() lim lim( x + ) 4gramos por cm. x x x DERIVADA DE UNA FUNCIÓN EN UN PUNTO Desde un punto de vista matemático, los problemas de hallar la pendiente de la recta tangente, la velocidad de la piedra en un instante dado y la densidad de la barra son un mismo problema. Cada uno de ellos conduce a un límite ( x ) del cociente de f ( x) f ( ) donde f representa en el problema de la tangente la ecuación de la curva, x en el caso de la velocidad es el trayecto recorrido s(t) y en el caso de la densidad representa a m(x). Este proceso puede aplicarse a otras funciones y por tanto parece oportuno definir el concepto que subyace en estos problemas y que no es otro que el concepto de derivada de una función en un punto: La derivada de una función en el punto x : Sea f una función definida al menos en un intervalo abierto que incluya a x. Si existe el lim x x f ( x) f ( x ) x x f ( x ) llama la derivada de f en f x. Es imprescindible que f esté definida en un intervalo abierto que contenga a x para poder calcular su límite. Este concepto nos permite definir recta tangente, velocidad, y densidad: Tangente a una curva. La recta tangente al gráfico de la función f en el punto P ( x, f ( x )) es la recta que pasa por P y que tiene una pendiente igual a la derivada de f en x. Velocidad instantánea. La velocidad en el instante t de un objeto, cuya posición viene dada por f(t) en el instante t, es la derivada de f en el punto t. Densidad de un material. La densidad en x de un material distribuido a lo largo de una recta de forma tal que los x centímetros de la izquierda tengan una masa de f(x) gramos es igual a la derivada de f en x Pendiente, velocidad y densidad son solo diversas interpretaciones de la derivada.la derivada, en sí misma, es una noción puramente matemática, un límite especial formado a partir de una función f dada. x y se denota por ( ), se OTROS EJEMPLOS DE LA UTILIDAD DE LA DERIVADA La derivada mide la rapidez con que la función cambia de valor, por ello, siempre que se vaya a investigar el ritmo al que cierta magnitud cambia, la derivada entrará en juego con toda seguridad. 4
5 BIOLOGÍA. Sea P(t) una función derivable que estima el tamaño de una población en el instante t. Entonces la derivada P (t ) nos dice el ritmo de crecimiento de la población en el instante t. FISIOLOGÍA. Sea Q(t) el caudal sanguíneo que fluye por una arteria, en centímetros cúbicos, durante los primeros t segundos de un experimento. En este caso, la derivada Q (t) da, en centímetros cúbicos por segundo, la velocidad con que la sangre fluye en el instante t por esa arteria. ECONOMÍA.Sea C(x) el coste, en euros, de producir figoríficos. (En realidad x es un entero, pero en teoría económica es conveniente suponer C(x) definida y derivable para todo x en un intervalo de números reales.). La derivada C (x)se llama coste marginal, que viene a ser el coste de producción del (x+1)-ésimo frigorífico. El coste real de producción del (x+1)-ésimo frigorífico es el coste de producción de los x+1 primeros frigoríficos menos el de los x primeros. Es decir C( x + 1) C( x) C( x + 1) C( x) que es una aproximación de C ( x) o que mirado al ( x + 1) x 1 revés, C ( x) es una aproximación del coste del (x+1)-ésimo frigorífico. Análogamente, si B(x) es el beneficio obtenido por la venta de x frigoríficos, la derivada B ( x) se llama beneficio marginal, que puede interpretarse como el beneficio extra obtenido al vender el (x+1)-iésimo frigorífico. ENERGÍA. Sea Q(t) la cantidad total de petróleo en la tierra en el instante t, medida en barriles. La derivada Q (t)dice como está cambiando Q(t). Si no se están formando nuevas reservas, entonces Q (t) es negativo, aproximadamente 5 1 de barriles diarios. Las estimaciones de Q(t) en 198 eran del orden.1 barriles. Si Q (t)se mantiene constante, todas las reservas conocidas se agotarían en un siglo, más o menos. Predicciones sobre el ritmo al que el petróleo (o cualquier otra fuente renovable de energía) se consumirá, dependen de estimaciones acerca de las derivadas. 5
MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION
MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION Resumen razón de cambio promedio La pendiente de la recta secante que conecta dos puntos en la gráfica de una función representa la razón
Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio
y razones de cambio y razones de cambio Tangentes Notas de clase Resumen Cálculo I - A1234 1/5 y razones de cambio y razones de cambio Tangentes Si una curva C tiene la ecuación y = f (x) y quiere hallar
Derivada. 1. Pendiente de la recta tangente a una curva
Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente
1.-Tasa de variación.-
TEMA 3: DERIVADAS 1.-Tasa de variación.- Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento
Tasa de variación. Tasa de variación media
Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama
Cálculo I. Índice Motivación al Concepto de Límite. Julio C. Carrillo E. * 1. Introducción Motivación del concepto de límite 1
2.0. Motivación al Concepto de Límite Julio C. Carrillo E. * Índice 1. Introducción 1 2. Motivación del concepto de límite 1 3. Conclusiones 15 * Profesor Escuela de Matemáticas, UIS. 1. Introducción La
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
Tema 7: Derivada de una función
Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia
Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como:
Derivadas Antes de dar la definición de derivada de una función en un punto, vamos a introducir el concepto de tasa de variación media y dos ejemplos o motivaciones iniciales que nos van a dar la medida
Derivada y diferencial
Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo
5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE
5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.
Cálculo Diferencial Otoño Límites y Continuidad
Cálculo Diferencial Otoño 2014 Límites y Continuidad Contenido 2.1 Introducción al concepto de límite de una función. 2.2 Límites unilaterales en funciones algebraicas, compuestas y especiales. 2.3 Técnicas
Tema 6: Derivada de una función
Tema 6: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia
Tema 7: Derivada de una función
Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia
Razón de cambio. En Física Si f(t) = s es la función de posición de una partícula que se mueve en línea recta, s representa la velocidad
Razón de cambio Si x cambia de x 1 a x tenemos que x = x x 1 y el cambio correspondiente en y es: y = f(x ) f(x 1 ) El cociente de las diferencias y x = f(x ) f(x 1 ) se llama razón de cambio promedio
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo
RELACIÓN 2: DERIVACIÓN DE FUNCIONES
5 Doble Grado en Derecho y en Administración y Dirección de Empresas Matemáticas I. Curso 017-018 RELACIÓN : DERIVACIÓN DE FUNCIONES EJERCICIO 1.- Aplicando la definición, calcular la función derivada
Colegio Portocarrero. Curso Departamento de matemáticas. Derivadas; aplicaciones de las derivadas
Derivadas; aplicaciones de las derivadas Problema 1: La función f(t), 0 t 10, en la que el tiempo t está expresado en años, representa los beneficios de una empresa (en cientos de miles de euros) entre
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO 1.
Curso: 2º Bachillerato Examen II
Nombre: Nota Curso: º Bachillerato Examen II Fecha: de Octubre de 015 La mala o nula explicación de cada ejercicio implica una penalización de hasta el 5% de la nota. 1.- Se sabe que la función f :[0,5]
DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:
DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.
Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.
Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x
5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y
5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 5.1.1. El problema de la tangente. Derivada. Pierre de Fermat tenía una
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
CÁLCULO I II DERIVADA TASAS RELACIONADAS
CÁLCULO I II DERIVADA TASAS RELACIONADAS Lecturas sugeridas: CÁLCULO una variable- GBThomas Jr Addison-Wesley- 1 ed México, 1 Capítulo 3 Sección 8 Págs 155-16 Matemáticas aplicadas a la administración
Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul
Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad III (Capítulo 10 del texto) Derivada de una función 3.1 Definición de la derivada 3.2 Diferenciación de funciones
Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León
Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de
DERIVADA DE FUNCIONES REALES
. Recta tangente a una curva DERIVADA DE FUNCIONES REALES Consideremos la curva y = f() correspondiente a una función continua y en ella dos puntos distintos P( ; y ) y Q( ; y ). PQ es una recta secante
Límites y continuidad. Cálculo 1
Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1
MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti
TEMA: Derivada La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente Sea f(x) una función continua
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un
TEMA 2: DERIVADA DE UNA FUNCIÓN
TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media
Nombre: Representa las gráficas de ambas funciones en los mismos ejes de coordenadas y haz una interpretación gráfica de la solución del sistema.
IES ATENEA. 1 er CONTROL. MATEMÁTICAS B. 4º ESO. Nombre: Evaluación: Segunda. Fecha: de febrero de 011 NOTA Ejercicio nº 1.- Calcula la ecuación de la recta que pasa por los puntos A (, 6) y B (,3). 1
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0300
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 (1 Determinar la ecuación de la recta tangente a la curva 4y x y 1, 4x en el punto ( 1, 1. ( La ley de Boyle afirma que cuando se comprime
Universidad Carlos III de Madrid
Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:
Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se
Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se simboliza con la letra delta. La derivada de la función con
Tema 2: Movimiento unidimensional
Tema 2: Movimiento unidimensional FíSICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla
Tema 2: Movimiento unidimensional
Tema 2: Movimiento unidimensional FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Vector de posición
TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos.
TEMA 2: DERIVADAS 1. Conocer el concepto de tasa de variación media de una función y llegar al concepto de derivada como límite de la tasa de variación media. 2. Conocer, sin demostración, las reglas dederivación
Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1
Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1 Ejercicio 1: Estudiar el dominio, asíntotas, signo, crecimiento, decrecimiento, máximos y mínimos relativos de la función f(x) = e 2x
Derivada de una función
CAPITULO 2 Derivada de una función 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) 2 Créditos
(x 3 +2x 1) dx 3. (10 x 5) dx 12. x cos (3x 2 5) dx. sen (4x) dx. (sen. ln x. si x 1
CAPÍTULO. INTEGRACIÓN. CÁLCULO DE ÁREAS 0.0. EJERCICIOS. Calcular las integrales inmediatas:. 4 d. ( 4. 3 3 ) 7. d ( 3 + ) d 3. ( 5. 3 4 + ) d 6. 5 3 d (cos +sen) d ( ( +) d 8. e d 9. ) 4 3 +5 +4 0. d
= x x x. v p Este cociente indica cómo desciende las ventas al aumentar el precio en una unidad.
TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y f() una función que relaciona la variable dependiente (y)
MECU 3031 ECUACIONES DE RECTAS
MECU 3031 ECUACIONES DE RECTAS Diferentes formas de una ecuación Una ecuación en dos variables se puede expresar en más de una forma equivalente utilizando correctamente operaciones inversas para despejar
LA DERIVADA UNA RAZÓN DE CAMBIO. Antes de este concepto recordemos el concepto de función lineal.
LA DERIVADA UNA RAZÓN DE CAMBIO Antes de este concepto recordemos el concepto de función lineal. Una función lineal es una relación entre dos variables x y y que cumplen la igualdad y mx b con m y b parámetros,
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de
Ejercicios de Funciones: Monotonía, curvatura, parámetros.
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Monotonía, curvatura, parámetros. Pág 1/8 Ejercicios de Funciones: Monotonía, curvatura, parámetros. 1. Calcular los intervalos de crecimiento y decrecimiento
XVI FESTIVAL ACADÉMICO DE LA DGETI 2016
XVI FESTIVAL ACADÉMICO DE LA DGETI 2016 PROBLEMAS PARA ETAPA 1 1. Cuáles de las siguientes correspondencias son funciones? a) a cada persona hace corresponder su madre biológica. b) a cada madre biológica
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:
DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que
Cálculo I Aplicaciones de las Derivadas: Linealización y Diferenciales. Julio C. Carrillo E. * 1. Introducción 1. 2.
4.7. Aplicaciones de las Derivadas: Linealización y Diferenciales Julio C. Carrillo E. * Índice 1. Introducción 1 2. Errores 2 3. Linealización 4 4. Diferenciales 10 A. Teorema de Taylor (Opcional) 17
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Funciones y Función lineal
Profesorado de Nivel Medio Superior en Biología Funciones Función lineal Analicemos los siguientes ejemplos: 1) El gráfico que figura más abajo muestra la evolución de la presión arterial de un paciente
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
LABORATORIO DE FÍSICA TEORÍA DE GRÁFICAS
Página 1 de 15 LABORATORIO DE FÍSICA TEORÍA DE GRÁFICAS OBJETIVO Las gráficas se utilizan para estudiar y comprender el mecanismo de un fenómeno observado, a la vez por medio del análisis de ellas se puede
DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:
DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que
SOLUCIONARIO EXAMEN PARCIAL
SOLUCIONARIO EXAMEN PARCIAL Matemáticas II Miércoles 7 de Mayo del 07. ( puntos) Determine si las siguientes proposiciones son verdaderas (V) o falsas (F). Justifiue su respuesta. a) ( punto) Si el costo
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2200 TRIMESTRE 02-O FECHA: DICIEMBRE 18 DE 2002 HORARIO: 13:00-15:00 H
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 TRIMESTRE 0-O FECHA: DICIEMBRE 8 DE 00 HORARIO: :00-5:00 H (A) Primer parcial () Si se lanza una pelota hacia arriba desde la azotea de un edificio
Aplicaciones de la derivada
Instituto Tecnológico Autónomo de México Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT14100) Lista de Ejercicios Aplicaciones de la derivada Cálculo Diferencial e Integral I. Aplicaciones
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES
9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,
Derivación de funciones reales de una variable
Derivación de funciones reales de una variable Derivada de una función en un punto. Interpretación física y geométrica Aproximación de raíces: Método de Newton Raphson Derivabilidad Cálculo de derivadas
Análisis Matemático I (Lic. en Cs. Biológicas)
Análisis Matemático I (Lic. en Cs. Biológicas) Curso de Verano 011 Práctica 5: Regla de L Hospital - Estudio de funciones Ejercicio 1. Decidir si las siguientes funciones satisfacen las hipótesis del Teorema
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
2. [2014] [JUN] Sean x e y dos números reales tal que x+y = 10. Cuál es el máximo valor posible para el producto (x+1)(y-1)?
[04] [ET] Supongamos que queremos construir un gallinero rectangular (como el que se muestra en la figura de la derecha) apoyado sobre dos muros formando un ángulo recto de longitudes y metros, respectivamente
La derivada. Razón de cambio promedio e instantánea
La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,
Una opción para la determinación de las fórmulas de diferenciación mediante álgebra lineal y hoja electrónica
Culcyt/ /Educación Una opción para la determinación de las fórmulas de diferenciación mediante álgebra lineal y hoja electrónica Oscar Ruiz Chávez 1, Juan Luna González 1, José Valente Barrón López 1,
TEMA 9: DERIVADAS 1. TASA DE VARIACIÓN MEDIA
TEMA 9:. TASA DE VARIACIÓN MEDIA La siguiente gráfica representa la temperatura en el interior de la Tierra en función de la profundidad. Vemos que la gráfica es siempre creciente, es decir, a medida que
INTERPRETACION GEOMETRICA DE LA DERIVADA
INTRODUCCIÓN A LAS DERIVADAS CON ESTA EXPRESIÓN SE CALCULA: a) La pendiente ( m ) de la recta secante a la función al cambiar. b) La velocidad o cambio promedio de la función al cambiar. c) El cociente
Práctico 2:Diferenciación
Práctico 2:Diferenciación. La siguiente función refleja la posición de un automóvil que se desplaza sobre una recta 00t si 0 t x = f (t) = 00 si t.25 (t.25) + 00 si.25 t 2.75 350 3 (a) Halle la razón de
Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).
representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)
Por: José Francisco Barros Troncoso
Por: José Francisco Barros Troncoso La derivada es una herramienta que permite estudiar el comportamiento de una cantidad (variable dependiente) cuando otra cantidad que está relacionada con ella varía
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.
Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites
