CONTROL DE FUERZA POR IMPEDANCIA Y ESTUDIO DE UN SENSOR DE FUERZA PARA UNA PRÓTESIS DE MANO DE NUEVE GRADOS DE LIBERTAD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTROL DE FUERZA POR IMPEDANCIA Y ESTUDIO DE UN SENSOR DE FUERZA PARA UNA PRÓTESIS DE MANO DE NUEVE GRADOS DE LIBERTAD"

Transcripción

1 CONTROL DE FUERZA POR IMPEDANCIA Y ESTUDIO DE UN SENSOR DE FUERZA PARA UNA PRÓTESIS DE MANO DE NUEVE GRADOS DE LIBERTAD Felipe Medina*, Jorge Gutiérrez** y Víctor Hugo Mosquera*** Universidad del Cauca. Popayán. ( *amedina@unicauca.edu.co,** jgutierrez@unicauca.edu.co ) *** Departamento de Electrónica Instrumentación y Control. Universidad del Cauca ( mosquera@unicauca.edu.co) Resumen: El presente documento presenta el desarrollo de una ley de control de fuerza, y modelado de un sensor de fuerza para una mano robótica de nueve grados de libertad, además de presentar un control de posición para una tarea de sujeción. La técnica de control de fuerza por impedancia se complementa con la aplicación de un sensor de deslizamiento, la cual permite tener un estado adicional que permite asegurar un agarre estable. Palabras claves: Robótica, control de robots, control de fuerza, control por impedancia, sensor de fuerza. 1. INTRODUCCIÓN. Es claro que la funcionalidad y diseño de las partes del cuerpo humano son la muestra máxima de ingeniería en aspectos como tamaño, forma, peso, mecanismos y control; hecho por el cual las personas que gozan de tener una prótesis de mano como miembro sustituto, evidentemente no ven reflejado los mismos beneficios de su miembro original. Cuando se desarrolla una tarea en la que el manipulador debe mantener contacto o aplicar fuerzas sobre el entorno, suele ser necesario aplicar estrategias de control de fuerza. Con ellas se puede determinar la fuerza que debe ejercer por parte del robot sobre el objeto a asir. Por este motivo, el entorno, y todo lo que ello conlleva, cobra una importancia vital que no se tiene cuando el control que se realiza es de posición, en otras palabras en seguimiento de trayectorias (Khalil y Dombre, 22; Cutkosky y Hyde, 1993; Magnussen y Doersam, 1995, Sciavicco y Siciliano, 1996). Los elementos que hay que tener en cuenta a la hora de aplicar estrategias de control de fuerza son: La selección de la estrategia de control de fuerza. El entorno. Al ser el medio el que recibe el contacto del robot manipulador El sistema de referencia de la tarea. De su correcta elección dependerá en gran medida la sencillez de la aplicación. El presente trabajo hace uso de una estrategia de control de fuerza por Impedancia, la cual nos permite controlar la fuerza ejercida por la mano robótica sobre el ambiente, a través de ajustes en posición (Khalil y Dombre, 22; Sciavicco y Siciliano, 1996). Para que la técnica de control desarrollada sea realizable, se hizo la selección y modelado de un sensor de fuerza, lo cual permite

2 complementar el control de fuerza y obtener respuestas más acordes a la realidad. El presente artículo presenta en la sesión 2 el esquema geométrico de la mano robótica de nueve grados de libertad a la cual se aplica la estrategia de control. En la sesión 3 la ley de control de fuerza por impedancia el cual se ejecuta coordinadamente con el control de posición realizado por Vivas (Vivas y Aguilar, 27), que garantiza el acople mecánico necesario que debe existir entre la mano y el objeto manipulado como fase previa para implementar correctamente la estrategia de control de fuerza (Khalil y Dombre, 22), así como la fase de transición entre el Control de Posición y el Control de Fuerza. En la sesión 4 se presentan los resultados de simulación de la estrategia de control desarrollada, las conclusiones del control de fuerza por impedancia y de posición se presentan en la sesión PRÓTESIS DE MANO La mano robótica de nueve grados de libertad que se trabaja en este artículo, está compuesta por tres dedos que representan los dedos pulgar, índice, y medio, cada uno con tres falanges para su manipulación que en adelante se llamaran: falange proximal FP, falange media FM, y falange distal FD respectivamente, D i representa la longitud de cada falange. El modelado fue realizado considerando que la mano es en realidad una estructura tipo arborescente, como se observa en la figura 1. X X 3 X 2 X 1 X D4 D3 D2 X 9 FD X 7 FM D7 B5 FP X 6 X X 5 D8 D6 B9 D1 Z, Z 5, Z 6, Z 7, Z 8 Fig. 1. Prótesis de mano de nueve grados de libertad. FD FM FP FP D11 X 1 FD X 11 D12 Z, Z 9, Z 1, Z 11, Z 12 γ 9 X 12 Las articulaciones de cada dedo son rotacionales, tres para el dedo índice, medio y pulgar, X i representa el eje de rotación de dichas articulaciones. Para el modelado de la mano robótica se obtuvieron los modelos geométricos cinemático y dinámicos de cada dedo, para posteriormente aplicar las estrategias de control a cada uno, estos modelos se presentan en Vivas (Vivas y Aguilar, 27). 3. CONTROL DE FUERZA POR IMPEDANCIA. La ley de control por impedancia es (Khalil y Dombre, 22): ( & d ( ) ( ) &&) ˆ 1 1 Γ = AJ Λ B X + K X X f Jq (1) + ˆ T Q q + J f ( ) Donde las matrices diagonales Λ, B y K representan la inercia, amortiguamiento y rigidez deseada respectiva-mente, X es el vector de velocidad, X d el vector de velocidad deseado, X & la posición deseada, J es la matriz Jacobiana, Q es el vector de las fuerzas de la gravedad y f es un vector de fuerzas y momentos El término J T f en manipuladores robóticos, es el encargado de compensar las fuerzas ejercidas debido a la interacción entre el manipulador y el objeto a través de su efector final. Nótese que en ausencia de este término las fuerzas externas ejercidas en el brazo son balanceadas a través de las matrices Λ, B y K (Sciavicco y Siciliano, 1996). La ley de control por impedancia para el dedo pulgar resultante es: d x& x x ˆ 1 1 d Γ = AJ Λ B y K y y & + d z z z & (2) fx q& 1 f ˆ y J& q & 2 + Q( q) f z q& 3 Donde f es la fuerza ejercida por el manipulador en el ambiente, la cual será leída por un sensor de fuerza - previamente escogido - en interacción con el ambiente.

3 La fuerza generada por el ambiente, es considerada como un sistema de primer orden (Pedreño et. al, 26, Vecchi, et. al., 28): amb [ cont ] f = K X X (3) Donde K amb es la constante de rigidez del ambiente, y X cont es la posición de contacto inicial entre el manipulador y el ambiente. El desarrollo de la ley de control por impedancia para los dedos medio e índice difiere a la desarrolada para el dedo pulgar, debido a que el modelo cinemático directo para el dedo medio e índice entrega un vector con dos velocidades lineales en los ejes y y z y una velocidad angular en el eje x. Dada esta condición, la ecuación de control de fuerza para el dedo medio e índice se expresa como: d y& y y ˆ B K d Γ = AJ z z z Λ & w& (4) f y q& 1 f ˆ z J& q & + Q( q) 2 q& 3 Dado que la ley de control por impedancia no puede ser aplicada para la obtención de la aceleración angular w&, ya que esta es el resultado de la aplicación de la ley de control de posición en los ejes y y z, es necesario la aplicación de una ley de control de posición que no influya con el control de fuerza por impedancia, pero que sea capaz de realizar una acción de control cuando se presentan velocidades angulares w. Para el control de la aceleración angular se considero un comportamiento deseado similar al propuesto en el control por par calculado en el espacio operacional con acción PD (Vivas y Aguilar, 27; Khalil y Dombre, 22), donde no se tiene velocidad y aceleración angular deseada, y además que no es deseable la acción proporcional debido a que en el control de fuerza por impedancia siempre hay presente un error de posición, se obtiene solo una acción derivativa que solo ejerce su acción de control cuando se presenta una velocidad angular. La ecuación es: d y& y y ˆ B K d Γ = AJ z z z Λ & Gww& f y q& 1 f ˆ z J& q & + Q q 2 q& 3 ( ) (5) Donde G w es la ganancia derivativa que determina la rata de convergencia del error a cero. La posición deseada X d para la ley de control por impedancia esta representada por: X d (, ) = f q despl (6) c Donde la posición deseada X d está en función de la posición articular de contacto q c, y del desplazamiento deseado despl, el cual corresponde a la distancia entre la superficie de contacto y el punto deseado a alcanzar que se encontrara siempre al interior del objeto; el desplazamiento deseado se obtiene por: i slip ( ) despl = d + K pul (7) Donde el término d i corresponde al desplazamiento inicial deseada necesaria para la ejecución de control inicial, y K slip (Σpul) corresponde a la compensa-ción por deslizamiento la cual se conforma de K slip que es la ganancia que determina el desplazamiento deseado por pulsos generados pul, los cuales son generados por el sensor de deslizamiento. El sensor de deslizamiento caracterizado y simulado se tomó del trabajo de (Proyaccher, 23), y para realimenta la fuerza de contacto se caracterizo un sensor flexiforce. Para obtener una ecuación que represente de forma aproximada el comportamiento del sensor de fuerza, se hace uso de una herramienta de MATLAB denominada curve fitting o aproximación de curva. Para la aproximación a la curva, se utiliza la siguiente ecuación exponencial: bx dx hx f ( x) = ae + ce + ge (8) Para verificar que la ecuación se aproxima bien a los datos, se analiza la aleatoriedad de los residuos (diferencia entre los datos de la curva dada y los

4 datos de la curva aproximada) (Dunca, 1986). Dando como resultado que la ecuación exponencial es apropiada para representar el comportamiento del sensor táctil de fuerza FlexiForce, modelo A21 de rango medio. Representando la ecuación en términos de resistencia y fuerza se obtiene (Vecchi et. al., 28):.4577 f.779 f Rs = 31.5e e.288 f e donde R s (f): representa la resistencia del sensor en KΩ. f: representa la fuerza en Newton. (9) 4. RESULTADOS DE SIMULACIÓN. A continuación se muestran algunos resultados obtenidos de la simulación para algunas posturas de agarre y valores de rigidez 1. Los valores de los parámetros geométricos de la mano se presentan en la tabla 1. Tabla 1. Parámetros geométricos de la mano robótica. Constante Valor Unidad D2.57 Metro D3.39 Metro D4.27 Metro D6.52 Metro D7.36 Metro D8.25 Metro D1.32 Metro D11.39 Metro D12.44 Metro B5.21 Metro B9.15 Metro γ9 45 Grados Para el control de posición (control PID), la sintonización se realizó por medio del bloque se Signal constrain de Simulink, las constantes de los coeficientes de las matrices diagonales para cada dedo son: Kp=[462, 582, 522], Kd=[4495, 5715, 6325] y Ki=[35, 1 Hace referencia a la dureza de material del objeto. 565, 88] para los dedos medio, índice y pulgar respectivamente (Vivas y Aguilar, 27). Para el control de fuerza es necesario sintonizar los valores de Λ, B y K los cuales son escalares que permiten generar las matrices diagonales que se presentan en las ecuaciones 3, 4 y 5; los coeficientes son: Λ=5, B=25 y K= 95 para los tres dedos. Como se muestra en la figuras 2, 3 y 4, El error articular para el dedo índice, medio y pulgar respectivamente. En estas figuras, se aprecia grandes oscilaciones en el instante que se produce la limitación de la articulación producto de un contacto y cuando la trayectoria articular limitada se vuelve constante, debido al cambio en el tipo de trayectoria. Aunque las oscilaciones pueden tener una amplitud entre 3x1-3 y 4x1-3 radianes, se considera que es lo suficientemente pequeño y no influye negativamente en el posicionamiento del dedo. Error articular (rad) 4 x q5 q6 q Fig. 2 Error articular del dedo índice. Error articular (rad) 4 x q1 q2 q Fig. 3 Error articular del dedo medio.

5 Posterior al correcto acople de la mano (puntos de contacto), inicia el control de fuerza por impedancia a generar los pares necesarios en las articulaciones para que el objeto no se deslice. En las figuras 5 se puede ver el desplazamiento deseado, y el desplazamiento alcanzado por el extremo de la falange distal del dedo índice sobre la superficie del objeto cuya rigidez representativa es de 6 Kg/s 2, la posición de contacto se referencia como cero. No se presentan los resultados para los dedos medio y pulgar debido a que son similares al índice. Error articular (rad) 4 x q9 q1 q Fig. 4 Error articular del dedo pulgar. Desplazamiento (m) Deseado Alcanzado Fig. 5. Desplazamiento del dedo índice después del contacto sobre el objeto. En la figura 5 se puede observar como inicialmente la falange distal se desplaza presionando el objeto para un desplazamiento inicial deseado, posteriormente cuando se genera el deslizamiento, este se compensa incrementando el desplazamiento deseado mientras exista el deslizamiento. En la figura 6 se puede observar la fuerza generada por el ambiente y la fuerza detecta por el sensor de fuerza producto del desplazamiento descrito en la figura 5. Cabe resaltar que la acción del control de fuerza por impedancia es limitada cuando alguna de las articulaciones alcanza una posición articular máxima permitida restringiendo el desplazamiento deseado producto del deslizamiento, en potra palabra la señal del sensor de deslizamiento permite limitar la fuerza que debe aplicar el robot sobre el objeto. Fuerza (N) Ambiente Sensor Fig. 6. Fuerza del ambiente y el sensor en el punto de contacto. Las figuras 7 y 8 presentan el desplazamiento del dedo índice y la fuerza del medio y el ambiente para una rigidez de 6 Kg/s 2 Desplazamiento (m) Deseado Alcansado Fig. 7. Desplazamiento del dedo índice después del contacto sobre el objeto con rigidez de 6 Kg/s 2. De las figuras 5, 6, 7 y 8 se puede observar que entre mas rigidez presenta al objeto que se desea asir, el desplazamiento de los dedos al interior de este es menor, lo cual concuerda con un ambiente real, por ejemplo, si se desea sujetar un vaso desechable los

6 dedos logran penetrar mas al interior de este, mientras que si el vaso fuera de cristal, este se opone con mayor fuerza a los dedos e impide que estos logren desplazarse al interior con mayor facilidad, lo cual se ve reflejado en la figura 8 donde se puede observar que la fuerza que se debe aplicar al objeto debe ser mucho mayor ya que la rigidez de este es alta. Fuerza (N) Ambiente Sensor Fig. 8. Fuerza del ambiente y el sensor en el punto de contacto para una rigidez de 6 Kg/s CONCLUSIONES. La velocidad de acoplamiento entre la mano y el objeto, incide de forma directa en el control de fuerza, ya que un acople de forma brusca y rápida puede producir grandes vibraciones en las falanges dificultando el control y también puede repercutir en daños en el objeto a manipular. Los sensores de fuerza escogidos para su implementación en la mano robótica son altamente eficientes para esta aplicación con respecto a los criterios de selección de los mismos, ya que son relativamente económicos, de fácil consecución y su función de transferencia no requiere de muchos cálculos numéricos, lo cual no afecta en gran medida el tiempo de procesamiento. REFERENCIAS Vivas A. y Aguilar E. (27). Modelado geométrico y dinámico de una prótesis de mano: IEEE - Colombia Workshop on Robotic and Automation. Khalil W. y Dombre E. (22). Modeling identification and control of robots, Hermes Penton Science. Pedreño J. y Guerrero A., López J. (26). Estudio de los Sensores Táctiles Artificiales Aplicados a la Robótica de Agarre. XXI Jornada de Automática, Sevilla, España. Vecchi F., Freschi C., Micera S., Sabatini A., Dario P. y Sacchetti R. (28). Experimental Evaluation of Two Commercial Force Sensors for Applications in Biomechanics and Motor Control. Scuola Superiore di Sant Anna, Advanced Robotic Technology and System Laboratory. Duncan A.J. (1986). Quality Control and Industrial Statics, 5th ed, Mc Graw Hill. Homewood, Illinois. Cutkosky M.R. y Hyde J.M. (1993). Manipulation control with dynamic tactile sensing. Proceedings of the Sixth International Soundex Reunion Registry (ISRR), Pennsylvania. Magnussen B. y Doersam T. (1995). The Karlsruhe dextrous hand: a three fingered robot gripper. Proceedings of the European Control Conference, Rome. Provancher W.R. (23). On tactil sensing and display. USA, Stanford University. Sciavicco L. y Siciliano B.(1996). Modeling and control of robot manipulators. Ed. Mc Graw Hill, USA. El control de fuerza por impedancia con detección de deslizamiento desarrollado en el presente trabajo, tiene como finalidad el permitir que el usuario de la mano robótica realice agarres con un mínimo de destreza, ya que el ajuste de fuerza como consecuencia del deslizamiento se realiza de manera automática, claro está respetando las características estructurales y de funcionamiento de la mano.

Herramientas MATLAB/SIMULINK para el Control de Fuerza de Robots manipuladores

Herramientas MATLAB/SIMULINK para el Control de Fuerza de Robots manipuladores Herramientas MATLAB/SIMULINK para el Control de Fuerza de Robots manipuladores I. Ruano Ruano*, L.M. Nieto Nieto*, J. Gómez Ortega*, F.R. Rubio** *Grupo de Robótica, Visión por computador y Automática

Más detalles

Resumen. Palabras clave: Cinemática directa, grado de libertad, coordenadas articulares.

Resumen. Palabras clave: Cinemática directa, grado de libertad, coordenadas articulares. Cinemática directa utilizando Denavit-Hartenberg y generación de trayectorias para el robot FNUC LR-Mate200iB/5P Efraín Ramírez Cardona Miguel Eduardo González Elías Víctor Martín Hernández Dávila Unidad

Más detalles

Introducción a la Robótica Mecanismos para el control de un robot (5)

Introducción a la Robótica Mecanismos para el control de un robot (5) Introducción a la Robótica Mecanismos para el control de un robot (5) Dr Jose M. Carranza carranza@inaoep.mx Coordinación de Ciencias Computacionales, INAOE 3er. Torneo Mexicano de Robots Limpiadores:

Más detalles

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Dinámica Ingeniería Electromecánica EMM - 0511 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA

INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA UNIDADES DE APRENDIZAJE 1. Competencias Automatizar procesos de producción mediante la implementación

Más detalles

Modelado Cinemático de la mano de Barrett

Modelado Cinemático de la mano de Barrett Modelado Cinemático de la mano de Barrett Informe Técnico Proyecto: DPI2008-02647 Autores: Juan Antonio Corrales Ramón Fernando Torres Medina Grupo de Automática, Robótica y Visión Artificial Departamento

Más detalles

Contenido. Prefacio... Acerca de los autores...

Contenido. Prefacio... Acerca de los autores... Contenido Prefacio... Acerca de los autores... xi xvi Capítulo 1. Introducción... 1 1.1. Antecedentes históricos... 2 1.2. Origen y desarrollo de la robótica... 8 1.3. Definición del Robot... 16 1.3.1.

Más detalles

REDUCCIÓN DE VIBRACIONES

REDUCCIÓN DE VIBRACIONES REDUCCIÓN DE VIBRACIONES Vibraciones Mecánicas MC-571 Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería 1) Introducción Existen situaciones donde las vibraciones mecánicas pueden ser deseables

Más detalles

Clasificación de robots. Clasificación de robots. Universidad Autónoma de Guerrero Unidad Académica de Ingeniería

Clasificación de robots. Clasificación de robots. Universidad Autónoma de Guerrero Unidad Académica de Ingeniería Clasificación de robots Introducción a la robótica Sesión 2: Locomoción Eric Rodríguez Peralta En la actualidad los más comunes son: Robots manipuladores Limitación para moverse en su entorno Robots móviles

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA Secciones 1. Introducción y definiciones. 2. Visión General de la manipulación mecánica. 1. Posicionamiento y Cinemática

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo

Más detalles

APD 1305 2-3 - 5 SATCA 1 : Carrera:

APD 1305 2-3 - 5 SATCA 1 : Carrera: 1. Datos Generales de la asignatura Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera: Robótica Industrial APD 1305 2-3 - 5 Ingeniería Mecánica 2. Presentación Caracterización de la asignatura

Más detalles

2015, Año del Generalísimo José María Morelos y Pavón

2015, Año del Generalísimo José María Morelos y Pavón Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48

Más detalles

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada DINAMICA ESTRUCTURAL SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada Sistema sometido a cargas armónicas: Donde la carga p(t) tiene una forma senosoidal con amplitud P o y una frecuencia angular w Consideramos

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento en el que se origina.

Más detalles

TEORÍA DE MECANISMOS ANÁLISIS DE MECANISMOS POR ORDENADOR

TEORÍA DE MECANISMOS ANÁLISIS DE MECANISMOS POR ORDENADOR 1/5 ANÁLISIS DE MECANISMOS POR ORDENADOR INTRODUCCIÓN En esta práctica se analizará cinemáticamente un determinado mecanismo plano empleando el método del cinema y se compararán los resultados obtenidos

Más detalles

15. LUGAR DE LAS RAICES - CONSTRUCCION

15. LUGAR DE LAS RAICES - CONSTRUCCION 15. LUGAR DE LAS RAICES - CONSTRUCCION 15.1 INTRODUCCION El lugar de las raíces es una construcción gráfica, en el plano imaginario, de las raíces de la ecuación característica de un lazo de control para

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Dispositivo para Obtener Coeficiente de Fricción Estático

Dispositivo para Obtener Coeficiente de Fricción Estático Dispositivo para Obtener Coeficiente de Fricción Estático 1 Martínez Martínez Edgar Edmundo, 2 Sepúlveda Cervantes Gabriel y 2 Portilla Flores Edgar Alfredo 1 Escuela Superior de Ingeniería Mecánica y

Más detalles

Control en Tiempo Real de un Posicionador XY

Control en Tiempo Real de un Posicionador XY Control en Tiempo Real de un Posicionador XY Julio C. CURAY Departamento de Ingeniería, Pontificia Universidad Católica del Perú San Miguel, Lima, Lima 32, Perú y Julio C. TAFUR Departamento de Ingeniería,

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA PROGRAMA DE LA ASIGNATURA DE: Teoría de Control y Robótica IDENTIFICACIÓN

Más detalles

Presentado por: Laura Katherine Gómez Mariño. Universidad Central

Presentado por: Laura Katherine Gómez Mariño. Universidad Central Presentado por: Laura Katherine Gómez Mariño. Universidad Central IMPORTANCIA DEL TEMA ESCOGIDO: Es una herramienta usada en simulación, que es parte crucial en un sistema de control industrial. Un controlador

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Sistema Robótico Cinemática Dinámica Planeamiento de Tareas Software Hardware Diseño Mecánico Actuadores Sistema de Control Sensores 2 Introducción Con el fin de controlar

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Universidad Politécnica de Guanajuato Semana de la Robótica Taller de introducción a la Robótica y Matlab (2 de Octubre de 2012)

Universidad Politécnica de Guanajuato Semana de la Robótica Taller de introducción a la Robótica y Matlab (2 de Octubre de 2012) Universidad Politécnica de Guanajuato Semana de la Robótica Taller de introducción a la Robótica y Matlab (2 de Octubre de 2012) Objetivos del curso Revisar conceptos básicos de robótica y el uso inicial

Más detalles

Introducción al cálculo numérico. Método de Euler

Introducción al cálculo numérico. Método de Euler Capíítullo T1 Introducción al cálculo numérico. Método de Euler En la figura 1.1 se muestra una masa sometida a la aceleración de la gravedad soportada por un muelle un amortiguador viscoso colocados en

Más detalles

Práctica 4 Control de posición y velocidad de un motor de corriente continua

Práctica 4 Control de posición y velocidad de un motor de corriente continua Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja

Más detalles

Control de un Robot planar de 2 GDL

Control de un Robot planar de 2 GDL Control de un Robot planar de 2 GDL América Morales.-César Cortés.-César Tolentino.-Mario Méndez.- Fernando Coronado Robótica y Manufactura Avanzada-CINVESTAV, Saltillo México. Abstract En este reporte

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

PR 7. Práctica con Matlab

PR 7. Práctica con Matlab PR 7. Práctica con Matlab Control PID Realizado: Laboratorio Remoto de Automática (LRA-ULE) Versión: Páginas: Grupo SUPPRESS (Supervisión, Control y Automatización) Universidad de León http://lra.unileon.es

Más detalles

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS ALBERTO RUIZ-CABELLO LÓPEZ EJERCICIO 4 1. Matriz de masas concentradas del sistema. La matriz de masas concentradas para un edificio a cortante es una matriz diagonal en la que cada componente no nula

Más detalles

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA FISICA I (FIS- 100) ASIGNATURA:. Física I SIGLA Y CODIGO:... FIS 100 CURSO:.. Primer Semestre PREREQUISITOS: Ninguno HORAS SEMANAS:... 4 Teóricas y 4

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ROBÓTICA 2135 9º 10 Asignatura Clave Semestre Créditos Ingeniería Mecánica e Industrial Ingeniería Mecatrónica Ingeniería

Más detalles

CONTROLADOR PID. Jorge Luis Mírez Tarrillo. Ing Mecánio Electricista Maestro en Ciencias mención Física

CONTROLADOR PID. Jorge Luis Mírez Tarrillo. Ing Mecánio Electricista Maestro en Ciencias mención Física CONTROLADOR PID Jorge Luis Mírez Tarrillo Ing Mecánio Electricista Maestro en Ciencias mención Física Es una estructura de control que es casi universalmente utilizada en la industria. Se trata de la familia

Más detalles

CIRCUITO 1: CIRCUITO RC

CIRCUITO 1: CIRCUITO RC CIRCUITOS DIDACTICOS DE LA MATERIA DE DISPOSITIVOS Y CIRCUTOS ELECTRONICOS Y DE DISEÑO DE SISTEMAS DIGITALES. JUSTIFICACION. Los siguientes circuitos son considerados ejemplos didácticos y representativos

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica Mecánica Racional Ejercicio de Mecánica Vectorial y Analítica Profesor Dr. Ercoli Liberto Alumno Breno Alejandro Año 2012 1 Cinemática y cinética del cuerpo rígido: Universidad Tecnológica Nacional Ejercicio

Más detalles

Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.

Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Dinámica Ingeniería Mecatrónica MTM-0 --.- HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles

ROBÓTICA I. Cinemática Directa

ROBÓTICA I. Cinemática Directa Cinemática Directa M. C. Jorge Luis Barahona Avalos 11 de abril de 2011 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 34 Índice General 1 Cinemática Directa 2 Cadena

Más detalles

POSTGRADO EN INGENIERIA MECATRÓNICA CONTROL DE ROBOTS TAREA No. 4 Modelado de la fricción F. HUGO RAMIREZ LEYVA

POSTGRADO EN INGENIERIA MECATRÓNICA CONTROL DE ROBOTS TAREA No. 4 Modelado de la fricción F. HUGO RAMIREZ LEYVA POSTGRADO EN INGENIERIA MECATRÓNICA CONTROL DE ROBOTS 21200006 TAREA No. 4 Modelado de la fricción F. HUGO RAMIREZ LEYVA ferminhugo.ramirez@upaep.mx PUEBLA PUE. A 29 DE JUNIO DE 2006. 1. Introducción Los

Más detalles

Clase III - Control de corriente en inversores de tensión

Clase III - Control de corriente en inversores de tensión Clase III - Control de corriente en inversores de tensión Laboratorio de Instrumentación y Control, Facultad de Ingeniería, Universidad Nacional de Mar del Plata 8 de noviembre de 2012 Introducción Esquema

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

3.8. Tutorial Carretilla

3.8. Tutorial Carretilla 3.8. Tutorial Carretilla 3.8.1. Introducción En este tutorial se va a simular el funcionamiento de una carretilla convencional. Se simularán sus dos movimientos principales, esto es, el movimiento de desplazamiento

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

Robótica 4. Control de robots F. Hugo Ramírez Leyva

Robótica 4. Control de robots F. Hugo Ramírez Leyva Robótica 4. Control de robots F. Hugo Ramírez Leyva Cubículo 3 Instituto de Electrónica y Mecatrónica hugo@mixteco.utm.mx Marzo 2012 Representación en Variables de estado Un sistema dinámico no lineal

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

CAPÍTULO III I. MARCO METODOLÓGICO. Este capítulo hace mención a los aspectos metodológicos de la

CAPÍTULO III I. MARCO METODOLÓGICO. Este capítulo hace mención a los aspectos metodológicos de la CAPÍTULO III I. MARCO METODOLÓGICO Este capítulo hace mención a los aspectos metodológicos de la investigación utilizados para la solución del problema. Antes de todo, es necesario definir lo que es una

Más detalles

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015 ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: 0336 Teórico #4 Cursada 2015 RESUMEN CLASE ANTERIOR (Teórico #3) Capítulo 1 - Introducción 1-1. Descripción y aplicaciones de sistemas de control automático. 1-2.

Más detalles

Javier Junquera. Equilibrio estático

Javier Junquera. Equilibrio estático Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio

Más detalles

DESARROLLO DE UN ALGORITMO PARA EL CALCULO DE LA DISTANCIA Y POSE DE DOS OBJETIVOS UTILIZANDO UN SISTEMA DE VISIÓN ARTIFICIAL

DESARROLLO DE UN ALGORITMO PARA EL CALCULO DE LA DISTANCIA Y POSE DE DOS OBJETIVOS UTILIZANDO UN SISTEMA DE VISIÓN ARTIFICIAL DESARROLLO DE UN ALGORITMO PARA EL CALCULO DE LA DISTANCIA Y POSE DE DOS OBJETIVOS UTILIZANDO UN SISTEMA DE VISIÓN ARTIFICIAL Leonardo Gaona Huertas - 20102283013 Oscar Eduardo Rojas Patiño - 20102283013

Más detalles

Guía de Problemas. CINEMÁTICA de la MARCHA. Introducción

Guía de Problemas. CINEMÁTICA de la MARCHA. Introducción Guía de Problemas CINEMÁICA de la MARCHA Introducción La Cinemática es una rama de la Mecánica que estudia el movimiento sin tomar en cuenta las fuerzas que lo originan. Para la descripción cinemática

Más detalles

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 9 CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 2.1 Criterios de diseño para el predimensionamiento de los sistemas de abastecimiento de agua 2.1.1 Período de diseño

Más detalles

CAPÍTULO IV RESULTADOS DE LA INVESTIGACIÓN. Para dar cumplimiento con el capítulo IV, los resultados de la

CAPÍTULO IV RESULTADOS DE LA INVESTIGACIÓN. Para dar cumplimiento con el capítulo IV, los resultados de la CAPÍTULO IV RESULTADOS DE LA INVESTIGACIÓN Para dar cumplimiento con el capítulo IV, los resultados de la investigación, se consideraron una serie de fases, que ayudaran a describir el modelo matemático

Más detalles

Cinemática Inversa del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Cinemática Inversa del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Cinemática Inversa del Robot UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Resuelve la configuración que debe adoptar el robot para una posición y orientación del

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

Diseño y Análisis de Controladores para un robot de 3GDL con capacidad de dibujo

Diseño y Análisis de Controladores para un robot de 3GDL con capacidad de dibujo Diseño y Análisis de Controladores para un robot de 3GDL con capacidad de dibujo J. Albites, M. Rimachi y J. Paucar. MSc. Ing. N. Anchayhua Abstract El presente trabajo muestra el diseño de controladores

Más detalles

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Introducción Consiste en determinar cual es la posición y orientación del extremo final del robot, con respecto a un sistema de coordenadas que se toma como referencia,

Más detalles

El sistema a identificar es el conjunto motor eléctrico-freno siguiente:

El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Sistema a identificar El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Relación entrada-salida Las variables de entrada-salida a considerar para la identificación del sistema es

Más detalles

( ) ( ) El vector de posición del punto genérico que representa el movimiento S vendrá dado por:

( ) ( ) El vector de posición del punto genérico que representa el movimiento S vendrá dado por: x y K M n K M n cos n sen n m n r t α + cos n t ( K M n ) α m n r t α + sen n t ( K M n ) α Llamando: A B K M n K M n Se tiene: x A cos n t α + B cos n t α y A sen n t α + B sen n t α El vector de posición

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

PROGRAMA INSTRUCCIONAL ROBOTICA

PROGRAMA INSTRUCCIONAL ROBOTICA UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION PROGRAMA INSTRUCCIONAL ROBOTICA CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM PRE

Más detalles

Guía Docente de Fundamentos Físicos de la Robótica

Guía Docente de Fundamentos Físicos de la Robótica Guía Docente de Fundamentos Físicos de la Robótica 1. ESQUEMA GENERAL 1.1.- Datos identificativos Universidad: Politécnica de Valencia Centro: E.T.S. de Informática Aplicada Título: Ingeniero Técnico en

Más detalles

Programa doctorado UCAM: Biomecánica de la fuerza y arquitectura muscular Profesor: Xavier Aguado Jódar. Tema 2

Programa doctorado UCAM: Biomecánica de la fuerza y arquitectura muscular Profesor: Xavier Aguado Jódar. Tema 2 Tema 2 Fuerza muscular 1- INTRODUCCIÓN - Mecánica - Magnitudes fundamentales, magnitudes derivadas MAGNITUD ABREVIACION ECUACION CGS MKS (SI) TECNICO INGLES Espacio (distancia) d cm m m ft Ángulo º o rad

Más detalles

Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial

Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial Visión artificial y Robótica Modelos de movimiento y mapas Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Sistemas de coordenadas Localización de objetos en el espacio Modelos

Más detalles

JOURNAL DE CIENCIA E INGENIERÍA

JOURNAL DE CIENCIA E INGENIERÍA JOURNAL DE CIENCIA E INGENIERÍA Vol. 02, No. 02, Agosto de 2010, Páginas 15 19 DIVULGACION Modelo Matemático, Simulación y Control del Robot Terapéutico REHAROB de la Empresa ABB Juan Carlos Ordoñez 1

Más detalles

Controlador PID con anti-windup

Controlador PID con anti-windup Laboratorio de Control de Procesos Industriales Práctica 1 Controlador PID con anti-windup 1 de noviembre de 2008 Introducción 2 INTRODUCCIÓN REGULADORES PID La idea básica del controlador PID es simple

Más detalles

CIENCIA Y TECNOLOGÍA DEL COLOR 2008 WORKSHOP ON COLORIMETRY AND COLOR IMAGING

CIENCIA Y TECNOLOGÍA DEL COLOR 2008 WORKSHOP ON COLORIMETRY AND COLOR IMAGING CIENCIA Y TECNOLOGÍA DEL COLOR 2008 WORKSHOP ON COLORIMETRY AND COLOR IMAGING Título: Ciencia y Tecnología del Color 2008. Workshop on Colorimetry and Color Imaging Editores: Joaquín Campos Acosta y Rafael

Más detalles

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Panasonic Electric Works España Motion Control Agenda Definición de inercia y ejemplos

Más detalles

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería en Sistemas Computacionales SCM - 0409 3-2-8 2.- HISTORIA DEL

Más detalles

Conceptos básicos de procesos ambientales y químicos

Conceptos básicos de procesos ambientales y químicos Conceptos básicos de procesos ambientales y químicos Apellidos, nombre Departamento Centro Torregrosa López, Juan Ignacio (jitorreg@iqn.upv.es) Ingeniería Química y Nuclear Universitat Politècnica de València

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

Guía de Práctica Experiencia 1 Robot KUKA 24 Marzo 2009

Guía de Práctica Experiencia 1 Robot KUKA 24 Marzo 2009 Guía de Práctica Experiencia 1 Robot KUKA 24 Marzo 2009 Profesor: Rodolfo Garcia R. Profesor auxiliar: Paul Pacheco 1. Introducción Comparado con otros inventos técnicos, el robot es relativamente joven.

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA.

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE:

Más detalles