V=λ.f En esta ecuación V será la velocidad de propagación del sonido en el aire, λ la longitud de onda,y f, la frecuencia.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "V=λ.f En esta ecuación V será la velocidad de propagación del sonido en el aire, λ la longitud de onda,y f, la frecuencia."

Transcripción

1 Introducción El objetivo de este trabajo práctico es poder determinar la velocidad de propagación del sonido en el aire a partir de dos métodos diferentes. El primero será con un tubo de Quincke y el segundo con un tubo de resonancia. En ambos casos la velocidad se podrá calcular como: V=λ.f En esta ecuación V será la velocidad de propagación del sonido en el aire, λ la longitud de onda,y f, la frecuencia. Procedimiento Experimental En este trabajo práctico utilizamos dos dispositivos experimentales: el tubo de Quincke y el tubo de resonancia. Tubo de Quincke: Utilizaremos este dispositivo para determinar la velocidad de propagación de las ondas acústicas en el aire. El tubo de Quincke (ver figura 1) está formado por un tubo en cuyo extremo se encuentra una fuente emisora (parlante) que genera una onda sonora y en el otro extremo un micrófono cumpliendo la función de receptor. La onda sonora que parte del parlante tiene dos ramas posibles para propagarse, una es de longitud fija en cambio la longitud de la otra rama es modificable. Cuando las ondas se encuentren en el extremo del tubo se producirá el fenómeno llamado interferencia. Este fenómeno se da debido a la diferencia de fase entre las dos ondas dada por la diferencia entre los caminos que recorren cada una. Con el desplazamiento de la rama móvil se pasa de posiciones que determinan interferencia destructiva a posiciones con interferencia constructiva. El parlante será excitado por el generador de audiofrecuencia para que se puede emitir una señal sinusoidal de frecuencia definida. El micrófono traducirá las perturbaciones sonoras emitidas por el parlante que serán medidas con el osciloscopio. Además éste identifica las distintas longitudes del tubo así se podrá medir la diferencia de caminos entre ambas ramas para obtener la longitud de onda de las ondas acústicas propagantes.

2 Para poder observar la interferencia destructiva la diferencia de caminos debe cumplir con la siguiente condición: En esta condición ג representa la longitud de onda sonora y n es un número natural cualquiera. El desplazamiento de la rama móvil del tubo d es la mitad de la diferencia de caminos, concluimos que: 2dn = (n + ½) λ Para comenzar, ponemos en funcionamiento el generador de audiofrecuencia y movemos el brazo del tubo de Quincke observando en la pantalla del osciloscopio el cambio en la señal y así vamos a ir identificando la interferencia destructiva y la constructiva. Luego desplazaremos la rama movil hasta poder apreciar en la pantalla del osciloscopio una línea recta.. En ese momento, aunque se sigue emitiendo sonidos en A, se puede comprobar mediante el osciloscopio la ausencia de sonido en B. Esto quiere decir que las ondas sonoras que se propagan por ramas distintas se superponen en B en oposición de fase evidenciando una interferencia destructiva (Ver figura 2) Figura 2 : Interferencia destructiva

3 Mediante una cinta métrica adosada al dispositivo experimental mediremos el desplazamiento realizado de la rama móvil para producir interferencia destructiva para las primeras tres distancias posibles. Así podremos relacionarlas con la longitud de onda según: 2dn = (n + ½) λ Gracias a estas tres determinaciones obtendremos la longitud de onda promedio (λp) y su incerteza. Este procedimiento será repetido para las tres frecuencias indicadas por el docente a cargo del trabajo. Una vez que obtuvimos la medición de la longitud de onda y que colocamos la frecuencia con el generador de frecuencia podemos calcular la velocidad de propagación mediante la ecuación indicada anteriormente: ג= V. f Calcularemos así la velocidad de propagación del sonido para cada una de las tres frecuencias adoptadas.(ver Tabla 1) Tubo de resonancia Para el segundo método utilizaremos un tubo de resonancia que posee un extremo abierto en el cual colocamos la fuente emisora, un celular con una aplicación que emite un sonido con una frecuencia determinada. Las frecuencias que nosotros utilizamos son 1000hz y 2000hz. El tubo tiene un nivel de líquido que podremos variar moviendo la ampolla verticalmente. Cuando se modifica la longitud de la columna de aire se detecta que la intensidad del sonido cambia. Entonces encontraremos, para una determinada longitud del tubo, que el sonido que se percibe es de máxima intensidad; esto quiere decir que se está formando una onda estacionaria. Podemos determinar la velocidad de propagación del sonido en el aire ya que conocemos la frecuencia del sonido generado por la fuente y la longitud de la columna de aire donde se detecta el máximo de intensidad. La ecuación para lograr el fenómeno de resonancia en un tubo cerrado es : L=v(2n+1) 4f

4 En esta ecuación, L es la longitud de la columna de aire (que en principio asociaremos con la distancia entre la superficie del agua dentro del tubo y el extremo superior de éste), v la velocidad del sonido y f la frecuencia de oscilación de la fuente. Tenemos que tener en cuenta los efectos de borde que hacen que el máximo de oscilación de la columna de aire no se encuentre exactamente en el extremo del tubo, por esto, la condición de resonancia final estará dada por: L+E=λ4(2n+1)v(2n+1) 4f El factor E representará sólo un corrimiento del borde abierto del tubo y puede ser tanto negativo como positivo. Considerando las primeras (menores) dos longitudes de la columna de aire que satisfacen la condición de resonancia L 0 y L 1, concluimos que: L 0 y L 1 = λ/2=v/2f Con la frecuencia determinada y conociendo las longitudes de la columna de aire para las cuales se produce el fenómeno de resonancia calcularemos λ y así podremos determinar la velocidad utilizando la siguiente ecuación: V= λ.f Luego de establecer la frecuencia a utilizar con la aplicación del celular, colocamos el parlante del celular en la boca del tubo. Después subiendo y bajando la ampolla producimos una variación en el nivel de agua dentro de la probeta hasta que escuchamos el primer máximo de intensidad y en ese instante con la ayuda de una cinta métrica y un

5 marcador indeleble, tomamos la longitud L 0 de la columna de aire dentro del tubo. La incerteza elegida para esta medición fue: 0,4cm. A continuación movimos nuevamente la ampolla hasta escuchar el nuevo refuerzo de sonido y procedimos a la medición de L 1 tal cual lo hicimos con L 0. Con estos datos, calculamos la longitud de onda λ y después, sabiendo la frecuencia utilizada podremos calcular la velocidad de propagación del sonido(ver Tabla 2) Fuentes de error: En este trabajo práctico, como realizamos un procedimiento experimental, sabemos que las mediciones pueden tener errores. Para calcularlos adoptamos distintos criterios: Tubo de Quincke: En este caso, la incerteza de la longitud de desplazamiento realizada para producir la interferencia destructiva (d) es igual a 0,2 cm ya que se puede haber cometido un error humano al leer la cinta métrica y como su mínima división es de 0.1cm, decidimos que los valores obtenidos pueden variar 0,1 cm para la derecha o para la izquierda. Para calcular la incerteza de la longitud de onda y de la velocidad utilizamos las formula que se detallarán en el anexo. Tubo de resonancia Para medir las longitudes L 0 y L 1, tomamos como fuentes de error, la lectura de la cinta métrica (0,2cm, como en el tubo de Quincke) y el trazo del marcador (0,2cm)con el que realizamos una marca en donde reconocimos el refuerzo de sonido. Por lo cual la incerteza de L 0 y L 1 fue: 0,4cm. Resultados y Análisis Obs. ƒ (Hz) Ɛƒ (Hz) Ɛd d 1 λ 1 =4d 1 Ɛλ 1 d 2 λ 2 =4d 2 /3 Ɛλ , , ,5 10,

6 Obs. d 3 λ 3 =4d 3 /5 Ɛλ 3 λ p Ɛλ p v (m/s) Ɛv (m/s) 1 22,4 17,92 17,57 335,65 9, ,6 15, ,40 357,29 9, ,4 11,52 10,99 338,50 12,74 Tabla1: Resultados obtenidos para la experiencia de interferencia utilizando un tubo de Quincke Observando la tabla, podemos decir, en primer lugar que para una misma frecuencia la longitud de onda se mantiene. Por ejemplo para 2230 Hz, λ 1 es 16,4 λ 2 16,0 cm y 15,68cm λ 3. Podemos decir que estos valores son próximos teniendo en cuenta su incerteza de 0,4 cm. Por lo que decimos que para una misma frecuencia la longitud de onda no varía. Por otra parte al comparar los valores obtenidos para la velocidad de propagación del sonido en el aire deducimos que la velocidad no depende de la frecuencia, ya que para distintas frecuencias los valores de velocidad no presentan una gran diferencia entre ellos (utilizando sus respectivas incertezas para aproximar los valores). Debimos recurrir a las incertezas para aproximar estos valores porque como la velocidad depende del medio sonoro, las condiciones de temperatura y presión probablemente no eran las que se indicaban en el valor tabulado (20 C, presión atmosférica y 60% de humedad) lo cual pudo producir una diferencia entre los valores obtenidos. Obs. L 0 ᵋL0 L 1 ᵋ L 1 Λ Ɛλ f+ᵋf (1/s) V(m/s) ᵋv (m/s) 1 7,5 0,4 24,4 0,4 33,8 1, , ,7 0,4 20,5 0,4 17,6 1, ,76 Tabla 2: Resultados obtenidos para le experiencia de interferencia con el tubo de resonancia. Al comparar las dos ondas estacionarias que se generan dentro de la probeta, logramos concluir que la velocidad no depende de la longitud de onda porque como se ve en la

7 tabla si utilizamos las incertezas para aproximar los valores de velocidad, estos no varían mientras que la longitud si presenta una gran diferencia. Comparación de ambos procedimientos experimentales Para saber qué método es más aproximado decidimos comparar las incertezas absolutas: Para el tubo de Quincke, esto lo realizamos, sumando las 3 incertezas de la velocidad obtenidas en el primer experimento y luego dividiendo por 3 para sacar una incerteza promedio. Su incerteza absoluta es: ±10,35 m/s Por otra parte, para determinar la incerteza absoluta del tubo de resonancia, sumamos las dos incertezas calculadas y las dividimos por 2, para obtener su incerteza absoluta, esta es igual a : ±26,57 m/s. Podemos decir que la medición efectuada con el tubo de Quincke es más aproximada ya que su incerteza absoluta es menor que la del tubo de resonancia. Para determinar qué método de medición es más preciso, comparamos las incertezas relativas. La incerteza relativa la calculamos como: e p= incerteza absoluta/valor representativo. Para este cálculo, también debemos calcular la velocidad promedio obtenida en cada experimento. -Tubo de Quincke: incerteza relativa: 0,030 -Tubo de resonancia: incerteza relativa : 0,077 Como realizamos un cociente entre dos valores expresados en las mismas unidades, la incerteza relativa resulta adimensional. Nos resultó más cómodo expresar la incerteza en forma porcentual, para la cual multiplicamos la incerteza relativa por 100 y esto nos da el porcentaje de esta incerteza con respecto al valor de la medición: 3% (Tubo de Quincke) 7,7%(tubo de resonancia) Podemos decir que el tubo de Quincke es más preciso que el tubo de resonancia ya que su incerteza relativa es menor.

8 Conclusiones Al finalizar este trabajo práctico podemos decir que: como se demostró en la primer parte mediante el experimento con el Tubo de Quincke, la velocidad es una constante que no depende de la frecuencia. Con el método de medición llamado tubo de resonancia, apreciamos que la velocidad no depende de la longitud de onda. Por otra parte, concluimos en que todos los errores en las medición de las distintas magnitudes (velocidad, longitud de onda etc)deben ser considerados como resultado de que las condiciones del medio en el cual se trabajó no eran las del valor tabulado. Otra causa puede ser que la calibración del dispositivo experimental o el error en la lectura de los instrumentos. Todos los errores influyentes son considerados parte del medio en el cual se realizó esta experiencia por esto, afirmamos que la velocidad de propagación del sonido depende del medio en el cual se propague.

9 ANEXO Cálculos realizados en la primer parte del trabajo práctico: λ 1 =4d 1 λ 2 =4d 2 /3 λ 3 =4d 3 /5 Observación 1: λ 1 =16,8 λ 2 =18,0 λ 3 =17,92 λ p =17,57 Observación 2: λ 1 =16,4 λ 2 =16,0 λ 3 =15,68 λ p =16,02 Observación 3: λ 1 =10,0 λ 2 =17,73 λ 3 =11,52 λ p =10,99 v = λ. f Observación 1: v=335,65 m/s Observación 2: v=357,29 m/s Observación 3: v=338,50 m/s Incertezas: ελ 1 = 4. εd = 4. 0,2= 0,8cm ελ 2 = 4 / 3. εd = 4 / 3. 0,2 = 0,26cm ελ 3 = 4 / 5. εd = 4 / = 0,16cm ελ P = ( ελ 1 + ελ 2 + ελ 3 ) : 3 = ( 0,8 + 0,26 + 0,16) : 3 = 0,40cm εv 1 = v 1 (ελ p1 / λ p1 + εf 1 / f 1 ) = 9,01 m/s εv 2 = v 2 (ελ p2 / λ p2 + εf 2 / f 2 ) = 9,30 m/s εv 3 = v 3 (ελ p3 / λ p3 + εf 3 / f 3 ) = 12,74 m/s Cálculos realizados en la segunda parte del trabajo práctico L 1 L 0 =λ/2 Observación 1: ( 24,4-7,5)*2=λ=33.8cm Observación 2: (20,5-11,7)*2=λ=17,6cm ελ=2(εl 0 + εl 1 ) =1,6=ελ v=λ.f Observación 1: v=338m/s Observación 2: v=352m/s εv=v(ελ 1 / ελ 1 + εf/f) Observación 1: εv=19,38 m/s Observación 2: εv=33,76 m/s

10 Incerteza absoluta y relativa Incerteza absoluta Tubo de Quincke: (εv 1 * εv 2 * εv 3 )/3= (9,01+9,30+12,74 )/3= 10,35 m/s Tubo resonancia: (εv 1 * εv 2 )/2= (19,38+33,76)/2=26,57 m/s Incerteza relativa Tubo de Quincke: e p= incerteza absoluta/valor representativo Para poder reemplazar el valor representativo, calculamos la velocidad promedio v p V p : (v 1 +v 2 +v 3 )/3= (335, , ,50)/3= v p =343,81 m/s e p= 10,35/343,81=0,030 Tubo de resonancia Nuevamente calculamos la velocidad promedio v p V p =(v 1 +v 2 )/2= ( )/2= 345 m/s e p = 26,57/345=0,077 Forma porcentual: 0,030*100=3% 0,077*100=7,7%

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui TEMA I.13 Ondas Estacionarias Longitudinales Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Tema 6: Movimiento ondulatorio.

Tema 6: Movimiento ondulatorio. Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

PRÁCTICA Nº2 TUBO DE RESONANCIA

PRÁCTICA Nº2 TUBO DE RESONANCIA PRÁCTICA Nº2 TUBO DE RESONANCIA 1.- Objetivo El objetivo de esta práctica es determinar la velocidad de propagación del sonido en el aire empleando el fenómeno de la resonancia en un tubo. Además se pretenden

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1. Superposición de ondas. 2. Ondas estacionarias. 3. Pulsaciones. 4. Principio de Huygens. 5. Difracción. 6. Refracción. 7. Reflexión. 8. Efecto Doppler. Física 2º Bachillerato

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. Teror

Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. Teror Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. eror Objetivo El objetivo de la siguiente práctica es alcanzar el vientre de la onda que produciremos gracias a la ayuda

Más detalles

1.- Qué es una onda?

1.- Qué es una onda? Ondas y Sonido. 1.- Qué es una onda? Perturbación de un medio, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de

Más detalles

Demostración de la Interferencia Acústica

Demostración de la Interferencia Acústica 54 Encuentro de Investigación en Ingeniería Eléctrica Zacatecas, Zac, Marzo 17 18, 2005 Demostración de la Interferencia Acústica Erick Fabián Castillo Ureña, Depto. de Ingeniería Eléctrica y Electrónica,

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

FENÓMENOS ONDULATORIOS ELEMENTALES EN CUBETA DE ONDAS

FENÓMENOS ONDULATORIOS ELEMENTALES EN CUBETA DE ONDAS 1 FENÓMENOS ONDULATORIOS ELEMENTALES EN CUBETA DE ONDAS I. Objetivos: Este experimento permite observar algunos de los fenómenos ondulatorios elementales más comunes que ocurren en la naturaleza. Se analizará

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

Ondas : Características de las ondas

Ondas : Características de las ondas Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Las siguientes son el tipo de preguntas que encontraras en la siguiente Taller:

Las siguientes son el tipo de preguntas que encontraras en la siguiente Taller: Guía No 20. Ciencias - Curso: Grado 9º Nombre alumno: Tema: Las Ondas II - Características CUARTO PERIODO CIENCIAS Las siguientes son el tipo de preguntas que encontraras en la siguiente Taller: A. Preguntas

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

Ondas Acústicas en una Caja Prismática

Ondas Acústicas en una Caja Prismática Ondas Acústicas en una Caja Prismática M. Eugenia Capoulat.- Alejandra D. Romero. Laboratorio de Física 5 Dto. de Física FCEyN U.B.A. 005. Resumen. Un generador de funciones, un osciloscopio, un parlante

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5 013-Julio-Fase Específica (Asturias) Se nos da la expresión de la longitud de onda de los armónicos, aunque podríamos deducirla al tratarse de un caso de ondas estacionarias con un límite fijo (el extremo

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

TRANSMISIÓN DE LA ENERGÍA ENTRE DOS PUNTOS

TRANSMISIÓN DE LA ENERGÍA ENTRE DOS PUNTOS TRANSMISIÓN DE LA ENERGÍA ENTRE DOS PUNTOS Por desplazamiento de un cuerpo que posee energía Mediante ondas: se transmite la energía de una partícula que vibra Características del movimiento que propaga

Más detalles

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano.

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano. .2. ONDAS. El sonido puede ser definido como cualquier variación de presión en el aire, agua o algún otro medio que el oído humano puede detectar. Lo anterior implica que no todas las fluctuaciones de

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

Práctica 4. Interferómetro de Michelson

Práctica 4. Interferómetro de Michelson . Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.

Más detalles

Liceo Cristo Redentor Los Álamos. Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS LAS ONDAS

Liceo Cristo Redentor Los Álamos. Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS LAS ONDAS Liceo Cristo Redentor Los Álamos Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS LAS ONDAS Clase 1: Objetivos: Describir cualitativamente el movimiento ondulatorio.

Más detalles

BLOQUE 4.1 ÓPTICA FÍSICA

BLOQUE 4.1 ÓPTICA FÍSICA BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Ondas IV: fenómenos ondulatorios

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Ondas IV: fenómenos ondulatorios SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Ondas IV: fenómenos ondulatorios SGUICTC026TC32-A16V1 Solucionario guía Ondas IV: fenómenos ondulatorios Ítem Alternativa Habilidad 1 B Comprensión 2 C Comprensión

Más detalles

Determinación de la densidad de un cuerpo, y su expresión con sentido físico. Agustín Binora.

Determinación de la densidad de un cuerpo, y su expresión con sentido físico. Agustín Binora. Determinación de la densidad de un cuerpo, y su expresión con sentido físico Agustín Binora agusbinora@yahoo.com.ar Introducción teórica En este trabajo práctico, nuestra tarea será medir la densidad de

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla: El objetivo al estudiar el concepto razón de cambio, es analizar tanto cuantitativa como cualitativamente las razones de cambio instantáneo y promedio de un fenómeno, lo cual nos permite dar solución a

Más detalles

Naturaleza ondulatoria de la luz. Difracción.

Naturaleza ondulatoria de la luz. Difracción. Objetivos Comprobar la naturaleza ondulatoria de la luz. Estudio de la difracción de la luz en diferentes rendijas y obstáculos. Estudiar la difracción de Fraunhofer por una rendija. Material Láser de

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Las ondas: Sonido y Luz

Las ondas: Sonido y Luz Las ondas: Sonido y Luz El movimiento ondulatorio El movimiento ondulatorio es el proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas. Clases de ondas

Más detalles

Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS.

Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS. Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS. Medir es comparar cierta cantidad de una magnitud, con otra cantidad de la misma que se ha elegido como unidad patrón. Por ejemplo,

Más detalles

ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO

ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO ONDAS Una onda es una perturbación que se propaga. Con la palabra perturbación se quiere indicar cualquier tipo de alteración del medio: una ondulación en

Más detalles

CAPITULO X EL POTENCIOMETRO

CAPITULO X EL POTENCIOMETRO CAPITULO X EL POTENCIOMETRO 10.1 INTRODUCCION. La determinación experimental del valor de un voltaje DC se hace generalmente utilizando un voltímetro o un osciloscopio. Ahora bien, los dos instrumentos

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

intersección de dicho meridiano sobre el Ecuador.

intersección de dicho meridiano sobre el Ecuador. Tema 6 Determinación de la Latitud Geográfica 5.1 Definiciones De acuerdo a la [Figura 5.1a] siguiente pueden darse tres diferentes definiciones de Latitud (): a) es el arco de meridiano comprendido entre

Más detalles

Medición del índice de refracción de líquidos.

Medición del índice de refracción de líquidos. Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II Proyecto Experimental: Medición del índice de refracción de líquidos.

Más detalles

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones:

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones: ONDAS ONDAS Las ondas son perturbaciones que se propagan a través del medio. Medio Isótropo: cuando sus propiedades físicas son las mismas en todas las direcciones. Medio físico homogéneo: cuando se considera

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS 1.* Cuál es el periodo de la onda si la frecuencia es de 65,4 Hz? 2.** Relacionen los conceptos con sus definiciones correspondientes. a) Amplitud b) Longitud

Más detalles

TRABAJO PRÁCTICO Nº3: BRÚJULA DE TANGENTES. Agustín Garrido

TRABAJO PRÁCTICO Nº3: BRÚJULA DE TANGENTES. Agustín Garrido TRABAJO PRÁCTICO Nº3: BRÚJULA DE TANGENTES Agustín Garrido agugarrido@hotmail.com Síntesis: En este trabajo analizamos el campo magnético generado por la circulación de corriente a través de una bobina

Más detalles

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible

Más detalles

LABORATORIO DE INSTRUMENTACIÓN ELECTRÓNICA PRÁCTICA N 11

LABORATORIO DE INSTRUMENTACIÓN ELECTRÓNICA PRÁCTICA N 11 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

PRACTICA DE LABORATORIO NO. 1

PRACTICA DE LABORATORIO NO. 1 UIVERSIDAD PEDAGÓGICA ACIOAL FRACISCO MORAZÁ CETRO UIVERSITARIO REGIOAL DE LA CEIBA DEPARTAMETO DE CIECIAS ATURALES PRACTICA DE LABORATORIO O. 1 I PERIODO 2014 ombre de la Practica: MEDICIOES E ICERTIDUMBRES.

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Ondas I: ondas y sus características Nº Ejercicios PSU 1. Dentro de las características de las ondas mecánicas se afirma que MC I) en su propagación existe transmisión

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

2. ONDAS TRANSVERSALES EN UNA CUERDA

2. ONDAS TRANSVERSALES EN UNA CUERDA 2. ONDAS RANSVERSALES EN UNA CUERDA 2.1 OBJEIVOS Analizar el fenómeno de onda estacionaria en una cuerda tensa. Determinar la densidad lineal de masa de una cuerda. Estudiar la dependencia entre la frecuencia

Más detalles

Incertidumbres y Métodos Gráficos *

Incertidumbres y Métodos Gráficos * UNIVERSIDAD NACIONAL DE COLOMBIA Departamento de Física Fundamentos de Electricidad y Magnetismo Guía de laboratorio 02 Objetivos Incertidumbres y Métodos Gráficos * 1. Aprender a expresar y operar correctamente

Más detalles

ACTIVIDAD FINAL INTRODUCCIÓN LAFAMILIA DE PARÁBOLAS. NOMBRE: Adela-Rosa APELLIDOS: Rodríguez Rodríguez Correo electrónico:

ACTIVIDAD FINAL INTRODUCCIÓN LAFAMILIA DE PARÁBOLAS. NOMBRE: Adela-Rosa APELLIDOS: Rodríguez Rodríguez Correo electrónico: ACTIVIDAD FINAL NOMBRE: Adela-Rosa APELLIDOS: Rodríguez Rodríguez Correo electrónico: adelarodriguez@edu.xunta.es INTRODUCCIÓN Voy a plantear actividades para el alumnado de de 4º ESO, opción B, relativas,

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas la onda puede transportar

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives PROBLEMAS DE ONDAS ESACIONARIAS Autor: José Antonio Diego Vives Problema 1 Una cuerda de violín de L = 31,6 cm de longitud y = 0,065 g/m de densidad lineal, se coloca próxima a un altavoz alimentado por

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

Estudio de la coherencia espacial de una fuente de luz

Estudio de la coherencia espacial de una fuente de luz Estudio de la coherencia espacial de una fuente de luz Clase del miércoles 29 de octubre de 2008 Prof. María Luisa Calvo Coherencia espacial Está ligada a las dimensiones finitas de las fuentes de luz.

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA UNIVERSIDAD DE LA LAGUNA FACULTAD DE MATEMÁTICAS INGENIERÍA TÉCNICA DE OBRAS HIDRÁULICAS FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA OBJETIVO GENERAL: ESTUDIO DE LAS ONDAS - Emplear

Más detalles

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO:

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO: 1 EJERCICIOS DE ONDA NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

DOCUMENTO 02 CLASIFICACION DE LAS ONDAS

DOCUMENTO 02 CLASIFICACION DE LAS ONDAS DOCUMENTO 02 CLASIFICACION DE LAS ONDAS RESUMEN CONCEPTOS DE LA CLASE ANTERIOR Relaciones importantes f = 1 T v = λ.f la longitud de onda y la frecuencia varían en forma inversamente proporcional para

Más detalles

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1 No 1 LABORATORIO DE FISICA PARA LAS CIENCIAS DE LA VIDA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Realizar mediciones de magnitudes de diversos objetos

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor.

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor. Ondas 1. En ciertas ondas transversales la velocidad de propagación es inversamente proporcional a la densidad del medio elástico en que se propagan. Si en el fenómeno de refracción su frecuencia permanece

Más detalles

Dependencia de la aceleración de un cuerpo en caída libre con su masa

Dependencia de la aceleración de un cuerpo en caída libre con su masa Dependencia de la aceleración de un cuerpo en caída libre con su masa Ramón Ramirez 1 y Guillermo Kondratiuk 2 E. E. T. N 4 Profesor Jorge A. Sábato, Florencio Varela, Buenos Aires 1 rar14@uolsinectis.com.ar

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Para analizar datos económicos a menudo es necesario buscar relaciones entre las variables económicas. Para estas relaciones podemos usar:

Para analizar datos económicos a menudo es necesario buscar relaciones entre las variables económicas. Para estas relaciones podemos usar: Comparación de las Variables Económicas Para analizar datos económicos a menudo es necesario buscar relaciones entre las variables económicas. Para estas relaciones podemos usar: Cocientes Proporciones

Más detalles

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura. VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

Análisis del efecto Doppler para una Fuente en Movimiento Circular

Análisis del efecto Doppler para una Fuente en Movimiento Circular Análisis del efecto Doppler para una Fuente en Movimiento Circular Alejandra Romero M. Eugenia Capoulat. Laboratorio de Física 5 Dto. de Física FCEyN U.B.A. 2005. Resumen: En esta experiencia hacemos un

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

Uso de teléfonos celulares para medir la velocidad del sonido en el aire.

Uso de teléfonos celulares para medir la velocidad del sonido en el aire. Uso de teléfonos celulares para medir la velocidad del sonido en el aire. Cell phone use to measure speed of sound in air. Jesús Ramón Lerma Aragón Facultad de Ciencias: Universidad Autónoma de Baja California

Más detalles

Medida de antenas en campo abierto Estudio de la antena Yagi-Uda

Medida de antenas en campo abierto Estudio de la antena Yagi-Uda Medida de antenas en campo abierto Estudio de la antena Yagi-Uda 1. INTRODUCCIÓN En este documento se describe la práctica de laboratorio correspondiente a la medida de antenas en campo abierto y al estudio

Más detalles

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. 1. LEYES PONDERALES En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. Ley de conservación de la masa de Lavoisier Lavosier

Más detalles

Instrumentos y aparatos de medida: El osciloscopio

Instrumentos y aparatos de medida: El osciloscopio Instrumentos y aparatos de medida: El osciloscopio Para entender el osciloscopio es necesario conocer el concepto básico de los tubos de rayos catódicos (Ferdinand Braum). El monitor o pantalla es quien

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE ARQUITECTURA Y DISEÑO ESCUELA DE ARQUITECTURA

UNIVERSIDAD DE LOS ANDES FACULTAD DE ARQUITECTURA Y DISEÑO ESCUELA DE ARQUITECTURA UNIVERSIDAD DE LOS ANDES FACULTAD DE ARQUITECTURA Y DISEÑO ESCUELA DE ARQUITECTURA DEPARTAMENTO DE TECNOLOGÍA DE LA CONSTRUCCIÓN AOPE Acondicionamiento Acústico Prof. Alejandro Villasmil Nociones Generales

Más detalles

Los sonidos pueden clasificarse en fuertes o débiles, según su intensidad sea elevada o baja.

Los sonidos pueden clasificarse en fuertes o débiles, según su intensidad sea elevada o baja. www.clasesalacarta.com ndas sonoras y sonido Tema 9.- ndas Sonoras Son ondas mecánicas longitudinales: necesitan un medio material para su propagación y las partículas del medio actúan en la misma dirección

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles