Álgebra. Curso

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra. Curso"

Transcripción

1 Álgebra. Curso de junio de 2013 Resolución

2 Ejercicio. 1. (2 puntos) Utiliza el teorema del descenso (o alternativamente la localización en primos) para probar el siguiente resultado: Sea K un cuerpo, A una K álgebra finitamente generada que es un dominio, y p 0 p t una cadena de ideales primos. Prueba los siguientes enunciados: (1) Si F es el cuerpo de fracciones de A y d = grtr(f/k), entonces t d. (2) En la situación anterior se tiene t = d si, y sólo si, la cadena de ideales primos no se puede ampliar. (1). Como A es una K álgebra finitamente generada que es un dominio, por el lema de normalización existe una extensión entera B = K[X 1,..., X d ] A, siendo p j B = (X 1,..., X ij ), con i 0 < i 1 < < i t por el teorema de incomparabilidad. Sea E el cuerpo de fracciones de B; tenemos una torre de cuerpos: K E F. Como B A es entera, entonces F/E es una extensión algebraica, y por tanto grtr(f/k) = grtr(e/k) = d. En consecuencia t d. (2). Si t = d, entonces la cadena es maximal y no se puede ampliar. Supongamos que la cadena no se puede ampliar; veamos que i j + 1 = j j+1, y por tanto t = d. Para probar esto tenemos que ver que si i j + 1 < i j+1 entonces llegamos a una contradicción. Por la hipótesis existe una cadena p j B (X 1,..., X ij +1) p j+1 B. Consideramos la extensión entera B/p j B A/p j, por lo que podemos suponer que p j = 0 y también p j B = 0, y por tanto i j = 0. Tenemos entonces en K[X 1,..., X d ] la cadena de ideales primos 0 (X 1 ) p j B, y en A la cadena 0 p j+1. Por el teorema del descenso existe un ideal primo 0 p p j+1 tal que p B = (X 1 ), lo que contradice el que la cadena no se puede ampliar. Ejercicio. 2. (2.5 puntos) Sea a K[X 1,..., X n ] un ideal monomial. Decimos que a es monomial puro si está generado por potencias de los X i. Prueba los siguientes resultados: (1) Todo ideal monomial es una intersección finita de ideales monomiales puros. (2) Todo ideal monomial es, de forma única, una intersección irredundante finita de ideales monomiales puros. (3) Un ideal monomial es monomial irreducible (no es intersección de dos ideales monomiales que lo contienen propiamente) si, y sólo si, es un ideal monomial puro. (4) Determina la descomposición primaria, la descomposición primaria estándar y los ideales primos asociados de los ideales a = (X 3 1, X 3 2, X 2 1X 2 3, X 1 X 2 X 2 3, X 2 2X 2 3). 2

3 (1) Todo ideal monomial es una intersección finita de ideales monomiales puros. Sea a = (X e 1 1 X en n, G 2,..., G s ) un ideal monomial, se tiene la siguiente relación: a = n i=1(x e i i, G 2,..., G s ). Dado un monomio G n i=1(x e i i, G 2,..., G s ), si G es múltiplo de un G j, entonces G a. Por otro lado, si G no es múltiplo de ningún G j, entonces G es múltiplo de X e i i, para cada índice i, y por lo tanto es múltiplo de X e 1 1 Xn en, y pertenece a a. Repitiendo el proceso para cada monomio de a, tenemos el resultado. (2) Todo ideal monomial es, de forma única, una intersección irredundante finita de ideales monomiales puros. Dada una intersección a = t i=1q i, en donde cada q i es un ideal monomial puro, podemos eliminar aquellos q i tales que q i j i q j, y tenemos una intersección irredundante. Dadas dos intersecciones irredundantes t i=1q j = s j=1h j de ideales monomiales puros, supongamos que q 1 = (X e 1 1,..., Xn en ); si h j q 1 para cada índice j = 1,..., s, existe X f j m j h j \ q 1, y por tanto f j < e mj para cada índice j. Si llamamos M = m. c. m.{x f 1 m 1,..., Xm fs s }, se tiene M s j=1h j q 1, y debería existir un exponente f j tal que f j e mj, lo que es una contradicción. (3) Un ideal monomial es monomial irreducible (no es intersección de dos ideales monomiales que lo contienen propiamente) si, y sólo si, es un ideal monomial puro. ( ). Si q es irreducible y tiene un sistema mínimo de generadores q = (G 1 = X e 1 1 Xn en, G 2,..., G t ), entonces q es una intersección q = n i=1(x e i i, G 2,..., G t ), y por ser monomial irreducible, q = (X e i i, G 2,..., G t ) para algún índice i. Entonces e i es el único exponente no nulo. El mismo razonamiento nos lleva a que cada generador G j es también un monomio puro, luego q es un ideal monomial puro. ( ). Sea q = (X e 1 1,..., Xn en ) un ideal monomial puro, y supongamos que a = b 1 b 2, para ideales monomiales b 1, b 2 a. Escribimos b y c como intersección irredundante de ideales monomiales puros: b i = q i,j. Entonces q = ( q 1,j ) ( q 2,j ), y eliminando los ideales q ij redundantes, tendremos en el miembro de la derecha un sólo ideal, por lo tanto b 1 = a ó b 2 = a, y q es irreducible. 3

4 (4) Determina la descomposición primaria, la descomposición primaria estándar y los ideales primos asociados de los ideales a = (X 3 1, X 3 2, X 2 1X 2 3, X 1 X 2 X 2 3, X 2 2X 2 3). Ejercicio. 3. (2 puntos) Sea D un dominio. (1) Si D es un dominio local, prueba que un ideal no nulo a D es invertible si, y sólo si, es un ideal principal. (2) Si D no es necesariamente local, prueba que un ideal finitamente generado no nulo a D es invertible si, y sólo si, ad m es un ideal principal para cada ideal maximal m D. (1). Es claro que si a es principal, entonces es invertible. Por otro lado, si a es invertible y m D es el ideal maximal, se tiene am a. Consideramos x a\am. Se tiene xd = xa 1 a = (xa 1 )a = ba; siendo b = xa 1 D. Si b m, entonces x ba ma, lo que es una contradicción. Tenemos entonces b = D, y por tanto xd = ba = Da = a. (2). ( ). Si a es in D invertible, entonces ad m es un ideal D m invertible, y por tanto principal. ( ). Dado a D, consideramos a(d : a) D y localizamos en los ideales maximales m D: (a(d : a)) m = a m (D : a) m = a m (D m : a m ) = D m. Ya que a es finitamente generado (D : a) m = (D m : a m ). Entonces a(d : a) D, y a es invertible. Continúa en la siguiente página... 4

5 Ejercicio. 4. (3.5 puntos) Estudia las siguientes afirmaciones: 1. Si A es una K álgebra finitamente generada que es un dominio, entonces A es normal. FALSO. Sea K un cuerpo, A = K[X, Y ], y a = (X 2 Y 3 ) A, que es primo. Entonces A/a = K[x, y] es un dominio que no es normal. El elemento a = x/y del cuerpo de fracciones de A/a es entero sobre A/a, ya que es raíz del polinomio X 2 y, pero a / A/a. 2. Si A es una K álgebra que es un K módulo finitamente generado y un dominio, entonces A es normal. CIERTO. Tenemos K A. Para cada 0 a A se tiene K K[a] es un K espacio vectorial de dimensión finita, luego existe 0 F K[X] tal que F (a) = 0. Sea F = Irr(K, a), entonces K[A] = K[X]/(F ) es un cuerpo, y a tiene un inverso en K[A] A. En consecuencia A es un cuerpo, y por tanto es normal. 3. Si K es un cuerpo algebraicamente cerrado y m K[X 1,..., X n ] es un ideal maximal, entonces V(m) es unitario. CIERTO. Dado m K[X 1,..., X n ] maximal; existe una correspondencia biyectiva entre subconjuntos algebraicos de A n (K) e ideales radicales. Si x V(m), entonces I({0}) m, y por la maximalidad de m, se tiene la igualdad, por tanto {x} = V(m). 4. Si e A es un elemento idempotente no nulo entonces A descompone A = ea (1 e)a, y se verifica ea = A e. 5

6 CIERTO. La descomposición A = ea (1 e)a ya la conocemos; cada elemento a A se escribe de forma única como a = ea + (1 e)a. Para ver el isomorfismo consideramos el subconjunto multiplicativo Σ = {1, e}. En Σ 1 A tenemos a = a para todo a A, e(ae a) = 0. Entonces los elementos de 1 e Σ 1 A son de la forma a para 1 a A. Consideramos el siguiente diagrama: λ A Σ f 1 A = A e g ea En donde f está definido por f(a) = ea, que es un homomorfismo de anillos. Como f(e) = e es el elemento uno, resulta que todos los elementos de Σ se aplican en elementos invertibles. Existe pues un único homomorfismo de anillos g que hace conmutativo el diagrama. Es claro que g( a) = f(a) = ea es una aplicación sobreyectiva. Para ver que es inyectiva; si g( a ) = 0, entonces 1 1 ea = 0, y por tanto a = Si m A es un ideal maximal, entonces A m /ma m = A/m. CIERTO. Como m A es un ideal maximal, A/m es un cuerpo. Para cada s A\m, para p : A A/m se tiene p(s) = s + m A/m es invertible, y por lo tanto, si Σ = A \ m, se puede completar el siguiente diagrama: A λ Σ 1 A = A m p g A/m siendo g( a) = (am)(s + s m) 1. Es claro que Ker(g) = ma m, ya que si g( a ) = 0, entonces a + m = 0, s y a m, luego a ma s m; la otra inclusión es clara. Por otro lado, dado a + m A/m, se tiene a + m = g( a), luego g es sobreyectiva. Tenemos pues un isomorfismo g : A 1 m/ma m = A/m. 6. Todo subconjunto multiplicativo saturado Σ A 1 A 2 es de la forma Σ 1 Σ 2, siendo Σ i A i un subconjunto multiplicativo. CIERTO. Dado Σ A 1 A 2 saturado, consideramos Σ i = p i (Σ) A i. Tenemos que Σ i es un subconjunto multiplicativo saturado de A i, ya que si s 1 s 2 Σ 1, existe t A 2 tal que (s 1 s 2, t) Σ, luego (s 1, 1)(s 2, t) = (s 1 s 2, t) Σ, y resulta (s 1, 1), (s 2, t) Σ, luego s 1, s 2 Σ 1. 6

7 Por otro lado tenemos Σ Σ 1 Σ 2, y por otro lado, para cada (s 1, s 2 ) Σ 1 Σ 2 existen t 1 A 1, t 2 A 2 tales que (s 1, t 1 ), (t 2, s 2 ) Σ, entonces (s 1, s 2 )(t 1, t 2 ) = (s 1, t 1 )(t 2, s 2 ) Σ, y (s 1, s 2 ) Σ. 7. Si una base de Groebner (reducida) de a K[X 1,..., X n ] tiene todos sus elementos irreducibles, entonces a es un ideal primo. FALSO. Consideramos el siguiente ejemplo: a = (Y 3 XZ, XY 2 Z 2 ) Q[X, Y, Z]. Una base de Groebner de a es: {Y 5 Z 3, Y 3 + XZ, XY 2 Z 2 }; todos sus elementos son irreducibles. El ideal a no es primo, ya que Z(X 2 Y Z) a, pero Z, X 2 Y Z / a. 8. Si todo submódulo propio de M es noetheriano, entonces M es noetheriano. FALSO. Podemos tomar Z p, en el que todo submódulo es finito, por tanto noetheriano, pero Z p no es noetheriano. 9. Si m es un ideal maximal y q es un ideal m primario, se verifica que cada elemento regular de A/q es invertible? SI. Sea x + q A/q regular; entonces si xy q, se tiene y q. Tenemos que x + q es invertible si, y sólo si, Ax + q = A. Si Ax + q A, existe un ideal maximal n tal que Ax + q n, luego q n, y como es m primario, se tiene n = m. Por tanto Ax + q m, y x m. Existe k N, mínimo, tal que x k q, lo que implica que x k 1 q; y esto es una contradicción. 10. A B es una extensión entera de anillos en la que todo ideal primo no nulo de A es maximal, entonces todo ideal primo no nulo de B es maximal. Opción 1: CIERTO si B es un dominio. Supongamos que B es un dominio de integridad, entonces para cada ideal primo no nulo p B se tiene p A 0. Por la hipótesis p A es un ideal maximal, ya que es primo. Por ser la extensión entera, se tiene que p es un ideal maximal. Opción 2: FALSO si B no es un dominio. Consideramos A = Z, B = Z[ 2] Z[ 2], que es una extensión entera, ya que 2 es entero sobre Z. Consideramos el ideal primo no nulo, p = Z[ 2] 0; es claro que p no es maximal, ya que B = Z[ 2] Z[ 2] p Z[ 2] 0 = Z[ 2] no es un cuerpo. 7

Álgebra. Curso de junio de Grupo B

Álgebra. Curso de junio de Grupo B Álgebra. Curso 2008-2009 9 de junio de 2009. Grupo B Primera parte Ejercicio. 1. Sea D un dominio noetheriano que no es un cuerpo. Demuestra que son equivalentes: (a) D es un dominio de Dedekind. (b) Todo

Más detalles

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de

Más detalles

Anillos finitos locales

Anillos finitos locales Anillos finitos locales XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Estructura de los anillos finitos Un anillo conmutativo A es local si tiene un único ideal maximal

Más detalles

NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA:

NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA: NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA: Álgebra conmutativa computacional Pascual Jara Martínez Departamento de Álgebra. Universidad de Granada Granada, 2013 2014 Primera redacción: Octubre 2013. Introducción

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Álgebra Básica. Eugenio Miranda Palacios Leyes de composición. Estructuras algebraicas.

Álgebra Básica. Eugenio Miranda Palacios Leyes de composición. Estructuras algebraicas. Álgebra Básica Eugenio Miranda Palacios 3. Anillos conmutativos 3.1. Leyes de composición. Estructuras algebraicas. Sean A, M conjuntos. Definición 3.1. Una operación binaria o ley de composición interna

Más detalles

Ejercicios de Algebra III. Curso 00-01

Ejercicios de Algebra III. Curso 00-01 Ejercicios de Algebra III. Curso 00-01 Ejercicio 1. Sea x un elemento nilpotente de un anillo A. Probar que 1 + x es una unidad de A. Deducir que la suma de un elemento nilpotente y de una unidad es una

Más detalles

Tema 1. Anillos e ideales. Operaciones. Divisibilidad

Tema 1. Anillos e ideales. Operaciones. Divisibilidad Tema 1. Anillos e ideales. Operaciones. Divisibilidad y factorización. La parte correspondiente a Anillos e ideales. Operaciones se corresponde con el capítulo 1 del libro Atiyah, M.F., Macdonald, I.G.,

Más detalles

1 Introducción al Álgebra conmutativa

1 Introducción al Álgebra conmutativa 1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Álgebra. Curso 2007-2008

Álgebra. Curso 2007-2008 Álgebra. Curso 2007-2008 11 de septiembre de 2008 Resolución Ejercicio. 1. Sea A un anillo conmutativo. (1) Demostrar que cualesquiera ideales a, b de A verifican (a b)(a + b) ab. (2) Para A = Z[X] dar

Más detalles

Anillos noetherianos y artinianos

Anillos noetherianos y artinianos Capítulo 4 Anillos noetherianos y artinianos Muchos anillos de importancia, tanto en geometría algebraica como en teoría de números, satisfacen ciertas condiciones de finitud que se suelen expresar mejor,

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Álgebra y estructuras finitas/discretas (Grupos A)

Álgebra y estructuras finitas/discretas (Grupos A) Álgebra y estructuras finitas/discretas (Grupos A) Curso 2007-2008 Soluciones a algunos de los ejercicios propuestos en el Tema 2 Antes de ver la solución de un ejercicio, repase la teoría correspondiente

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones Tema 13.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones 13.1 Teorema de estructura de los módulos finitamente generados sobre un D.I.P. En lo que sigue A denotará

Más detalles

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2,

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2, Ejercicios de Álgebra Básica. Curso 2012/13 Ejercicio 1. Probar, usando el método de inducción, la fórmula de la suma de n términos de una progresión geométrica de razón r, S n = ra n a 1 r 1. Ejercicio

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 3: Anillos Ejemplos construcciones 1. Probar que los siguientes conjuntos son anillos con las operaciones indicadas. Decidir en cada caso si son conmutativos,

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Sea (A, +,.) un anillo conmutativo. Indicamos con A[x] al conjunto de polinomios en una indeterminada x con coeficientes en

Más detalles

NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS

NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS Teoría de Galois Pascual Jara Martínez Departamento de Álgebra. Universidad de Granada Granada, 2001 2017 Primera redacción: 2001. Segunda redacción: Julio 2014.

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

TEMA 4. Anillos de polinomios.

TEMA 4. Anillos de polinomios. TEMA 4 Anillos de polinomios. Ejercicio 4.1. Encontrar un polinomio f(x) de grado 3 tal que: f(0) = 6, f(1) = 12 y f(x) (3x + 3) mod (x 2 + x + 1). Ejercicio 4.2. Demostrar que en un D.E. todos los ideales

Más detalles

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U

Más detalles

No. 6 Anillos y módulos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá

No. 6 Anillos y módulos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá CUADERNOS DE ÁLGEBRA No. 6 Anillos y módulos Oswaldo Lezama Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá 30 de junio de 2014 ii Cuaderno dedicado Carlos

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Mariano Suárez-Álvarez ÁLGEBRA LINEAL 21 de noviembre de 2016 F F 8 f f

Mariano Suárez-Álvarez ÁLGEBRA LINEAL 21 de noviembre de 2016 F F 8 f f Mariano Suárez-Álvarez ÁLGEBRA LINEAL 21 de noviembre de 2016 F F 8 f f This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. Índice 1 Espacios

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

Ejercicios de álgebra 1 Cuarto curso (2003/04)

Ejercicios de álgebra 1 Cuarto curso (2003/04) Departamento de Álgebra, Geometría y Toplogía. Universidad de Málaga Ejercicios de álgebra 1 Cuarto curso (2003/04) Relación 1. Ideales primos y maximales. Nilradical y radical de Jacobson Profesor de

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea Z un conjunto

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

José F. Fernando y José Manuel Gamboa

José F. Fernando y José Manuel Gamboa ECUACIONES ALGEBRAICAS, CURSO 2016-2017 José F. Fernando y José Manuel Gamboa Polinomios en varias variables 1. Calcular la suma de los cubos de las raíces en C del polinomio f(t) := t 3 2t 2 + 3t 4? 2.

Más detalles

CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS.

CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS. TEMA 11 ÍNDICE CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS. 1. INTRODUCCIÓN 2. CONJUNTOS 3. SUBCONJUNTOS 4. OPERACIONES 4.1 UNIÓN 4.2 INTERSECCIÓN 4.3 COMPLEMENTO 4.4 DIFERENCIA

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES Definición 1.1. Endomorfismo Nilpotente. Un endomorfismo T End(V ) es nilpotente si existe n N tal que f n 0. Definición 1.. Matriz

Más detalles

Ceros en extensiones.

Ceros en extensiones. 1. EXTENSIONES DE CUERPOS. Varios son los objetivos de este tema. El primero de ellos, resultado debido a Kronecker, es probar que todo polinomio con coeficientes en un cuerpo tiene una raíz en un cuerpo

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

No. 3. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá

No. 3. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá CUADERNOS DE ÁLGEBRA No. 3 Módulos Oswaldo Lezama Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá 30 de mayo de 2017 ii Cuaderno dedicado a Andreita, mi

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss.

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. 7.1 Divisibilidad Definición 7.1.1. Sea A un dominio de integridad. 1. Sean a, b A, cona 0. Sediráquea divide a b, oquea es un divisor

Más detalles

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Sea f(x) = x 2 + x + 1 sobre GF(2). Como se puede observar no tiene raíces en GF(2), pero si en la extensión del

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos. Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos [email protected] niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección

Más detalles

a, b G a b G a (b c) = (a b) c a, b, c G (g4) Todo elemento de G tiene elemento simétrico para la operación : a G a G tal que a a = a a = e

a, b G a b G a (b c) = (a b) c a, b, c G (g4) Todo elemento de G tiene elemento simétrico para la operación : a G a G tal que a a = a a = e Grupos Este segundo cuatrimestre lo dedicaremos al estudio de estructuras algebraicas. Primero, las estructuras de grupo, anillo y cuerpo, y más adelante, la estructura de espacio vectorial y todo lo que

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Luis Manuel Hernández Ramos 12 24 de mayo de 2007 1 Centro de Calculo Científico y Tecnológico, Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 2 e-mail: [email protected]

Más detalles

Ejercicios de Estructuras Algebraicas 1

Ejercicios de Estructuras Algebraicas 1 Ejercicios de Estructuras Algebraicas 1 Números enteros y polinomios 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

Capitulo I. Variedades algebraicas afines.

Capitulo I. Variedades algebraicas afines. Capitulo I. Variedades algebraicas afines. Al conjunto solución de un sistema de ecuaciones algebraicas lo llamamos variedad algebraica afín. Uno lo considera como objetos de la geometría en espacios afines.

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea V un c.a.a.

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Formulaciones equivalentes del Axioma de Elección

Formulaciones equivalentes del Axioma de Elección Formulaciones equivalentes del Axioma de Elección MARU SARAZOLA Resumen En este documento presentamos algunas formulaciones equivalentes del axioma de elección. En la primera sección, se presenta el enunciado

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

Extensiones finitas.

Extensiones finitas. 2. EXTENSIONES ALGEBRAICAS. Hemos dividido este tema en dos secciones: Extensiones finitas, y Clausura algebraica. En la primera relacionamos extensión finita y extensión algebraica: probamos que toda

Más detalles

ÁLGEBRA III. Práctica 1 2d. Cuatrimestre - 2007

ÁLGEBRA III. Práctica 1 2d. Cuatrimestre - 2007 ÁLGEBRA III Práctica 1 2d. Cuatrimestre - 2007 Anillos conmutativos, cuerpos y morfismos Nota: Todo anillo considerado en esta práctica será conmutativo, en particular todo ideal es bilátero. Ejercicio

Más detalles