Teoremas de conservación
|
|
|
- Andrés Víctor Manuel Medina Botella
- hace 8 años
- Vistas:
Transcripción
1 Capítulo 18 Teoremas de conservación 18.1 Teorema general de conservación Comenzamos con una definición: Si el Lagrangiano de un sistema no incluye una coordenada generalizada q j (aunque puede contener su derivada temporal q j, decimos que esa coordenada es cíclica ó ignorable y seguimos con un teorema Teorema de Woother: El momento canónico ó conjugado p j L/ de una coordenada cíclica q j se conserva. La demostración de este teoremita es muy fácil. Partiendo de la ecuación de Lagrange para q j vemos que 0 d dt ( L L dp j dt 0 con lo cual p j es constante. Este modesto teorema es de una gran sencillez. Sin embargo es un de los resultados más importantes de la mecánica clásica. Dentro de un momento comenzaremos a apreciar su gran importancia, que será absolutamente evidente más adelante, sobre todo al estudiar Física Cuántica. 18. Coordenadas de traslación y rotación Analizemos un poco más en detalle las características de este momento conjugado en dos casos particulares. Supongamos que q j es tal que δq j representa únicamente una traslación del sistema en su conjunto en una dirección ˆn arbitraria. Un 1
2 Capítulo 18. Teoremas de conservación ejemplo podría ser una de las coordenadas cartesianas del centro de masa del sistema. Tenemos que p j L T ( 1 ṙ i ṙ i Supongamos ahora que q j es una coordenada de translación, es decir tal que δq j representa únicamente una traslación del sistema en su conjunto en una dirección ˆn arbitraria. Un ejemplo podría ser una de las coordenadas cartesianas del centro de masa del sistema. En ese caso tenemos que lim r i(q 1,..., q j + δq j,..., q 3N k, t r i (q 1,..., q j,..., q 3N k, t δq j δq j.ˆn δq j ˆn y -por lo tanto- p j resulta ser igual al impulso total del sistema en la dirección ˆn p j.ˆn P.ˆn Por otra parte, si q j es tal que δq j representa una rotación alrededor del eje ˆn, entonces puede demostrarse que ˆn r i y reemplazando en p j obtenemos que p j es igual a la componente del impulso angular total en la dirección ˆn, p j.(ˆn r i ˆn.L Con estos dos resultados concluimos que Si una coordenada de traslación es cíclica se conserva la componente del impulso total según la dirección de traslación. Si una coordenada de rotación es cíclica se conserva la componente del momento angular según la dirección de rotación.
3 18.3. Propiedades de simetría Propiedades de simetría En general, no es necesario calcular explícitamente el Lagrangiano para saber si una dada coordenada es cíclica o no. Muchas veces, basta con descubrir las propiedades de simetría del sistema. Por ejemplo, si un sistema es invariante respecto a una translación en una dirección dada, entonces esa coordenada de traslación no va a aparecer en el Lagrangiano. En otras palabras, esa coordenada de traslación es cíclica y se conserva el impulso total correspondiente. Similarmente, si un sistema es invariante respecto de una rotación dada, se conserva el momento angular correspondiente. En particular, en un sistema de simetría esférica se conservan todas las componentes del impulso angular Coordenadas cíclicas y fuerzas generalizadas Utilizando la ecuación de Lagrange tenemos que ṗ j dp j dt d ( L d ( T dt dt Q j + T Pero es evidente que si una coordenada q j es tal que δq j representa un desplazamiento (traslación ó rotación del sistema en su conjunto, no aparece en la expresión de la energía cinética, pues las velocidades no se alteran al desplazar el sistema como un todo. En tal caso tenemos que ṗ j Q j De manera tal que la conservación del momento conjugado de una coordenada cíclica implica que se anula la fuerza generalizada correspondiente. Utilizando la definición de fuerza generalizada, Q j F i. obtenemos que Q j es igual a la componente en la dirección ˆn de la fuerza total aplicada sobre el sistema para una coordenada de traslación en dicha dirección Q j F.ˆn e igual a la componente en la dirección ˆn del momento de fuerzas total para una coordenada de rotación alrededor de dicha dirección Q j M.ˆn con lo cual, como p j P.ˆn para una traslación y p j L.ˆn para una rotación, y siendo la dirección ˆn arbitraria, obtenemos Ṗ F y L M. Vemos entonces que
4 4 Capítulo 18. Teoremas de conservación la ecuación ṗ j Q j es una evidente generalización de la segunda ley de Newton, donde uno ya presentía una cierta simetría entre las ecuaciones correspondientes a traslación y rotación, tanto para partículas individuales como para sistemas complejos Conservación del Hamiltoniano Hasta ahora hemos encontrado una generalización de los teoremas de conservación del impulso y el momento angular. Ahora queremos investigar si existe una generalización similar del teorema de conservación de la energía. Para ello comenzamos calculando la derivada total respecto del tiempo del Lagrangiano dl dt L L q j + q j + L ( ( d L dt q Q j q j + j (ṗj Q j qj + Q j q j + p j q j + L d dt (p j q j + L L q j + L Este resultado nos lleva a definir el Hamiltoniano de un sistema H q j p j L de manera tal que 3N k dh dt Q j q j L Si imponemos la condición de trabajar en un sistema conservativo, en el sentido de que todas las fuerzas se pueden deducir de un potencial, resulta dh dt L Esto nos provee un nuevo teorema de conservación Si el tiempo es una coordenada cíclica, entonces se conserva el Hamiltoniano
5 18.6. Conservación de la Energía Conservación de la Energía Escribamos la energía cinética en función de las velocidades generalizadas q j. Tenemos que donde hemos definido T 1 ṙ i 1 b + b j q j + r i q j + r i l1 b jl q j q l b 1 ( ri, b j, b jl 1 i1 q k Si las ligaduras no contienen explícitamente al tiempo, es decir, si son esclerónomas, entonces / 0 y la energía cinéticas será una forma cuadrática homogénea respecto de las velocidades generalizadas T l1 b jl q j q k Entonces H 3N k L T q j L q j L l1 ( b jl q l q j L T L T + V E l1 b jl q l q j L O sea que La constancia del Hamiltoniano para vínculos esclerónomos (independientes del tiempo implica la conservación de la energía mecánica total Debe tenerse en claro que la identificación de H como una constante de movimiento y como la energía son dos cosas diferentes y las condiciones para una no bastan para la otra. Puede ocurrir que el tiempo aparezca explícitamente en las ecuaciones de transformación r j r j (q, t y no en H. En tal caso H es una constante de movimiento, pero no es la energía total.
Contenido. 4. Dinámica Lagrangiana y Hamiltoniana. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/28 28
Contenido 4. Dinámica Lagrangiana y Hamiltoniana 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/28 28 Contenido: Tema 04 4. Dinámica Lagrangiana y Hamiltoniana 4.1 Coordenadas
Contenido. 4. Dinámica Lagrangiana y Hamiltoniana. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38
Contenido 4. Dinámica Lagrangiana y Hamiltoniana 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38 Contenido: Tema 04 4. Dinámica Lagrangiana y Hamiltoniana 4.1 Coordenadas
Tema 10: Dinámica analítica
Tema 10: Dinámica analítica Mecánica Racional, 2º, Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice 2 Principio de d'alambert
Formalismo hamiltoniano y transformaciones canónicas
Capítulo 4 Formalismo hamiltoniano y transformaciones canónicas En este tema vamos a estudiar otro formalismo matemático el formalismo hamiltoniano que se puede usar también para derivar las leyes de la
Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/21 21
Contenido 1. Ecuaciones de Hamilton 1.1 Transformaciones de Legendre y ecuaciones de Hamilton 1.2 Coordenadas cíclicas y teoremas de conservación 1.3 Procedimiento de Routh 1.4 Ecuaciones de Hamilton desde
Estática y Dinámica Analítica
Estática y Dinámica Analítica p. 1/25 Estática y Dinámica Analítica Mecánica II Temas 6 y 7 Manuel Ruiz Delgado Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid Mecánica
Contenido. 1 / Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/43 43
Contenido 1. Principios Variacionales 1.1 Cálculo de variaciones 1.2 Principio de Hamilton 1.3 Multiplicadores indeterminados de Lagrange 1.4 Teoremas de conservación y propiedades de simetría 1 / Omar
Mecánica Clásica (B) 2do. cuatrimestre de 2017 AD Primer parcial (con soluciones) 12/10
Mecánica Clásica B) do. cuatrimestre de 017 AD Primer parcial con soluciones) 1/10 Problema 1. El marco exterior de un giróscopo rota con velocidad angular constante ω = ωẑ, como muestra la figura, donde
Una Ecuación Escalar de Movimiento
Una Ecuación Escalar de Movimiento Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta una ecuación escalar de movimiento que es invariante bajo
Mecánica Analítica. Trabajo Práctico 1 Año 2017
Mecánica Analítica. Trabajo Práctico 1 Año 2017 Grados de libertad - Vínculos - Coordenadas generalizadas - Desplazamientos virtuales - Ecuaciones de Lagrange Problema 1. Encuentre el número de grados
II. Aplicaciones de la Dinámica y Estática
Índice general I. Métodos Generales de la Dinámica 1. Principios de la Mecánica 1.1 1.1. La Mecánica como Teoría Cientíca.............. 1.1 1.2. Sistemas de Referencia; Espacio y Tiempo.......... 1.5 1.3.
Resumen sobre mecánica analítica
Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula
Universidad de Granada. Dr. Bert Janssen
Mecánica Analítica Universidad de Granada 5 o curso de matemáticas Dr. Bert Janssen Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva 18071 Granada, Espa na [email protected]
MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006
Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un
28.1 Invariancia de volumen en el espacio de las fases. Consideremos el invariante integral absoluto de mayor orden posible
Capítulo 28 Teorema de Liouville 28.1 Invariancia de volumen en el espacio de las fases Consideremos el invariante integral absoluto de mayor orden posible J J 3N k (3N k) 3N k dq 1 dp 1 dq dp...dq 3N
Mecánica Clásica 1 2 Instituto de Física y Matemáticas, UMSNH
Mecánica Clásica 1 2 Instituto de Física y Matemáticas, UMSNH Mecánica Lagrangiana Dinámica lagrangiana Ligaduras. Ligaduras holónomas y espacio de configuraciones. Coordenadas generalizadas. Grados de
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
Guia 2 - Ecuaciones de Lagrange - Mecánica Clasica - Cátedra G.Mindlin
Guia 2 - Ecuaciones de Lagrange - Mecánica Clasica - Cátedra G.Mindlin 1er Cuatrimestre 2018 a. Ejemplos de ecuaciones de Lagrange 1. En la figura se muestra un esquema de un yoyo cilíndrico de masa m
Fuerzas y potenciales, III
Capítulo 17 Fuerzas y potenciales, III 17.1 Potencial de Schering Puede ocurrir que entre entre las fuerzas generalizadas haya alguna que, sin ser conservativas en el sentido usual, pueda obtenerse a partir
Mecánica Clásica - 2do. cuatrimestre de 2011 Guía 7: Ecuaciones de Hamilton, transformaciones canónicas. Hamilton Jacobi.
Mecánica Clásica - 2do. cuatrimestre de 20 Guía 7: Ecuaciones de Hamilton, transformaciones canónicas. Hamilton Jacobi.. Escriba el hamiltoniano, las ecuaciones de Hamilton y construya los diagramas de
CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA
CINEMÁTICA 2 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CAMPO DE VELOCIDADES El campo de velocidad está constituido
Capítulo 6. Teoría del péndulo. 6.1 Péndulo Simple (Lagrange)
Capítulo 6 Teoría del péndulo Para comparar con la descripción matemática de la configuración del sistema de cristal líquido colestérico que se encuentra bajo la acción de un campo electrostático uniforme,
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
Tema 6: Cinética de la partícula
Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico
Contenido. 1 / Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/43 43
Contenido 1. Transformaciones canónicas 1.1 Definición de transformaciones canónicas y función generatriz 1.2 Enfoque simpléctico y transformaciones infinitesimales 1.3 Corchetes de Poisson y de Lagrange
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
Tema 10: Introducción a la Dinámica del Sólido Rígido
Tema 10: Introducción a la Dinámica del Sólido Rígido FISICA I, 1º, Grado en Ingeniería Energética, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
Momento Lineal, Momento Angular & Momento Radial
Momento Lineal, Momento Angular & Momento Radial Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta el momento lineal, el momento angular y
Tema 2. Dinámica básica de la partícula aislada y de los sistemas de partículas
Mecánica teórica Tema 2. Dinámica básica de la partícula aislada y de los sistemas de partículas Tema 2B Universidad de Sevilla - Facultad de Física [email protected] 22 de septiembre de 2016 Tema 2B (Grupo
Tema 4: Centro de masas
Tema 4: Centro de masas Mecánica Racional, 2º, Grado en Ingeniería Civil Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Índice Definición y propiedades Cálculo de centro de masa Cuerpos
PROGRAMA DE FÍSICA I TEORÍA
Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana
ENERGÍA Y CANTIDAD DE MOVIMIENTO
Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento
MECANICA CLASICA Coordenadas generalizadas. Grados de libertad. Lagrange.
MECANICA CLASICA Coordenadas generalizadas. Grados de libertad. Lagrange. 1. Se tiene el sistema de la figura, donde x 1, x 2 se miden a partir de las posiciones de equilibrio. Sea q 1 = x 1 + x 2 y q
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA FUNDAMENTACIÓN CIENTÍFICA
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA ASIGNATURA: CÓDIGO: ÁREA: REQUISITO: FÍSICA I CB234 FUNDAMENTACIÓN CIENTÍFICA Matemática I CB15 con nota 2.0 HORAS
Problemario 25 de mayo de 2006
Mecánica Clásica Problemario 25 de mayo de 2006 1. Considere el problema de Kepler, es decir, un cuerpo de masa µ en el potencial central V (r) = α/r. a) Demuestre que el vector de Laplace Runge Lenz,
Newton. Tema 1B (Grupo 2) Mecánica Teórica ( ) 25 de septiembre de / 53
Newton Tema 1B (Grupo 2) Mecánica Teórica (2017-2018) 25 de septiembre de 2017 1 / 53 Tema 1: Dinámica básica de la partícula aislada y de los sistemas de partículas Contenido 1 Introducción. Mecánica
TEOREMA DE NOETHER. GRUPOS DE LIE y SIMETRÍAS EN FÍSICA
TEOREMA DE NOETHER GRUPOS DE LIE y SIMETRÍAS EN FÍSICA Qué haremos hoy? Qué haremos hoy? Entender una frase Ésta: Una teoría invariante bajo la acción del grupo SO(3) conserva el momento angular CONTENIDO
, la ley anterior se convierte en la ecuación de movimiento de la partícula: una ecuación diferencial para la posición r,
Repaso de la mecánica de Newton Arrancamos de la segunda ley de Newton sin aclaraciones que vendrán más tarde. (1.1) Especificada la fuerza, la ley anterior se convierte en la ecuación de movimiento de
Mecánica y Ondas. Planteamiento y resolución de problemas tipo
Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL
Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
Nombre de la asignatura: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8
. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Dinámica Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCM-009 Horas teoría-horas práctica-créditos: --8. - UBICACIÓN a) RELACION CON OTRAS
CB234 Física I CB215 T 5 4
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA PROGRAMA DE INGENIERÍA MECÁNICA 1. IDENTIFICACIÓN DE LA ASIGNATURA Código Nombre Requisito Carácter Teórico (T), Práctico (P) o Teórico-
Introducción a la Mecánica Lagrangiana. Ligaduras
Introducción a la Mecánica Lagrangiana. Ligaduras Tema 2A Universidad de Sevilla - Facultad de Física [email protected] 25 de septiembre de 2017 Tema 2A (Grupo 2) Mecánica Teórica (2017-2018) 25 de septiembre
TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un
TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de
Mecánica Aplicada. Dinámica
Mecánica Aplicada Dinámica PROYECTO EDITORIAL SÍNTESIS INGENIERÍA Áreas de Publicación INGENIERÍA INDUSTRIAL COORDINADORA: Alicia Larena Mecánica Aplicada Dinámica Armando Bilbao Enrique Amezua Óscar Altuzarra
El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla
El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2015/2016 Dpto.Física Aplicada III Universidad de Sevilla Índice Condición geométrica de
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
Sílabo de Mecánica Vectorial Dinámica
Sílabo de Mecánica Vectorial Dinámica I. Datos generales Código ASUC 00573 Carácter Obligatorio Créditos 4 Periodo académico 2017 Prerrequisito Mecánica Vectorial - Estática Horas Teóricas 2 Prácticas
Sílabo de Mecánica Vectorial Dinámica
Sílabo de Mecánica Vectorial Dinámica I. Datos generales Código ASUC 00573 Carácter Obligatorio Créditos 4 Periodo académico 2018 Prerrequisito Mecánica Vectorial - Estática Horas Teóricas 2 Prácticas
Contenido. 1 / Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/25 25
Contenido 1. Teoría de Hamilton-Jacobi 1.1 Función Principal de Hamilton 1.2 Función característica de Hamilton 1.3 Separación de variables en la ecuación de Hamilton-Jacobi 1.4 Variables angulares y de
Mecánica Teórica Curso Boletín de problemas 2 Grupo 2
Mecánica Teórica Curso 2017-18 Boletín de problemas 2 Grupo 2 Física Teórica, Universidad de Sevilla 6 de octubre de 2017 1- Dar un conjunto de coordenadas generalizadas necesarias para especificar completamente
Contenido: Tema / Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/29 29
Contenido: Tema 09 9. Teoría de Hamilton-Jacobi 9.1 Función Principal de Hamilton 9.2 Función característica de Hamilton 9.3 Separación de variables en la ecuación de Hamilton-Jacobi 9.4 Variables angulares
Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.
.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Dinámica Ingeniería Mecatrónica MTM-0 --.- HISTORIA DEL PROGRAMA Lugar y fecha
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura NOMBRE DE LA ASIGNATURA: CINEMÁTICA Y DINÁMICA (L) PLAN 2007 Tipo de asignatura:
Cuantización canónica del campo escalar
Cuantización canónica del campo escalar 18 de marzo de 2015 Cuantización de KG 18 de marzo de 2015 1 / 23 Cuantización canónica Receta en mecánica cuántica para cuantizar: partir del formalismo hamiltoniano
Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o
UNA FORMULACIÓN INVARIANTE DE LA RELATIVIDAD ESPECIAL A. Blato Licencia Creative Commons Atribución 3.0 (207) Buenos Aires Argentina Este artículo presenta una formulación invariante de la relatividad
Física II. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física II Ingeniería Mecánica MCT - 0513 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2
ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO
ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO Nombre: Marilyn Chela Curso: 1 nivel de Ing. Química TEMA: Relación entre la Dinámica Lineal y la Dinámica Rotacional. Dinámica rotacional: Se trabaja con el
CAPÍTULO 1. Ecuaciones de Movimiento del Sistema
CAPÍTULO 1 Ecuaciones de Movimiento del Sistema El sistema que se construyó y cuyo análisis es del presente capítulo tiene las siguientes constricciones: 1. El carro solo se puede desplazar en la dirección
PRÓLOGO PREFACIO... 21
ÍNDICE PRÓLOGO... 17 PREFACIO... 21 CAPÍTULO 1. ENTORNO ACTUAL Y PERSPECTIVAS... 27 1.1 ORGANIZACIÓN DE UN SISTEMA ROBÓTICO... 29 1.2 ENTORNOS MATLAB Y SIMULINK... 31 1.3 TENDENCIAS EN ROBÓTICA Y MECATRÓNICA...
Javier Junquera. Dinámica del sólido rígido
Javier Junquera Dinámica del sólido rígido ibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 omento angular de un cuerpo que rota
Análisis de Volumen de Control
Capítulo 5 Análisis de olumen de Control Una técnica muy importante en mecánica de fluidos es el análisis a través de volúmenes de control. Ésta consiste en reexpresar las leyes básicas de conservación
Euler y la mínima acción
Euler y la mínima acción TRICENTENARIO DEL NACIMIENTO DE LEONHARD EULER Diego Restrepo 1 1 Instituto de Física Universidad de Antioquia Abril 23,2007 GFIF Group (UdeA) e u Le r y S min Tricentenario del
Planificaciones Mecánica Racional. Docente responsable: FAIGON ADRIAN NESTOR. 1 de 5
Planificaciones 6211 - Mecánica Racional Docente responsable: FAIGON ADRIAN NESTOR 1 de 5 OBJETIVOS El objetivo general de la materia es el de proveer el contenido esencial, si bien limitado, de la mecánica
Dinámica de la partícula: Energía y Leyes de Conservación
Dinámica de la partícula: Energía y Leyes de Conservación Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad
Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2
Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................
EXAMEN DE FISICA I (GTI)
EXAMEN DE FISICA I GTI) 6-9-07 CUESTIONES ) a) Relación entre las coordenadas espaciales, velocidades y aceleraciones en el movimiento relativo de traslación uniforme Transformaciones Galileanas) 06) b)
SIMETRIAS Y LEYES DE CONSERVACION
SIMETRIAS Y LEYES DE CONSERVACION 1. Introducción 2. Conservación de la energía y el momento 3. Conservación del momento angular 4. Paridad 5. Isospín 6. Extrañeza 7. Conjugación de carga 8. Inversión
PROYECTO DOCENTE ASIGNATURA: "Mecánica y Ondas"
PROYECTO DOCENTE ASIGNATURA: "Mecánica y Ondas" Grupo: Grupo de CLASES TEORICAS de MECANICA Y ONDAS.(866604) Titulacion: LICENCIADO EN FÍSICA (Plan 98) Curso: 2009-2010 DATOS BÁSICOS DE LA ASIGNATURA/GRUPO
Y el momento lineal total del sistema de partículas en uno y otro referencial por:
Sistema de partículas Hasta acá hemos tratado, prácticamente siempre, con una partícula puesta en un potencial. En particular profundizamos el caso de una partícula puesta en un potencial de gravitación,
Cap. 11B Rotación de cuerpo rígido JRW
Cap. 11B Rotación de cuerpo rígido JRW 01 Repaso JRW 01 Objetivos: Después de completar este módulo, deberá: Definir y calcular el momento de inercia para sistemas simples.
Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica
Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Curso: Fundamentos de mecánica. 2015 20 Programación por semanas (teoría y práctica) Texto de apoyo Serway-Jewtt novena
EXAMEN DE ADMISIÓN INGRESO DE NOVIEMBRE DE 2008 MAESTRÍA EN CIENCIAS (ASTRONOMÍA)
INSTRUCCIONES: El aspirante deberá seleccionar dos problemas de los tres propuestos. Resolver cada problema en hojas separadas por una sola cara Escribir el nombre en cada una de ellas. MECÁNICA CLÁSICA
Mediante este programa se persigue desarrollar las siguientes habilidades:
PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios
Mecánica Clásica 2do. cuatrimestre de 2017 (B) Guía 1: Ecuaciones de Newton. Fuerzas de vínculo. Leyes de conservación. Coordenadas curvilíneas.
Mecánica Clásica 2do. cuatrimestre de 2017 (B) Guía 1: Ecuaciones de Newton. Fuerzas de vínculo. Leyes de conservación. Coordenadas curvilíneas. 1. Dos partículas, m 1 y m 2, están unidas por una barra
Momento Lineal, Momento Angular & Momento Radial
Momento Lineal, Momento Angular & Momento Radial Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta el momento lineal, el momento angular y
