Tema 4: Centro de masas
|
|
|
- Antonio Ortíz Rojo
- hace 7 años
- Vistas:
Transcripción
1 Tema 4: Centro de masas Mecánica Racional, 2º, Grado en Ingeniería Civil Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1
2 Índice Definición y propiedades Cálculo de centro de masa Cuerpos continuos Figuras compuestas Teoremas de Guldin Velocidad y aceleración del CM 2
3 Introducción El movimiento de un sólido rígido se puede entender como la superposición de una traslación y una rotación (Teoremas de Koenig) La traslación corresponde al movimiento del centro de masas La rotación se realiza respecto al centro de masas CM CM 3
4 Centro de masas: definición para un sistema discreto Dado un sistema de n partículas, se define la posición de su centro de masas Z O Y m i es la masa de cada partícula r i es el vector de posición de cada partícula M es la masa total del sistema 4
5 Centro de masas: cálculo para un sistema discreto Y d Y G d Y G Si el sistema tiene algún plano, línea o punto de simetría, el CM está en él Si hay varios elementos de simetría el CM debe estar en el corte de todo ellos d El CM está cerca de la masa mayor Ejemplo: m t i e r r a = kg, m s o l = kg, d = km 5
6 Índice Definición y propiedades Cálculo de centro de masa Cuerpos continuos Figuras compuestas Teoremas de Guldin Velocidad y aceleración del CM 6
7 Centro de masas: sistemas continuos Un cuerpo continuo puede considerase compuesto por un número infinito de masas diferenciales M L dm dl Los sumatorios se convierten en diferenciales Posición del centro de masas O dm r 7
8 Densidades de masa Densidad lineal de masa Si el cuerpo es homogéneo Densidad superficial de masa Si el cuerpo es homogéneo Densidad volumétrica de masa Si el cuerpo es homogéneo Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2015/16 8
9 Centro de masas: sistemas continuos Coordenadas cartesianas del centro de masas Z O Y 9
10 Índice Definición y propiedades Cálculo de centro de masa Cuerpos continuos Figuras compuestas Teoremas de Guldin Velocidad y aceleración del CM 10
11 Centro de masas: composición de masas Podemos calcular el CM como una composición de partes del sistema Y Y Y m m 3 a O m a =m 1 +m 4 r a r b m b =m 2 +m 3 O r C M O 1 2 m 1 m 2 m 1 =m 4 m 2 =m 3 De este modo se puede calcular el CM de sistemas complejos 11
12 Índice Definición y propiedades Cálculo de centro de masa Cuerpos continuos Figuras compuestas Teoremas de Guldin Velocidad y aceleración del CM 12
13 Teoremas de Pappus-Guldin Primer teorema: El área A de una superficie de revolución generada por la rotación de una curva plana C, alrededor de un eje externo a C y que esté en su mismo plano, es igual al producto de la longitud L C de C por la distancia L G recorrida por el centroide geométrico Área del cono abierto 13
14 Teoremas de Pappus-Guldin Segundo teorema: El volumen V de un sólido de revolución generado por la rotación de una figura plana S, alrededor de un eje externo a ella, es igual al producto del área A S de F por la distancia L G recorrida por el CM Volumen del cono Baricentro del triángulo 14
15 Teoremas de Pappus-Guldin Aplicación a un toro Área Volumen 15
16 Índice Definición y propiedades Cálculo de centro de masa Cuerpos continuos Figuras compuestas Teoremas de Guldin Velocidad y aceleración CM 16
17 Velocidad y aceleración del CM Velocidad del centro de masas Z Aceleración del centro de masas O Y Cantidad de movimiento del centro de masas 17
Centro de masa. Centro de gravedad. Centroides.
Centro de masa. Centro de gravedad. Centroides. MOMENTOS Hasta ahora se han calculado momentos de fuerzas. Sin embargo, en muchos problemas de ingeniería aparecen momentos de masas, fuerzas, volúmenes,
Tema 10: Introducción a la Dinámica del Sólido Rígido
Tema 10: Introducción a la Dinámica del Sólido Rígido FISICA I, 1º, Grado en Ingeniería Energética, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad
TEMA II CENTRO DE GRAVEDAD Y CENTROIDES
Universidad de los Andes Facultad de Ingeniería Departamento de Ciencias Aplicadas y Humanísticas. Mecánica Racional 10 TEMA II CENTRO DE GRAVEDAD Y CENTROIDES Apuntes de clases, de la profesora Nayive
Dinámica de los sistemas de partículas. Javier Junquera
Dinámica de los sistemas de partículas Javier Junquera Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Definiciones básicas Supongamos
Tema 7: Dinámica del sólido rígido libre
Tema 7: Dinámica del sólido rígido libre Mecánica Racional, 2º, Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Campos
Dinámica de los sistemas de partículas. Javier Junquera
Dinámica de los sistemas de partículas Javier Junquera Bibliografía FUENTE PRINCIPAL Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Física
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
Tema 9: Movimiento plano
Tema 9: Movimiento plano Física I, º, Grado en Ingeniería Energética, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Definición
El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla
El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad de Sevilla Índice Campo de velocidades de
Mecánica Aplicada. Estática y Cinemática
Mecánica Aplicada Estática y Cinemática PROYECTO EDITORIAL SÍNTESIS INGENIERÍA Áreas de Publicación INGENIERÍA INDUSTRIAL COORDINADORA: Alicia Larena Mecánica Aplicada Estática y Cinemática Armando Bilbao
Módulo 1: Mecánica Sólido rígido. Rotación (II)
Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto
CAPITULO Nº 2 FUERZAS NO CONCURRENTES EN EL PLANO
CAPITULO Nº 2 FUERZAS NO CONCURRENTES EN EL PLANO Fuerzas no concurrentes.- Se define como fuerzas no concurrentes a aquellas cuyas líneas de acción no se cortan en un solo punto, por tanto la fuerza resultante
DIVISIÓN DE INGENIERÍAS CIVIL Y GEOMÁTICA DEPARTAMENTO DE ESTRUCTURAS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍAS CIVIL Y GEOMÁTICA DEPARTAMENTO DE ESTRUCTURAS ASIGNATURA: TEMA: ESTÁTICA ESTRUCTURAL CENTROIDES CENTROIDES: CENTRO
El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla
El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2015/2016 Dpto.Física Aplicada III Universidad de Sevilla Índice Condición geométrica de
Tema 5: Tensor de Inercia
Tema 5: Tensor de Inercia Mecánica Racional, 2º, Grado en Ingeniería Civil Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Índice Introducción Momentos de inercia de cuerpos continuos Tensor
Tema 4: Movimiento en 2D y 3D
Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1
ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO
ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO Nombre: Marilyn Chela Curso: 1 nivel de Ing. Química TEMA: Relación entre la Dinámica Lineal y la Dinámica Rotacional. Dinámica rotacional: Se trabaja con el
Tema 2: Movimiento relativo
Tema : Movimiento relativo Mecánica Racional, º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Mecánica Racional, GIC, Dpto. Física Aplicada III, ETSI, Universidad
CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE
UNIERSIDD NION DE O FUTD DE INGENIERÍ EÉTRI Y EETRÓNI ESUE PROFESION DE INGENIERÍ EÉTRI ENTRO DE GREDD, ENTRO DE MS Y ENTROIDE ING. JORGE MONTÑO PISFI O, 2010 ENTRO DE GREDD, ENTRO DE MSYY ENTROIDE ENTRO
Tema 2: Movimiento relativo
Mecánica Racional, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 8/9 Tema : Movimiento relativo Mecánica Racional, º Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela
j, E c = 5, J, E P = J)
CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.
CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación
CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema
Nombre de la asignatura: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8
. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Dinámica Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCM-009 Horas teoría-horas práctica-créditos: --8. - UBICACIÓN a) RELACION CON OTRAS
PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251
No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo
CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,
CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos
ENERGÍA Y CANTIDAD DE MOVIMIENTO
Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento
8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1).
1 Se tienen dos cargas puntuales sobre el eje X: 1 = 0,2 μc está situada a la derecha del origen y dista de él 1 m; 2 = +0,4 μc está a la izuierda del origen y dista de él 2 m. a) En ué puntos del eje
FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO
FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010) DOMINGO
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
Tema 7: Movimiento relativo
Tema 7: Movimiento relativo FISICA I, º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Física I, GIA, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla,
Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.
UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema
CAMPO ELÉCTRICO CARGAS PUNTUALES
CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 3.- ELECTROSTÁTICA DEL VACÍO 3 Electrostática
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
Tema 5: Dinámica de la partícula
Tema 5: Dinámica de la partícula FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla,
Guía de Ejercicios N o 2 FI2A2
Guía de Ejercicios N o 2 FI2A2 Prof. Auxiliar: Felipe L. Benavides Problema 1 Continuidad de la Corriente y Evolución Temporal de Cargas Libres Considere un sistema formado por dos placas conductoras conectadas
Física II. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física II Ingeniería Mecánica MCT - 0513 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar
IX. Análisis dinámico de fuerzas
Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.
Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia
Cálculo Integral Área de una superficie de revolución Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Área de una superficie de revolución
ESTÁTICA. Mecánica vectorial para ingenieros: Centroides y Centros de Gravedad. Novena edición CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
Novena edición CAPÍTULO : ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Centroides y Centros de Gravedad 2010 The McGraw-Hill Companies, Inc. All
Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica
Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Curso: Fundamentos de mecánica. 2015 20 Programación por semanas (teoría y práctica) Texto de apoyo Serway-Jewtt novena
FÍSICA 2ºBach CURSO 2014/2015
PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla 01 02 03 04 05 06 07 08 09 10 FISICA. CURSO 2011/2012. GRADO EN INGENIERÍA QUÍMICA. PRIMERA
PROGRAMA DE FÍSICA I TEORÍA
Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana
Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.
.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Dinámica Ingeniería Mecatrónica MTM-0 --.- HISTORIA DEL PROGRAMA Lugar y fecha
Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2018 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 018 Problemas (Dos puntos por problema). Problema 1: Un esquiador de 80 kg de masa deja una rampa de salto con una velocidad de 10 m/s formando
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
Experto en Mecánica Aplicada. Estática y Cinemática
titulación de formación continua bonificada expedida por el instituto europeo de estudios empresariales Experto en Mecánica Aplicada. Estática y Cinemática duración total: precio: 0 * modalidad: Online
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA FUNDAMENTACIÓN CIENTÍFICA
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA ASIGNATURA: CÓDIGO: ÁREA: REQUISITO: FÍSICA I CB234 FUNDAMENTACIÓN CIENTÍFICA Matemática I CB15 con nota 2.0 HORAS
3. Calcula la longitud del lado desconocido de cada triángulo rectángulo:
4ª Parte: Geometría Propiedades de las figuras planas y cuerpos geométricos Poliedros regulares La esfera. El globo terráqueo 1. Dibuja un triángulo equilátero e indica en él sus puntos notables: baricentro,
TEXTO: MECÁNICA DE SÓLIDOS I
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA INSTITUTO DE INVESTIGACIÓN INFORME FINAL DE TRABAJO DE INVESTIGACIÓN TEXTO: MECÁNICA DE SÓLIDOS I AUTOR: ING. JORGE ALBERTO
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas
PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA
PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS FÍSICA 1.- Cuál es el período de un péndulo simple de 1 m de longitud? a) 4 s b) 8 s c) s d) 6 s.- Un cuerpo de 15 kg se deja caer por un plano
ÍNDICE. 4 Círculos Ecuaciones de los círculos / Ecuación estándar de un círculo Problemas resueltos Problemas complementarios
ÍNDICE 1 Sistemas de coordenadas lineales. Valor absoluto. Desigualdades... 01 Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades 2 Sistema de coordenadas rectangulares...
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2
EJEMPLOS DE ACTIVIDADES
MATEMÁTICA Programa de Estudio 8 básico 1 U3 EJEMPLOS DE ACTIVIDADES Objetivo de Aprendizaje OA 13 Describir la posición y el movimiento (traslaciones, rotaciones y reflexiones) de figuras 2D, de manera
CAMPO ELÉCTRICO MODELO 2016
CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente
MECÁNICA. 6 horas a la semana 12 créditos Segundo semestre
MECÁNICA 6 horas a la semana 12 créditos Segundo semestre Objetivo del curso: El alumno conocerá y comprenderá los elementos y principios fundamentales de la mecánica clásica newtoniana; analizará y resolverá
VII. MOMENTOS ESTÁTICOS
VII. MOMENTOS ESTÁTICOS El momento estático es la suma de los productos de cada elemento de un cuerpo por su distancia a un eje. Ha momentos estáticos del peso, de la masa, del volumen de los cuerpos,
Tema 4: Movimiento en 2D y 3D
Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice
CB234 Física I CB215 T 5 4
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA PROGRAMA DE INGENIERÍA MECÁNICA 1. IDENTIFICACIÓN DE LA ASIGNATURA Código Nombre Requisito Carácter Teórico (T), Práctico (P) o Teórico-
EXAMEN DE FISICA I (GTI)
EXAMEN DE FISICA I GTI) 6-9-07 CUESTIONES ) a) Relación entre las coordenadas espaciales, velocidades y aceleraciones en el movimiento relativo de traslación uniforme Transformaciones Galileanas) 06) b)
Capítulo 10. Rotación de un Cuerpo Rígido
Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema
Centroide,Centro de masa y Centro de gravedad
Centroide,Centro de masa y Centro de gravedad Definiciones: Centroide: Centro geométrico. Centro de masa: El punto en donde se puede considerar que se concentra toda la masa del cuerpo. Centro de gravedad:
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DENSIDAD HORARIA
CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA
CINEMÁTICA 2 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CAMPO DE VELOCIDADES El campo de velocidad está constituido
CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en
CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),
PLAN DE ESTUDIOS 2008-II SÍLABO
UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE INGENIERÍA I. INFORMACION GENERAL PLAN DE ESTUDIOS 2008-II SÍLABO 1.1 Asignatura : MECÁNICA DEL CUERPO RÍGIDO 1.2 Ciclo : III
Mediante este programa se persigue desarrollar las siguientes habilidades:
PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios
Elementos de Física de los Medios Continuos
Elementos de Física de los Medios Continuos Martín Rivas e-mail:[email protected] http://tp.lc.ehu.es/martin.htm Departamento de Física Teórica e Historia de la Ciencia UPV/EHU Leioa, Mayo 2014 En la
4. Cuanta energía se necesita para traer un electrón desde el infinito hasta una distancia de 2, m, de una carga de 1, C?
Capítulo 1 SEMINARIO CAMPO ELÉCTRICO 1. Una esfera metálica de masa 10 g con carga +2 µc, se cuelga de un hilo y se le aproxima otra esfera con carga del mismo signo. Cuando ambas están separadas 10 cm
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones
Movimiento ondulatorio
Movimiento ondulatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez/Ana Mª Marco Ramírez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice
Tema 4: Dinámica del punto I
Tema 4: Dinámica del punto I FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Leyes de Newton Fuerzas activas y de reacción
Experto en Mecánica Aplicada. Estática y Cinemática
Experto en Mecánica Aplicada. Estática y Cinemática Titulación certificada por EUROINNOVA BUSINESS SCHOOL Experto en Mecánica Aplicada. Estática y Cinemática Experto en Mecánica Aplicada. Estática y Cinemática
INSTITUTO NACIONAL Dpto. de Física
Nombre: Curso: Torque y Rotación El giro de una partícula o cuerpo, requiere de la aplicación de una fuerza, la cual tenga una componente que este desplazada respecto del centro de masa del cuerpo. Es
Tema 6: Cinética de la partícula
Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico
CENTRO DE GRAVEDAD DE UN SÓLIDO
CENTRO DE GRAVEDAD DE UN SÓLIDO El centro de gravedad de un sólido es el punto imaginario en el que podemos considerar concentrada toda la masa del mismo. Por tanto, es el punto donde podemos considerar
10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si
Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten
