OPERACIONES BÁSICAS BINARIAS
|
|
|
- María Jesús de la Fuente Moreno
- hace 8 años
- Vistas:
Transcripción
1 Oscar Ignacio otero H. OPERCIONES ÁSICS INRIS Son circuitos lógicos combinacionales que pueden realizar operaciones de suma, resta, multiplicación y división. SUM INRI Se suman los dos términos sumandos y si el resultado excede se agrega un a la izquierda del sumando que se está analizando (acarreo = carry) y llevo "" (carry acarreo) carry carry carry carry El circuito semisumador (H = Half dder, SS = semisumador) se utiliza para sumar dos datos únicamente.
2 Oscar Ignacio otero H. 2 SUMNOS SUM CRREO H SS 0V 0V suma Σ = = Ejemplos Realice la tabla de verdad para las sumas () y acarreos () en el siguiente circuito f e d c b a H SS ENTRS SLIS a 0 0 b c 0 d e 0 f 0 0 El sumador completo (F = Full dder, SC = sumador completo) se utiliza para sumar varias columnas de datos.
3 Oscar Ignacio otero H. 3 ENTRS SLIS SUMNOS CRREO CRREO SUM ENTR SLI Ci Ci SUM CRRY Ci F SC Ci H SS H SS Ci 0V suma Σ = Ci ( ) 0V ( ) ( ) Σ = Ci ( ) 74LS32 = Ci ( ) + ( )
4 Oscar Ignacio otero H. 4 Realice la tabla de verdad para las sumas () y acarreos () en el siguiente circuito Ci h g f e d c b a Ci F SC Sumador en paralelo de 3 bits ENTRS SLIS Ci a 0 0 b c d e 0 0 f 0 0 g h H SS Ci 2 2 F SC 2 Ci 3 3 F SC SUM
5 Oscar Ignacio otero H. 5 Si se suman los números binarios 2 (7 decimal) y 02 (6 decimal) en el sumador en paralelo de tres bits automáticamente arroja el resultado 02 (3 decimal) V SUM CRRY 2 2 SUM2 74LS32 CRRY2 3 3 SUM3 74LS32 CRRY3 Sumador de 4 datos de 2 bits
6 Oscar Ignacio otero H. 6 Nomenclatura y Procedimiento:,, C y = atos de la columna 2, 2, C2 y 2 = atos de la columna 2 Rt = Respuesta temporal de una suma K = Carry que genera la suma de 2 bits S = Suma total de la columna Or = mpuerta del sumador completo que siempre irá a la columna siguiente lumna : + + C + + = Rt y genera K Rt + C = R2 y genera K2 Rt2 + = S y genera K3 K or K2 = Or sumador completo, la respuesta de la compuerta OR se va para la columna siguiente K3 quedó solo, entonces se va para la columna siguiente lumna 2: C Or + K = Rt3 y genera K4 Rt3 + C2 = Rt4 y genera K5 Rt4 + 2 = Rt5 y genera K6 Rt5 + Or = Rt6 y genera K7 Rt6 + K3 = S2 y genera K8 K4 or K5 = Or2 sumador completo, la respuesta de la compuerta OR se va para la columna siguiente K6 or K7 = Or3 sumador completo, la respuesta de la compuerta OR se va para la columna siguiente K8 quedó solo, entonces se va para la columna siguiente lumna 3: Or2 + Or3 + K8 Or2 + Or3 = Rt7 y genera K9 Rt7 + K8 = S3 y genera K0 K9 or K0 = Or4 sumador completo, la respuesta de la compuerta OR se va para la columna siguiente lumna 4: Or4 Or4 = S4
7 Oscar Ignacio otero H. 7 SUMOR E 4 TOS Y 2 COLUMNS C 2 2 C K 6 Rt Rt3 6 K Rt4 8 8 K5 Rt2 K Or 3 Rt5 6 6 K6 3 S 3 K Rt6 8 8 K7 2 3? S 2 2 C2 C S4 S3 S2 S 2 3 S2 K8? S Or Or3 2 3 Rt S3? S3 2 3 K K0 2 3 Or4? S4 TITLE: Y: TE: SUMOR E 4 TOS Y 2 COL 0//2 PGE: Oscar Ignacio otero Henao REV: Ob /
8 Oscar Ignacio otero H. 8 IC7483 Sumador mpleto de 4 bits Las entradas y son las de los bits LS (bits menos significativos) y las entradas 4 y 4 son las entradas de los MS (bits más significativos), es común conectar Ci a GN cuando no está conectado a un sumador paralelo precedente. REST INRI Se sustrae del minuendo el sustraendo, entregando como resultado la diferencia; si el sustraendo excede el minuendo se extrae el del minuendo que está a la izquierda convirtiéndose el de la izquierda en 0 y equivaliendo el nuevo minuendo que se está analizando al valor 0 = 2.
9 Oscar Ignacio otero H y 0 0 presto "" (borrow préstamo) borrow 0 2 Minuendo 0 Sustraendo 0 iferencia borrow borrow borrow borrow borrow Otro método es: La resta es una suma con el signo cambiado del sustraendo. El signo de un número binario positivo o negativo se cambia tomando su complemento 2. Para restar dos números con signo, se calcula el complemento 2 del sustraendo y se le suma al minuendo con las reglas normales de la suma. El desborde es un bit que se genera al final de los acarreos de la operación (al lado izquierdo) que se debe descartar.
10 Oscar Ignacio otero H. 0 carreo Minuendo 0 0 Sustraendo 0 0 mplemento iferencia = carreo Minuendo Sustraendo 0 0 mplemento iferencia = Minuendo Sustraendo 0 0 mplemento iferencia = 2 2 mplemento Operación: mplemento 2 del sustraendo: Minuendo + nuevo sustraendo: 000 Operación: (minuendo < sustraendo = resultado negativo) mplemento 2 del sustraendo: 000 Minuendo + nuevo sustraendo: 00 (Resultado negativo) ebido a que el resultado es de valor negativo; entonces, se saca el complemento a 2 para saber el resultado en valor positivo y así poder verificar la respuesta de la operación. El complemento 2 del resultado negativo de 00 es: 0000 (+8). La conversión de binario a decimal del minuendo y el sustraendo es: Minuendo: 39 Sustraendo: 57 Operación: = 8 verificando así que la respuesta es correcta.
11 Oscar Ignacio otero H. El circuito semirestador (HS = Half Susbstractor, SR = semirestador) se utiliza para restar dos datos únicamente. ENTRS SLIS Minuendo Sustraendo iferencia Préstamo o o HS SR o o = ( ) o = ( ) 74LS04 La compuerta inversora siempre va conectada a la entrada de datos del minuendo. Ejemplos Realice la tabla de verdad para las sustracciones () y préstamos (o) en el siguiente circuito f e d c b a 0 0 HS SR o ENTRS SLIS o a 0 b c 0 0 d 0 0 e 0 0 f 0 El restador completo (FS = Full Substractor, RC = restador completo) se utiliza para restar varias columnas de datos.
12 Oscar Ignacio otero H. 2 ENTRS SLIS Minuendo Sustraendo Préstamo Entrada iferencia i o Préstamo Salida i IFERENCI PRÉSTMO i HS SR o HS SR o o i 0V = i ( ) 0V 74LS04 74LS04 ( ) ( ) i ( ) 74LS32 o i o = i ( ) + ( ) FS RC o
13 Oscar Ignacio otero H. Realice la tabla de verdad para las sustracciones () y los préstamos (o) en el siguiente circuito i h g f e d c b a i FS RC o ENTRS SLIS i o a b 0 0 c d e f g 0 0 h 0 0 Restador en paralelo de 3 bits HS SR o i 2 2 FS RC 2 o i 3 3 FS RC 3 o REST
14 Oscar Ignacio otero H. Si se restan los números binarios 02 (5 decimal) y 02 (3 decimal) en el restador en paralelo de tres bits automáticamente arroja el resultado 002 (2 decimal) Nomenclatura y Procedimiento: y = atos de la columna 2 y 2 = atos de la columna 2 3 y 3 = atos de la columna 3 Rt = Respuesta temporal de una resta P = Préstamo que genera la resta de 2 bits = iferencia total de la columna Or = mpuerta del sumador completo lumna : = y P P se va para la columna siguiente. lumna 2: 2 2 P 2 2 = Rt y P2 Rt P = 2 y P3 P2 Or P3 = Or restador completo, la respuesta de la compuerta OR se va para la columna siguiente lumna 3: 3 3 Or 3 3 = Rt2 y P4 Rt2 Or = 3 y P5 P4 Or P5 = Or2 restador completo, la respuesta de la compuerta OR se va para la columna siguiente lumna 4: Or2 Or2 = 4 pero este dato se descarta 4
15 Oscar Ignacio otero H. FULL SUSTRCTOR - RESTOR COMPLETO E 3 ITS V ORROW 74LS04 IF IF2 74LS04 74LS32 74LS V ORROW2 IF3 74LS04 74LS32 ORROW3 74LS04 MULTIPLICCIÓN INRI La multiplicación de números binarios se realiza de forma similar a la multiplicación de números decimales, salvo que la suma de los productos parciales se realiza en binario Multiplicando 0 0 x 0 x Multiplicador Producto = 30
16 Oscar Ignacio otero H Multiplicando 0 0 x 0 x Multiplicador Producto = Multiplicando 0 x x Multiplicador Producto = 946 Ejemplo Multiplicador de 3x3 bits 0 6 Multiplicando x 7 x Multiplicador 0 42 Producto = 42
17 Oscar Ignacio otero H x C S5 S4 S3 S2 S IVISIÓN INRI Se realiza de forma similar a la de los números decimales, salvo que las multiplicaciones y restas internas al proceso de la división se hacen en binario. 0 / 0 / ividendo Residuo ivisor ciente
18 Oscar Ignacio otero H
OPERACIONES BÁSICAS BINARIAS
Oscar Ignacio otero H. OPERCIONES ÁSICS INRIS Son circuitos lógicos combinacionales que pueden realizar operaciones de suma, resta, multiplicación y división. SUM INRI Se suman los dos términos sumandos
Figura 1: Suma binaria
ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales
OPERACIONES BINARIAS. La técnica que se utiliza en los sistemas binarios para la suma y la resta, también se utiliza para los sistemas binarios.
OPERACIONES BINARIAS La técnica que se utiliza en los sistemas binarios para la suma y la resta, también se utiliza para los sistemas binarios. Estas operaciones se usan con frecuencia en los sistemas
PRÁCTICAS DE CIRCUITOS LÓGICOS PRÁCTICA 8
PRÁCTICAS DE CIRCUITOS LÓGICOS PRÁCTICA 8 NOMBRE DE LA PRACTICA: Sumador y Restador. COMPETENCIA DE LA PRÁCTICA: El alumno comprobará el funcionamiento del diseño de un semisumador, un sumador completo,
Sistemas numéricos -aritmética- Taller de programación
Sistemas numéricos -aritmética- Taller de programación I semestre, 2016 Aritmética en sistemas numéricos Temas Precisión En computadoras todas las operaciones se dan entre números binarios con tamaño finito,
SUMADORES Y COMPARADORES
Universidad Nacional de Quilmes Diplomatura en Ciencia y Tecnología Circuito semisumador de un bit. TÉCNICAS DIGITALES Los circuitos sumadores entregan 2 datos: suma (S) y acarreo (A), y, este circuito
ARQUITECTURA DE COMPUTADORES INFORME DE LABORATORIO Nº 2 CÁRDENAS MOYA JOSÉ GABRIEL TUTOR ING. HAIMER GUTIERREZ
ARQUITECTURA DE COMPUTADORES INFORME DE LABORATORIO Nº 2 CÁRDENAS MOYA JOSÉ GABRIEL TUTOR ING. HAIMER GUTIERREZ UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD CEAD ACACIAS QUINTO SEMESTRE INGENIERÍA DE
SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL.
SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL. Sabemos que a un de n bits, haciéndole un pequeño cambio, lo podemos convertir en y restador. Simplemente se complementan a los bits del sustraendo y además
CIRCUITOS ARITMÉTICOS
LABORATORIO # 6 Realización: 26-05-2011 CIRCUITOS ARITMÉTICOS 1. OBJETIVOS Comprender los circuitos aritméticos dentro de la lógica binaria Utilizar sumadores totales de cuatro bits dentro de un Circuito
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA
ac INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA PRÁCTICAS DE CIRCUITOS LÓGICOS LABORATORIO DE COMPUTACIÓN IV PRÁCTICA 4
Subsistemas aritméticos y lógicos. Tema 8
Subsistemas aritméticos y lógicos Tema 8 Qué sabrás al final del capítulo? Diseño de Sumadores Binarios Semisumadores Sumador completo Sumador con acarreo serie Sumador con acarreo anticipado Sumador /
Sumadores. Tipos de sumadores: Half-adder. Full-Adder. Carry-Look-Ahead. Carry-select.
Sumadores En electrónica un sumador es un circuito lógico que calcula la operación suma. En los computadores modernos se encuentra en lo que se denomina Unidad aritmético lógica (ALU). Generalmente realizan
TEMA 6 UNIDAD ARITMÉTICO LÓGICA
FUNDMENTOS DE TEM 6 UNIDD RITMÉTICO LÓGIC. OPERDORES LÓGICOS. 2. PROPIEDDES DE L UL. 3. OPERDORES DE DESPLZMIENTO. Desplazamientos lógicos. Desplazamientos circulares. Desplazamientos aritméticos. 4. OPERCIONES
UNIDAD II CIRCUITOS LÓGICOS COMBINATORIOS
UNIDAD II CIRCUITOS LÓGICOS COMBINATORIOS. SUMADORES Y RESTADORES 2. CODIFICADORES Y DECODIFICADORES 3. MULTIPLEXOR Y DEMULTIPLEXOR 4. MEMORIA DE SÓLO LECTURA 2- 2.. SUMADORES Y RESTADORES. SUMADORES Y
Circuitos combinacionales aritméticos (Parte II)
Circuitos combinacionales aritméticos (Parte II) Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid Contenidos. Circuitos sumadores y restadores Ø Sumadores con
FUNDAMENTOS DE SISTEMAS DIGITALES. Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas
FUNDAMENTOS DE SISTEMAS DIGITALES Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas 1 Programa 1. Representación conjunta de números positivos y negativos. 2. Sumadores y restadores. 3. Sumadores
DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA
DEPRTMENTO DE CIENCIS Á SICS E INGENIERÍS INGENIERÍ EN TELEMÁ TIC MRE DE L SIGNTUR CLVE SIGNTUR PLN DE ESTUDIO ELECTRONIC DIGITL IT0208 2004IT PRCTIC No. LORTORIO DE MRE DE L PRCTIC DURCIÓN 5 LORTORIO
Circuitos electrónicos digitales. Unidades Aritméticas Lógicas. Departamento de Tecnología Electrónica Universidad de Sevilla
Circuitos electrónicos digitales Unidades Aritméticas Lógicas Índice Introducción Circuitos sumadores básicos Sumador paralelo de n bits Sumador/Restador Unidad aritmético-lógica (ALU) Introducción Los
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B
Fundamentos de Computadores. Tema 5. Circuitos Aritméticos
Fundamentos de Computadores Tema 5 Circuitos Aritméticos OBJETIVOS Conceptuales: Suma y resta binaria Implementaciones hardware/software Circuito sumador y semi-sumador básico Sumadores/restadores de n
INGENIERIA ELECTRÓNICA
COM PUT DORES INGENIERI ELECTRÓNIC SIGNTUR: ELECTRÓNIC DIGITL I Profesor: LUIS CRLOS LSPRILL TOVR Facultad de Ingeniería Electrónica CIRCUITOS INTEGRDOS TRNSISTORES DIODOS FLYCKS Laboratorio * Ingenieria
Solecmexico Página 1 SUMADOR BINARIO
Solecmexico Página 1 SUMADOR BINARIO Esta operación es la más común que se realiza en una computadora personal. Ya que las tres operaciones básicas restantes pueden realizarse de igual manera con el principio
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO DE CIRCUITOS DIGITALES
ANALISIS Y DISEÑO DE CIRCUITOS ARITMÉTICOS
ANALISIS Y DISEÑO DE CIRCUITOS ARITMÉTICOS Suma y resta binaria Diseño de un sumador Análisis del sumador Análisis de un sumador/restador Suma y resta en BCD Suma y resta en BCD exceso de tres Análisis
Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1
Circuitos Lógicos Combinatorios Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Combinatorios Un circuito combinatorio es un arreglo de compuertas lógicas con un conjunto de entradas y salidas.
Lógica Computacional. Aritmética binaria
Lógica Computacional Aritmética binaria Aritmética binaria - Suma Para sumar dos (o más) números en sistema binario seguimos el mismo procedimiento que para sistema decimal, teniendo en cuenta que: 1 +
parte del tiempo de procesamiento en realizar este tipo de Es importante por que una computadora consume gran
Diseño de Circuitos Lógicos Aritmética Binaria Eric Rodríguez Peralta P.E. INGENIERO EN COMPUTACIÓN UNIVERSIDAD AUTÓNOMA DE GUERRERO 10 de septiembre de 2010 [email protected] AC-506 1 de 24 Aritmética
TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS
TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS . ARITMÉTICA BINARIA. Aritmética binaria básica a) Suma binaria.sea C i el acarreo (carry) generado al sumar los bits A i B i (A i +B i ) 2. Sea i= y C
Los sistemas de numeración se clasifican en: posicionales y no posicionales.
SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar
PRÁCTICA 1b: SUMA Y RESTA BINARIA
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA 1b: SUMA Y RESTA BINARIA ü ü Iniciar y familiarizar al alumno con las operaciones básicas (suma y resta) con números binarios.
ÍNDICE CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN CAPÍTULO 2. ÁLGEBRA DE CONMUTACIÓN Y FUNCIONES LÓGICAS... 37
ÍNDICE LISTA DE FIGURAS... 7 LISTA DE TABLAS... 11 CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN... 13 1.1. REPRESENTACIÓN DE LA INFORMACIÓN... 15 1.2. SISTEMAS DE NUMERACIÓN BINARIO NATURAL Y HEXADECIMAL... 18 1.3.
Tema I. Sistemas Numéricos y Códigos Binarios
Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MÁS EJEMPLOS DE OPERACIONES ARITMÉTICAS EN DIFERENTES SISTEMAS NUMÉRICOS. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO
TEMA 6. Circuitos Aritméticos.
Fundamentos de los Computadores. Circuitos Aritméticos T6- TEMA 6. Circuitos Aritméticos. INDICE: OPERACIONES EN EL SISTEMA BINARIO CIRCUITOS SUMADORES CIRCUITOS RESTADORES UNIDADES LÓGICO ARITMÉTICAS
TEMA 5.3 SISTEMAS DIGITALES
TEMA 5.3 SISTEMAS DIGITALES TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 08 de enero de 2015 TEMA 5.3 SISTEMAS DIGITALES Introducción Sistemas combinacionales Sistemas secuenciales TEMA 5.3 SISTEMAS
GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
LÓGICA SECUENCIAL Y COMBINATORIA
LÓGICA SECUENCIAL Y COMBINATORIA SESIÓN # 2 1.4 Conversión de otra base a decimal. En los sistemas numéricos posicionales, la conversión de otra base a decimal se hace con el método de la suma [3]. Este
Realizar las siguientes operaciones en c-a-2 utilizando el número mínimo de bits necesario para que no haya desbordamiento: 3 + 7, 5 7, 13 8, 10 6.
Problemas Propuestos Pasar de base 2 a base 10: (1011010) 2, (0100111001) 2 Pasar de base 10 a base 2: 21, 58, 73, 142, 196, 273 Pasar de base 10 a base 2, octal y hexadecimal: 35, 97 Pasar a base 2 y
TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.
TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Codificación de la información. Codificación consiste en representar los elementos de un conjunto mediante los elementos de otro conjunto.
Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son:
3. Circuitos aritméticos ticos Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Introducción La realización de operaciones aritméticas y lógicas
Organización de Computadoras
Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:
Electrónica Básica. Aritmética Binaria. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC
Electrónica Básica Aritmética Binaria Electrónica Digital José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC ARITMÉTICA BINARIA Operaciones en el sistema Binario Natural Suma Binaria
Tema 3. Operaciones aritméticas y lógicas
Tema 3. Operaciones aritméticas y lógicas Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Transparencia: 2 / 28 Índice Operaciones lógicas: OR, AND, XOR y NOT Operaciones
OPERACIONES CON NÚMEROS BINARIOS
OPERACIONES CON NÚMEROS BINARIOS Centro CFP/ES SUMA BINARIA La información tenemos que transformarla, compararla y procesarla. Para ello empleamos la aritmética binaria, es decir, procesos matemáticos
PRÁCTICA 1b: SUMA Y RESTA BINARIA
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA 1b: SUMA Y RESTA BINARIA! Iniciar y familiarizar al alumno con las operaciones básicas (suma y resta) con números binarios.!
TEMA III: OPERACIONES CON LOS DATOS
CUESTIONES A TRATAR: Cual es la función de la unidad operativa? Es necesaria? Qué tipos de circuitos implementan la unidad operativa? Unidad operativa frente a ALU Qué es una operación de múltiple precisión?
GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES
GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES COMPETENCIA GENERAL Construye circuitos digitales básicos en base a circuitos integrados MSI. COMPETENCIAS PARTICULARES 1. Emplea los sistemas numéricos
Sistemas numéricos. Sistemas numéricos. Notación posicional o ponderada. Números en base 10. Notación posicional regular. Notación posicional regular
Sistemas numéricos Prof. Mario Medina [email protected] Sistemas numéricos Representación posicional Números en ase Números en ases, y 6 Conversión de enteros y decimales entre ases Operaciones aritméticas
Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:
Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
-5.2 SUMADOR CON MULTIPLES SUMANDOS.
-5.2 SUMADOR CON MULTIPLES SUMANDOS. Sumador con acarreo almacenado. Este sumador también llamado Carry Save Adder (CSA) nos permitirá realizar la suma de N sumandos en un tiempo mínimo. Para estudiar
T6. CIRCUITOS ARITMÉTICOS
T6. CIRCUITOS ARITMÉTICOS Circuitos Aritméticos Son dispositivos MSI que pueden realizar operaciones aritméticas (suma, resta, multiplicación y división) con números binarios. De todos los dispositivos,
CIRCUITOS ARITMÉTICOS. Tema 5: CIRCUITOS ARITMÉTICOS
Tema 5: CIRCUITOS ARITMÉTICOS Contenido: * Aritmética binaria. * Circuito semisumador. Sumador completo. * Operaciones con n bits. Sumador paralelo con arrastre serie. * Circuito sumador-restador. * Sumador
CURSO: ELECTRÓNICA DIGITAL UNIDAD 2: SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. CIRCUITOS ARITMÉTICOS
CURSO: ELECTRÓNICA DIGITAL UNIDAD 2: SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA En Electrónica digital se tienen sistemas combinatorios y sistemas secuenciales. Un sistema combinatorio
Sistemas Digitales - Examen temas 1, 2 y 3 - (6 de Abril 2016)
Sistemas Digitales - Examen temas, 2 y 3 - (6 de Abril 206) EXAMEN RESUELTO Problema-. Modelo-A (Calificación 0 puntos) Se quiere diseñar un circuito digital, tal que, dado un número en código octal de
Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-2-1
Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-2-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2
Tema 3: Operaciones aritméticas y lógicas
Tema 3: Operaciones aritméticas y lógicas S Suma-resta en base dos S Operaciones lógicas: OR, AND, XOR y NOT S Operaciones de desplazamiento S Suma-resta en los diferentes sistemas de representación de
Realizar las siguientes operaciones en c-a-2 utilizando el número mínimo de bits necesario para que no haya desbordamiento: 3 + 7, 5 7, 13 8, 10 6.
Problemas Propuestos Pasar de base 2 a base 10: (1011010) 2, (0100111001) 2 Pasar de base 10 a base 2: 21, 58, 73, 142, 196, 273 Pasar de base 10 a base 2, octal y hexadecimal: 35, 97 Pasar a base 2 y
BIBLIOGRAFIA TEORIA DE CIRCUITOSY DISPOSOTIVOS BOYLESTAD ELECTRONICA DIGITAL TOKHEIM SISTEMAS DIGITALES TOCCI
Guía de preparación para el examen ELECTRONICA CxTx En esta materia básicamente se evalúan temas tales como son: MULTIVIBRADORES, MEMORIAS, CONTADORES Y COMPUERTAS LOGICAS, SUMADOR RESTADOR Y MICROPOCESADORES
Multiplicación. Multiplicación. Martín Vázquez Arquitectura I - Curso 2013 UNICEN. Notación dot
Multiplicación Martín Vázquez Arquitectura I - Curso 23 UNICEN Multiplicación 2 Multiplicación p b 3.a. 3 b 2.a. 2 b.a. b.a. b x a Notación dot p b 3.a.2 3 b 2.a.2 2 b.a.2 b.a.2 b x a Multiplicación decimal
CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA En esta unidad usted aprenderá a utilizar los diferentes circuitos integrados que se han fabricado para resolver
FUNCIONES ARITMÉTICAS Y
Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes
Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria. Ing. José C. Benítez P.
Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria Ing. José C. Benítez P. Sesión 3. Temas Aritmética Binaria Números Binarios Conversión de fracciones decimales a binario Conversión de fracciones
Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria
Oliverio J. Santana Jaria 3. Aritmética tica binaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Para Los La en conocer muchos aritmética comprender otros binaria tipos
Tema 2: Sistemas y códigos numéricos
Tema 2: Sistemas y códigos numéricos Sistemas numéricos posicionales En este sistema la posición de cada digito tiene un peso asociado. El valor de un número es una suma ponderada de los dígito, por ejemplo:
https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf
1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para
Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10
Objetivos Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10 Estudiar la operación y uso de las compuertas NAND y NOR Investigar la relación entre las entradas y las salidas de la puerta OR exclusiva
Por ejemplo, los números binarios sin signo que se pueden construir con 4 bits son: bit más significativo more significant bit (msb)
istema binario Un sistema binario utiliza únicamente dos símbolos para representar la información. Comúnmente los símbolos usados son los dígitos y 1, por eso reciben el nombre de dígitos binarios (binary
Tema 4 - Bloques combinacionales
- Bloques combinacionales Eduardo Rodríguez Martínez Departamento de Electrónica División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana Unidad Azcapotzalco Email: [email protected]
Realizado por Pablo Yela ---- [email protected] ---- http://pabloyela.wordpress.com
ARITMETICA BINARIA Operaciones básicas con sistema binario Conversión de Decimal a Binario Lo primero que debemos comprender es como convertir números decimales a binarios para realizar este proceso existen
ESTRUCTURA Y TECNOLOGIA DE COMPUTADORES II Curso PROBLEMAS TEMA 4: Unidad Aritmético Lógica
Problemas propuestos en examen PROBLEMAS TEMA 4: Unidad Aritmético Lógica 4.1 Se desea realizar una Unidad Aritmético Lógica que realice dos operaciones, suma y comparación de dos números X (x 2 ) e Y
LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales
1 LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales Objetivos Diseñar un circuito digital combinacional que permita realizar la suma de dos números binarios de 3 bits cada uno. Utilizar LEDs
LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS
LA UNIDAD ARITMÉTICA Y LÓGICA LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS Departamento de Informática. Curso 2006-2007 1 EL SEMISUMADOR BINARIO S = ab + ba = a b C = ab Departamento de
Algoritmos Multiplicación División
Algoritmos Multiplicación División 1 Algoritmos de Multiplicación Producto = Multiplicando * Multiplicador P : producto R: Multiplicando Q: Multiplicador P = R * Q 2 Algoritmos de Multiplicación Primer
NUMEROS ENTEROS ( Z)
NUMEROS ENTEROS ( Z) En N la resta sólo está definida si el minuendo es mayor o igual al sustraendo. Para que dicha operación no sea tan restringida se creó el conjunto de enteros negativos ( notado por
SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES
Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones
Universidad Autónoma de Baja California
Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2
Circuitos Aritméticos. Introducción a los Sistemas Lógicos y Digitales 2012
Circuitos Aritméticos Introducción a los Sistemas Lógicos y Digitales 2012 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 2012 Clasificación según función: Sumadores. Restadores. Multiplicadores.
Sistema Binario. Sonia Alexandra Pinzón Nuñez. Ingeniera de Sistemas
Sistema Binario Ingeniera de Sistemas Tecnología en Sistematización de Datos Facultad Tecnológica - Universidad Distrital Sistemas Numéricos (Posicionales) Como en todo sistema de numeración, el valor
Bloques Aritméticos - Multiplicadores
Bloques Aritméticos - Multiplicadores La multiplicación es una operación cara (en términos de recursos) y lenta Este hecho ha motivado la integración de unidades completas de multiplicación en los DSPs
Aritmética del computador. Departamento de Arquitectura de Computadores
Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética
Sistemas de Numeración. I semestre 2011
Sistemas de Numeración I semestre 2011 Sistema Decimal 7392 7 10 3 + 3 10 2 + 9 10 1 + 2 10 0 10 símbolos: 0 9 Un número decimal puede ser expresado por una serie de coeficientes: a 3 a 2 a 1 a 0, a 1
5.2. Sistemas de codificación en binario
5.2. Sistemas de codificación en binario 5.2.1. Sistemas numéricos posicionales [ Wakerly 2.1 pág. 26] 5.2.2. Números octales y hexadecimales [ Wakerly 2.2 pág. 27] 5.2.3. Conversión general de sistemas
Lógica Secuencial y Combinatoria. Dr. Arturo Redondo Galván 1
Lógica Secuencial y Combinatoria 1 UNIDAD II Desarrollar cálculos distintos sistemas de numeración y llevar a cabo operaciones aritméticas en el álgebra Booleana y optimizar funciones mediante métodos
PROBLEMA VHDL. 7 dig1. dig2. Entradas : Señales a[3..0] y b [3..0] en código GRAY Salida : Señales Dig1[6..0] y Dig2[6..0] para los visualizadores
LAB. Nº: 4 HORARIO: H-441 FECHA: 2/10/2005 Se tienen 2 números en Código GRAY de 4 bits. Se requiere diseñar un circuito que obtenga la suma de estos 2 números y que muestre el resultado en formato BCD
CIRCUITOS DIGITALES UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ING. CRISTIAN FLORES ALUMNO: TITO GUASCO FECHA:
CIRCUITOS DIGITALES 2011 UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ALUMNO: FECHA: ING. CRISTIAN FLORES TITO GUASCO 11-10-2011 2 CIRCUITOS DIGITALES TEMA: COMPUERTAS LOGICAS Las computadoras
TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.
TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Entendemos por sistema de numeración, la forma de representar cantidades mediante un sistema de valor posicional. Los ordenadores
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
Fundamentos de Programación. Sabino Miranda-Jiménez
Fundamentos de Programación Sabino Miranda-Jiménez MÓDULO 1. Introducción a la computación Temas: La computación en el profesional de ingeniería Desarrollo computacional en la sociedad Aplicaciones Software
ARQUITECTURA DE COMPUTADORAS I. Prof. Rosendo Perez Revision 1.6d
ARQUITECTURA DE COMPUTADORAS I Prof. Rosendo Perez Revision 1.6d 1 REPRESENTACION DE LA INFORMACION Codificación de números de punto fijo con y sin signo Números reales (números de punto flotante) Caracteres
INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción
INDICE Prologo XIII Introducción XV 1. Introducción a la técnica digital 1.1. Introducción 1 1.2. Señales analógicas y digitales 1.2.1. Señales analógicas 1.2.2. Señales digitales 2 1.3. Procesos digitales
4. SUMADORES EN BINARIO PURO (I)
TEMA 3: SISTEMAS ARITMÉTICOS Introducción y objetivos (3). Representación y codificación de la información (4-7) 2. Sistemas numéricos posicionales. Binario, hexadecimal, octal, y BCD. (8-33) 3. Números
2. Sumadores. Diagrama. Donde a y b son los bits a sumar, S el. resultado de la suma y C el acarreo generado. b EB. Circuito. Tabla de verdad.
2. Sumadores Los sumadores son cirtuitos muy utilizados en muchos tipos de sistemas digitales en los que se procesan datos numéricos. Para comprender su diseño y funcionamiento se parte del diseño de un
Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre
UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse
