OPERACIONES BÁSICAS BINARIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPERACIONES BÁSICAS BINARIAS"

Transcripción

1 Oscar Ignacio otero H. OPERCIONES ÁSICS INRIS Son circuitos lógicos combinacionales que pueden realizar operaciones de suma, resta, multiplicación y división. SUM INRI Se suman los dos términos sumandos y si el resultado excede se agrega un a la izquierda del sumando que se está analizando (acarreo = carry) y llevo "" (carry acarreo) carry carry carry carry El circuito semisumador (H = Half dder, SS = semisumador) se utiliza para sumar dos datos únicamente.

2 Oscar Ignacio otero H. 2 SUMNOS SUM CRREO H SS 0V 0V suma Σ = = Ejemplos Realice la tabla de verdad para las sumas () y acarreos () en el siguiente circuito f e d c b a H SS ENTRS SLIS a 0 0 b c 0 d e 0 f 0 0 El sumador completo (F = Full dder, SC = sumador completo) se utiliza para sumar varias columnas de datos.

3 Oscar Ignacio otero H. 3 ENTRS SLIS SUMNOS CRREO CRREO SUM ENTR SLI Ci Ci SUM CRRY Ci F SC Ci H SS H SS Ci 0V suma Σ = Ci ( ) 0V ( ) ( ) Σ = Ci ( ) 74LS32 = Ci ( ) + ( )

4 Oscar Ignacio otero H. 4 Realice la tabla de verdad para las sumas () y acarreos () en el siguiente circuito Ci h g f e d c b a Ci F SC Sumador en paralelo de 3 bits ENTRS SLIS Ci a 0 0 b c d e 0 0 f 0 0 g h H SS Ci 2 2 F SC 2 Ci 3 3 F SC SUM

5 Oscar Ignacio otero H. 5 Si se suman los números binarios 2 (7 decimal) y 02 (6 decimal) en el sumador en paralelo de tres bits automáticamente arroja el resultado 02 (3 decimal) V SUM CRRY 2 2 SUM2 74LS32 CRRY2 3 3 SUM3 74LS32 CRRY3 Sumador de 4 datos de 2 bits

6 Oscar Ignacio otero H. 6 Nomenclatura y Procedimiento:,, C y = atos de la columna 2, 2, C2 y 2 = atos de la columna 2 Rt = Respuesta temporal de una suma K = Carry que genera la suma de 2 bits S = Suma total de la columna Or = mpuerta del sumador completo que siempre irá a la columna siguiente lumna : + + C + + = Rt y genera K Rt + C = R2 y genera K2 Rt2 + = S y genera K3 K or K2 = Or sumador completo, la respuesta de la compuerta OR se va para la columna siguiente K3 quedó solo, entonces se va para la columna siguiente lumna 2: C Or + K = Rt3 y genera K4 Rt3 + C2 = Rt4 y genera K5 Rt4 + 2 = Rt5 y genera K6 Rt5 + Or = Rt6 y genera K7 Rt6 + K3 = S2 y genera K8 K4 or K5 = Or2 sumador completo, la respuesta de la compuerta OR se va para la columna siguiente K6 or K7 = Or3 sumador completo, la respuesta de la compuerta OR se va para la columna siguiente K8 quedó solo, entonces se va para la columna siguiente lumna 3: Or2 + Or3 + K8 Or2 + Or3 = Rt7 y genera K9 Rt7 + K8 = S3 y genera K0 K9 or K0 = Or4 sumador completo, la respuesta de la compuerta OR se va para la columna siguiente lumna 4: Or4 Or4 = S4

7 Oscar Ignacio otero H. 7 SUMOR E 4 TOS Y 2 COLUMNS C 2 2 C K 6 Rt Rt3 6 K Rt4 8 8 K5 Rt2 K Or 3 Rt5 6 6 K6 3 S 3 K Rt6 8 8 K7 2 3? S 2 2 C2 C S4 S3 S2 S 2 3 S2 K8? S Or Or3 2 3 Rt S3? S3 2 3 K K0 2 3 Or4? S4 TITLE: Y: TE: SUMOR E 4 TOS Y 2 COL 0//2 PGE: Oscar Ignacio otero Henao REV: Ob /

8 Oscar Ignacio otero H. 8 IC7483 Sumador mpleto de 4 bits Las entradas y son las de los bits LS (bits menos significativos) y las entradas 4 y 4 son las entradas de los MS (bits más significativos), es común conectar Ci a GN cuando no está conectado a un sumador paralelo precedente. REST INRI Se sustrae del minuendo el sustraendo, entregando como resultado la diferencia; si el sustraendo excede el minuendo se extrae el del minuendo que está a la izquierda convirtiéndose el de la izquierda en 0 y equivaliendo el nuevo minuendo que se está analizando al valor 0 = 2.

9 Oscar Ignacio otero H y 0 0 presto "" (borrow préstamo) borrow 0 2 Minuendo 0 Sustraendo 0 iferencia borrow borrow borrow borrow borrow Otro método es: La resta es una suma con el signo cambiado del sustraendo. El signo de un número binario positivo o negativo se cambia tomando su complemento 2. Para restar dos números con signo, se calcula el complemento 2 del sustraendo y se le suma al minuendo con las reglas normales de la suma. El desborde es un bit que se genera al final de los acarreos de la operación (al lado izquierdo) que se debe descartar.

10 Oscar Ignacio otero H. 0 carreo Minuendo 0 0 Sustraendo 0 0 mplemento iferencia = carreo Minuendo Sustraendo 0 0 mplemento iferencia = Minuendo Sustraendo 0 0 mplemento iferencia = 2 2 mplemento Operación: mplemento 2 del sustraendo: Minuendo + nuevo sustraendo: 000 Operación: (minuendo < sustraendo = resultado negativo) mplemento 2 del sustraendo: 000 Minuendo + nuevo sustraendo: 00 (Resultado negativo) ebido a que el resultado es de valor negativo; entonces, se saca el complemento a 2 para saber el resultado en valor positivo y así poder verificar la respuesta de la operación. El complemento 2 del resultado negativo de 00 es: 0000 (+8). La conversión de binario a decimal del minuendo y el sustraendo es: Minuendo: 39 Sustraendo: 57 Operación: = 8 verificando así que la respuesta es correcta.

11 Oscar Ignacio otero H. El circuito semirestador (HS = Half Susbstractor, SR = semirestador) se utiliza para restar dos datos únicamente. ENTRS SLIS Minuendo Sustraendo iferencia Préstamo o o HS SR o o = ( ) o = ( ) 74LS04 La compuerta inversora siempre va conectada a la entrada de datos del minuendo. Ejemplos Realice la tabla de verdad para las sustracciones () y préstamos (o) en el siguiente circuito f e d c b a 0 0 HS SR o ENTRS SLIS o a 0 b c 0 0 d 0 0 e 0 0 f 0 El restador completo (FS = Full Substractor, RC = restador completo) se utiliza para restar varias columnas de datos.

12 Oscar Ignacio otero H. 2 ENTRS SLIS Minuendo Sustraendo Préstamo Entrada iferencia i o Préstamo Salida i IFERENCI PRÉSTMO i HS SR o HS SR o o i 0V = i ( ) 0V 74LS04 74LS04 ( ) ( ) i ( ) 74LS32 o i o = i ( ) + ( ) FS RC o

13 Oscar Ignacio otero H. Realice la tabla de verdad para las sustracciones () y los préstamos (o) en el siguiente circuito i h g f e d c b a i FS RC o ENTRS SLIS i o a b 0 0 c d e f g 0 0 h 0 0 Restador en paralelo de 3 bits HS SR o i 2 2 FS RC 2 o i 3 3 FS RC 3 o REST

14 Oscar Ignacio otero H. Si se restan los números binarios 02 (5 decimal) y 02 (3 decimal) en el restador en paralelo de tres bits automáticamente arroja el resultado 002 (2 decimal) Nomenclatura y Procedimiento: y = atos de la columna 2 y 2 = atos de la columna 2 3 y 3 = atos de la columna 3 Rt = Respuesta temporal de una resta P = Préstamo que genera la resta de 2 bits = iferencia total de la columna Or = mpuerta del sumador completo lumna : = y P P se va para la columna siguiente. lumna 2: 2 2 P 2 2 = Rt y P2 Rt P = 2 y P3 P2 Or P3 = Or restador completo, la respuesta de la compuerta OR se va para la columna siguiente lumna 3: 3 3 Or 3 3 = Rt2 y P4 Rt2 Or = 3 y P5 P4 Or P5 = Or2 restador completo, la respuesta de la compuerta OR se va para la columna siguiente lumna 4: Or2 Or2 = 4 pero este dato se descarta 4

15 Oscar Ignacio otero H. FULL SUSTRCTOR - RESTOR COMPLETO E 3 ITS V ORROW 74LS04 IF IF2 74LS04 74LS32 74LS V ORROW2 IF3 74LS04 74LS32 ORROW3 74LS04 MULTIPLICCIÓN INRI La multiplicación de números binarios se realiza de forma similar a la multiplicación de números decimales, salvo que la suma de los productos parciales se realiza en binario Multiplicando 0 0 x 0 x Multiplicador Producto = 30

16 Oscar Ignacio otero H Multiplicando 0 0 x 0 x Multiplicador Producto = Multiplicando 0 x x Multiplicador Producto = 946 Ejemplo Multiplicador de 3x3 bits 0 6 Multiplicando x 7 x Multiplicador 0 42 Producto = 42

17 Oscar Ignacio otero H x C S5 S4 S3 S2 S IVISIÓN INRI Se realiza de forma similar a la de los números decimales, salvo que las multiplicaciones y restas internas al proceso de la división se hacen en binario. 0 / 0 / ividendo Residuo ivisor ciente

18 Oscar Ignacio otero H

OPERACIONES BÁSICAS BINARIAS

OPERACIONES BÁSICAS BINARIAS Oscar Ignacio otero H. OPERCIONES ÁSICS INRIS Son circuitos lógicos combinacionales que pueden realizar operaciones de suma, resta, multiplicación y división. SUM INRI Se suman los dos términos sumandos

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

OPERACIONES BINARIAS. La técnica que se utiliza en los sistemas binarios para la suma y la resta, también se utiliza para los sistemas binarios.

OPERACIONES BINARIAS. La técnica que se utiliza en los sistemas binarios para la suma y la resta, también se utiliza para los sistemas binarios. OPERACIONES BINARIAS La técnica que se utiliza en los sistemas binarios para la suma y la resta, también se utiliza para los sistemas binarios. Estas operaciones se usan con frecuencia en los sistemas

Más detalles

PRÁCTICAS DE CIRCUITOS LÓGICOS PRÁCTICA 8

PRÁCTICAS DE CIRCUITOS LÓGICOS PRÁCTICA 8 PRÁCTICAS DE CIRCUITOS LÓGICOS PRÁCTICA 8 NOMBRE DE LA PRACTICA: Sumador y Restador. COMPETENCIA DE LA PRÁCTICA: El alumno comprobará el funcionamiento del diseño de un semisumador, un sumador completo,

Más detalles

Sistemas numéricos -aritmética- Taller de programación

Sistemas numéricos -aritmética- Taller de programación Sistemas numéricos -aritmética- Taller de programación I semestre, 2016 Aritmética en sistemas numéricos Temas Precisión En computadoras todas las operaciones se dan entre números binarios con tamaño finito,

Más detalles

SUMADORES Y COMPARADORES

SUMADORES Y COMPARADORES Universidad Nacional de Quilmes Diplomatura en Ciencia y Tecnología Circuito semisumador de un bit. TÉCNICAS DIGITALES Los circuitos sumadores entregan 2 datos: suma (S) y acarreo (A), y, este circuito

Más detalles

ARQUITECTURA DE COMPUTADORES INFORME DE LABORATORIO Nº 2 CÁRDENAS MOYA JOSÉ GABRIEL TUTOR ING. HAIMER GUTIERREZ

ARQUITECTURA DE COMPUTADORES INFORME DE LABORATORIO Nº 2 CÁRDENAS MOYA JOSÉ GABRIEL TUTOR ING. HAIMER GUTIERREZ ARQUITECTURA DE COMPUTADORES INFORME DE LABORATORIO Nº 2 CÁRDENAS MOYA JOSÉ GABRIEL TUTOR ING. HAIMER GUTIERREZ UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD CEAD ACACIAS QUINTO SEMESTRE INGENIERÍA DE

Más detalles

SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL.

SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL. SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL. Sabemos que a un de n bits, haciéndole un pequeño cambio, lo podemos convertir en y restador. Simplemente se complementan a los bits del sustraendo y además

Más detalles

CIRCUITOS ARITMÉTICOS

CIRCUITOS ARITMÉTICOS LABORATORIO # 6 Realización: 26-05-2011 CIRCUITOS ARITMÉTICOS 1. OBJETIVOS Comprender los circuitos aritméticos dentro de la lógica binaria Utilizar sumadores totales de cuatro bits dentro de un Circuito

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA ac INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA PRÁCTICAS DE CIRCUITOS LÓGICOS LABORATORIO DE COMPUTACIÓN IV PRÁCTICA 4

Más detalles

Subsistemas aritméticos y lógicos. Tema 8

Subsistemas aritméticos y lógicos. Tema 8 Subsistemas aritméticos y lógicos Tema 8 Qué sabrás al final del capítulo? Diseño de Sumadores Binarios Semisumadores Sumador completo Sumador con acarreo serie Sumador con acarreo anticipado Sumador /

Más detalles

Sumadores. Tipos de sumadores: Half-adder. Full-Adder. Carry-Look-Ahead. Carry-select.

Sumadores. Tipos de sumadores: Half-adder. Full-Adder. Carry-Look-Ahead. Carry-select. Sumadores En electrónica un sumador es un circuito lógico que calcula la operación suma. En los computadores modernos se encuentra en lo que se denomina Unidad aritmético lógica (ALU). Generalmente realizan

Más detalles

TEMA 6 UNIDAD ARITMÉTICO LÓGICA

TEMA 6 UNIDAD ARITMÉTICO LÓGICA FUNDMENTOS DE TEM 6 UNIDD RITMÉTICO LÓGIC. OPERDORES LÓGICOS. 2. PROPIEDDES DE L UL. 3. OPERDORES DE DESPLZMIENTO. Desplazamientos lógicos. Desplazamientos circulares. Desplazamientos aritméticos. 4. OPERCIONES

Más detalles

UNIDAD II CIRCUITOS LÓGICOS COMBINATORIOS

UNIDAD II CIRCUITOS LÓGICOS COMBINATORIOS UNIDAD II CIRCUITOS LÓGICOS COMBINATORIOS. SUMADORES Y RESTADORES 2. CODIFICADORES Y DECODIFICADORES 3. MULTIPLEXOR Y DEMULTIPLEXOR 4. MEMORIA DE SÓLO LECTURA 2- 2.. SUMADORES Y RESTADORES. SUMADORES Y

Más detalles

Circuitos combinacionales aritméticos (Parte II)

Circuitos combinacionales aritméticos (Parte II) Circuitos combinacionales aritméticos (Parte II) Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid Contenidos. Circuitos sumadores y restadores Ø Sumadores con

Más detalles

FUNDAMENTOS DE SISTEMAS DIGITALES. Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas

FUNDAMENTOS DE SISTEMAS DIGITALES. Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas FUNDAMENTOS DE SISTEMAS DIGITALES Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas 1 Programa 1. Representación conjunta de números positivos y negativos. 2. Sumadores y restadores. 3. Sumadores

Más detalles

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA DEPRTMENTO DE CIENCIS Á SICS E INGENIERÍS INGENIERÍ EN TELEMÁ TIC MRE DE L SIGNTUR CLVE SIGNTUR PLN DE ESTUDIO ELECTRONIC DIGITL IT0208 2004IT PRCTIC No. LORTORIO DE MRE DE L PRCTIC DURCIÓN 5 LORTORIO

Más detalles

Circuitos electrónicos digitales. Unidades Aritméticas Lógicas. Departamento de Tecnología Electrónica Universidad de Sevilla

Circuitos electrónicos digitales. Unidades Aritméticas Lógicas. Departamento de Tecnología Electrónica Universidad de Sevilla Circuitos electrónicos digitales Unidades Aritméticas Lógicas Índice Introducción Circuitos sumadores básicos Sumador paralelo de n bits Sumador/Restador Unidad aritmético-lógica (ALU) Introducción Los

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B

Más detalles

Fundamentos de Computadores. Tema 5. Circuitos Aritméticos

Fundamentos de Computadores. Tema 5. Circuitos Aritméticos Fundamentos de Computadores Tema 5 Circuitos Aritméticos OBJETIVOS Conceptuales: Suma y resta binaria Implementaciones hardware/software Circuito sumador y semi-sumador básico Sumadores/restadores de n

Más detalles

INGENIERIA ELECTRÓNICA

INGENIERIA ELECTRÓNICA COM PUT DORES INGENIERI ELECTRÓNIC SIGNTUR: ELECTRÓNIC DIGITL I Profesor: LUIS CRLOS LSPRILL TOVR Facultad de Ingeniería Electrónica CIRCUITOS INTEGRDOS TRNSISTORES DIODOS FLYCKS Laboratorio * Ingenieria

Más detalles

Solecmexico Página 1 SUMADOR BINARIO

Solecmexico Página 1 SUMADOR BINARIO Solecmexico Página 1 SUMADOR BINARIO Esta operación es la más común que se realiza en una computadora personal. Ya que las tres operaciones básicas restantes pueden realizarse de igual manera con el principio

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO DE CIRCUITOS DIGITALES

Más detalles

ANALISIS Y DISEÑO DE CIRCUITOS ARITMÉTICOS

ANALISIS Y DISEÑO DE CIRCUITOS ARITMÉTICOS ANALISIS Y DISEÑO DE CIRCUITOS ARITMÉTICOS Suma y resta binaria Diseño de un sumador Análisis del sumador Análisis de un sumador/restador Suma y resta en BCD Suma y resta en BCD exceso de tres Análisis

Más detalles

Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1

Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Lógicos Combinatorios Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Combinatorios Un circuito combinatorio es un arreglo de compuertas lógicas con un conjunto de entradas y salidas.

Más detalles

Lógica Computacional. Aritmética binaria

Lógica Computacional. Aritmética binaria Lógica Computacional Aritmética binaria Aritmética binaria - Suma Para sumar dos (o más) números en sistema binario seguimos el mismo procedimiento que para sistema decimal, teniendo en cuenta que: 1 +

Más detalles

parte del tiempo de procesamiento en realizar este tipo de Es importante por que una computadora consume gran

parte del tiempo de procesamiento en realizar este tipo de Es importante por que una computadora consume gran Diseño de Circuitos Lógicos Aritmética Binaria Eric Rodríguez Peralta P.E. INGENIERO EN COMPUTACIÓN UNIVERSIDAD AUTÓNOMA DE GUERRERO 10 de septiembre de 2010 [email protected] AC-506 1 de 24 Aritmética

Más detalles

TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS

TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS . ARITMÉTICA BINARIA. Aritmética binaria básica a) Suma binaria.sea C i el acarreo (carry) generado al sumar los bits A i B i (A i +B i ) 2. Sea i= y C

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

PRÁCTICA 1b: SUMA Y RESTA BINARIA

PRÁCTICA 1b: SUMA Y RESTA BINARIA DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA 1b: SUMA Y RESTA BINARIA ü ü Iniciar y familiarizar al alumno con las operaciones básicas (suma y resta) con números binarios.

Más detalles

ÍNDICE CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN CAPÍTULO 2. ÁLGEBRA DE CONMUTACIÓN Y FUNCIONES LÓGICAS... 37

ÍNDICE CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN CAPÍTULO 2. ÁLGEBRA DE CONMUTACIÓN Y FUNCIONES LÓGICAS... 37 ÍNDICE LISTA DE FIGURAS... 7 LISTA DE TABLAS... 11 CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN... 13 1.1. REPRESENTACIÓN DE LA INFORMACIÓN... 15 1.2. SISTEMAS DE NUMERACIÓN BINARIO NATURAL Y HEXADECIMAL... 18 1.3.

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MÁS EJEMPLOS DE OPERACIONES ARITMÉTICAS EN DIFERENTES SISTEMAS NUMÉRICOS. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Más detalles

TEMA 6. Circuitos Aritméticos.

TEMA 6. Circuitos Aritméticos. Fundamentos de los Computadores. Circuitos Aritméticos T6- TEMA 6. Circuitos Aritméticos. INDICE: OPERACIONES EN EL SISTEMA BINARIO CIRCUITOS SUMADORES CIRCUITOS RESTADORES UNIDADES LÓGICO ARITMÉTICAS

Más detalles

TEMA 5.3 SISTEMAS DIGITALES

TEMA 5.3 SISTEMAS DIGITALES TEMA 5.3 SISTEMAS DIGITALES TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 08 de enero de 2015 TEMA 5.3 SISTEMAS DIGITALES Introducción Sistemas combinacionales Sistemas secuenciales TEMA 5.3 SISTEMAS

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6

GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

LÓGICA SECUENCIAL Y COMBINATORIA

LÓGICA SECUENCIAL Y COMBINATORIA LÓGICA SECUENCIAL Y COMBINATORIA SESIÓN # 2 1.4 Conversión de otra base a decimal. En los sistemas numéricos posicionales, la conversión de otra base a decimal se hace con el método de la suma [3]. Este

Más detalles

Realizar las siguientes operaciones en c-a-2 utilizando el número mínimo de bits necesario para que no haya desbordamiento: 3 + 7, 5 7, 13 8, 10 6.

Realizar las siguientes operaciones en c-a-2 utilizando el número mínimo de bits necesario para que no haya desbordamiento: 3 + 7, 5 7, 13 8, 10 6. Problemas Propuestos Pasar de base 2 a base 10: (1011010) 2, (0100111001) 2 Pasar de base 10 a base 2: 21, 58, 73, 142, 196, 273 Pasar de base 10 a base 2, octal y hexadecimal: 35, 97 Pasar a base 2 y

Más detalles

TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.

TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Codificación de la información. Codificación consiste en representar los elementos de un conjunto mediante los elementos de otro conjunto.

Más detalles

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son:

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son: 3. Circuitos aritméticos ticos Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Introducción La realización de operaciones aritméticas y lógicas

Más detalles

Organización de Computadoras

Organización de Computadoras Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:

Más detalles

Electrónica Básica. Aritmética Binaria. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC

Electrónica Básica. Aritmética Binaria. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC Electrónica Básica Aritmética Binaria Electrónica Digital José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC ARITMÉTICA BINARIA Operaciones en el sistema Binario Natural Suma Binaria

Más detalles

Tema 3. Operaciones aritméticas y lógicas

Tema 3. Operaciones aritméticas y lógicas Tema 3. Operaciones aritméticas y lógicas Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Transparencia: 2 / 28 Índice Operaciones lógicas: OR, AND, XOR y NOT Operaciones

Más detalles

OPERACIONES CON NÚMEROS BINARIOS

OPERACIONES CON NÚMEROS BINARIOS OPERACIONES CON NÚMEROS BINARIOS Centro CFP/ES SUMA BINARIA La información tenemos que transformarla, compararla y procesarla. Para ello empleamos la aritmética binaria, es decir, procesos matemáticos

Más detalles

PRÁCTICA 1b: SUMA Y RESTA BINARIA

PRÁCTICA 1b: SUMA Y RESTA BINARIA DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA 1b: SUMA Y RESTA BINARIA! Iniciar y familiarizar al alumno con las operaciones básicas (suma y resta) con números binarios.!

Más detalles

TEMA III: OPERACIONES CON LOS DATOS

TEMA III: OPERACIONES CON LOS DATOS CUESTIONES A TRATAR: Cual es la función de la unidad operativa? Es necesaria? Qué tipos de circuitos implementan la unidad operativa? Unidad operativa frente a ALU Qué es una operación de múltiple precisión?

Más detalles

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES COMPETENCIA GENERAL Construye circuitos digitales básicos en base a circuitos integrados MSI. COMPETENCIAS PARTICULARES 1. Emplea los sistemas numéricos

Más detalles

Sistemas numéricos. Sistemas numéricos. Notación posicional o ponderada. Números en base 10. Notación posicional regular. Notación posicional regular

Sistemas numéricos. Sistemas numéricos. Notación posicional o ponderada. Números en base 10. Notación posicional regular. Notación posicional regular Sistemas numéricos Prof. Mario Medina [email protected] Sistemas numéricos Representación posicional Números en ase Números en ases, y 6 Conversión de enteros y decimales entre ases Operaciones aritméticas

Más detalles

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma: Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

-5.2 SUMADOR CON MULTIPLES SUMANDOS.

-5.2 SUMADOR CON MULTIPLES SUMANDOS. -5.2 SUMADOR CON MULTIPLES SUMANDOS. Sumador con acarreo almacenado. Este sumador también llamado Carry Save Adder (CSA) nos permitirá realizar la suma de N sumandos en un tiempo mínimo. Para estudiar

Más detalles

T6. CIRCUITOS ARITMÉTICOS

T6. CIRCUITOS ARITMÉTICOS T6. CIRCUITOS ARITMÉTICOS Circuitos Aritméticos Son dispositivos MSI que pueden realizar operaciones aritméticas (suma, resta, multiplicación y división) con números binarios. De todos los dispositivos,

Más detalles

CIRCUITOS ARITMÉTICOS. Tema 5: CIRCUITOS ARITMÉTICOS

CIRCUITOS ARITMÉTICOS. Tema 5: CIRCUITOS ARITMÉTICOS Tema 5: CIRCUITOS ARITMÉTICOS Contenido: * Aritmética binaria. * Circuito semisumador. Sumador completo. * Operaciones con n bits. Sumador paralelo con arrastre serie. * Circuito sumador-restador. * Sumador

Más detalles

CURSO: ELECTRÓNICA DIGITAL UNIDAD 2: SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. CIRCUITOS ARITMÉTICOS

CURSO: ELECTRÓNICA DIGITAL UNIDAD 2: SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. CIRCUITOS ARITMÉTICOS CURSO: ELECTRÓNICA DIGITAL UNIDAD 2: SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA En Electrónica digital se tienen sistemas combinatorios y sistemas secuenciales. Un sistema combinatorio

Más detalles

Sistemas Digitales - Examen temas 1, 2 y 3 - (6 de Abril 2016)

Sistemas Digitales - Examen temas 1, 2 y 3 - (6 de Abril 2016) Sistemas Digitales - Examen temas, 2 y 3 - (6 de Abril 206) EXAMEN RESUELTO Problema-. Modelo-A (Calificación 0 puntos) Se quiere diseñar un circuito digital, tal que, dado un número en código octal de

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-2-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-2-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-2-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

Tema 3: Operaciones aritméticas y lógicas

Tema 3: Operaciones aritméticas y lógicas Tema 3: Operaciones aritméticas y lógicas S Suma-resta en base dos S Operaciones lógicas: OR, AND, XOR y NOT S Operaciones de desplazamiento S Suma-resta en los diferentes sistemas de representación de

Más detalles

Realizar las siguientes operaciones en c-a-2 utilizando el número mínimo de bits necesario para que no haya desbordamiento: 3 + 7, 5 7, 13 8, 10 6.

Realizar las siguientes operaciones en c-a-2 utilizando el número mínimo de bits necesario para que no haya desbordamiento: 3 + 7, 5 7, 13 8, 10 6. Problemas Propuestos Pasar de base 2 a base 10: (1011010) 2, (0100111001) 2 Pasar de base 10 a base 2: 21, 58, 73, 142, 196, 273 Pasar de base 10 a base 2, octal y hexadecimal: 35, 97 Pasar a base 2 y

Más detalles

BIBLIOGRAFIA TEORIA DE CIRCUITOSY DISPOSOTIVOS BOYLESTAD ELECTRONICA DIGITAL TOKHEIM SISTEMAS DIGITALES TOCCI

BIBLIOGRAFIA TEORIA DE CIRCUITOSY DISPOSOTIVOS BOYLESTAD ELECTRONICA DIGITAL TOKHEIM SISTEMAS DIGITALES TOCCI Guía de preparación para el examen ELECTRONICA CxTx En esta materia básicamente se evalúan temas tales como son: MULTIVIBRADORES, MEMORIAS, CONTADORES Y COMPUERTAS LOGICAS, SUMADOR RESTADOR Y MICROPOCESADORES

Más detalles

Multiplicación. Multiplicación. Martín Vázquez Arquitectura I - Curso 2013 UNICEN. Notación dot

Multiplicación. Multiplicación. Martín Vázquez Arquitectura I - Curso 2013 UNICEN. Notación dot Multiplicación Martín Vázquez Arquitectura I - Curso 23 UNICEN Multiplicación 2 Multiplicación p b 3.a. 3 b 2.a. 2 b.a. b.a. b x a Notación dot p b 3.a.2 3 b 2.a.2 2 b.a.2 b.a.2 b x a Multiplicación decimal

Más detalles

CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA

CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA En esta unidad usted aprenderá a utilizar los diferentes circuitos integrados que se han fabricado para resolver

Más detalles

FUNCIONES ARITMÉTICAS Y

FUNCIONES ARITMÉTICAS Y Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes

Más detalles

Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria. Ing. José C. Benítez P.

Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria. Ing. José C. Benítez P. Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria Ing. José C. Benítez P. Sesión 3. Temas Aritmética Binaria Números Binarios Conversión de fracciones decimales a binario Conversión de fracciones

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria Oliverio J. Santana Jaria 3. Aritmética tica binaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Para Los La en conocer muchos aritmética comprender otros binaria tipos

Más detalles

Tema 2: Sistemas y códigos numéricos

Tema 2: Sistemas y códigos numéricos Tema 2: Sistemas y códigos numéricos Sistemas numéricos posicionales En este sistema la posición de cada digito tiene un peso asociado. El valor de un número es una suma ponderada de los dígito, por ejemplo:

Más detalles

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf 1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para

Más detalles

Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10

Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10 Objetivos Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10 Estudiar la operación y uso de las compuertas NAND y NOR Investigar la relación entre las entradas y las salidas de la puerta OR exclusiva

Más detalles

Por ejemplo, los números binarios sin signo que se pueden construir con 4 bits son: bit más significativo more significant bit (msb)

Por ejemplo, los números binarios sin signo que se pueden construir con 4 bits son: bit más significativo more significant bit (msb) istema binario Un sistema binario utiliza únicamente dos símbolos para representar la información. Comúnmente los símbolos usados son los dígitos y 1, por eso reciben el nombre de dígitos binarios (binary

Más detalles

Tema 4 - Bloques combinacionales

Tema 4 - Bloques combinacionales - Bloques combinacionales Eduardo Rodríguez Martínez Departamento de Electrónica División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana Unidad Azcapotzalco Email: [email protected]

Más detalles

Realizado por Pablo Yela ---- [email protected] ---- http://pabloyela.wordpress.com

Realizado por Pablo Yela ---- pablo.yela@gmail.com ---- http://pabloyela.wordpress.com ARITMETICA BINARIA Operaciones básicas con sistema binario Conversión de Decimal a Binario Lo primero que debemos comprender es como convertir números decimales a binarios para realizar este proceso existen

Más detalles

ESTRUCTURA Y TECNOLOGIA DE COMPUTADORES II Curso PROBLEMAS TEMA 4: Unidad Aritmético Lógica

ESTRUCTURA Y TECNOLOGIA DE COMPUTADORES II Curso PROBLEMAS TEMA 4: Unidad Aritmético Lógica Problemas propuestos en examen PROBLEMAS TEMA 4: Unidad Aritmético Lógica 4.1 Se desea realizar una Unidad Aritmético Lógica que realice dos operaciones, suma y comparación de dos números X (x 2 ) e Y

Más detalles

LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales

LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales 1 LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales Objetivos Diseñar un circuito digital combinacional que permita realizar la suma de dos números binarios de 3 bits cada uno. Utilizar LEDs

Más detalles

LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS

LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS LA UNIDAD ARITMÉTICA Y LÓGICA LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS Departamento de Informática. Curso 2006-2007 1 EL SEMISUMADOR BINARIO S = ab + ba = a b C = ab Departamento de

Más detalles

Algoritmos Multiplicación División

Algoritmos Multiplicación División Algoritmos Multiplicación División 1 Algoritmos de Multiplicación Producto = Multiplicando * Multiplicador P : producto R: Multiplicando Q: Multiplicador P = R * Q 2 Algoritmos de Multiplicación Primer

Más detalles

NUMEROS ENTEROS ( Z)

NUMEROS ENTEROS ( Z) NUMEROS ENTEROS ( Z) En N la resta sólo está definida si el minuendo es mayor o igual al sustraendo. Para que dicha operación no sea tan restringida se creó el conjunto de enteros negativos ( notado por

Más detalles

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones

Más detalles

Universidad Autónoma de Baja California

Universidad Autónoma de Baja California Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2

Más detalles

Circuitos Aritméticos. Introducción a los Sistemas Lógicos y Digitales 2012

Circuitos Aritméticos. Introducción a los Sistemas Lógicos y Digitales 2012 Circuitos Aritméticos Introducción a los Sistemas Lógicos y Digitales 2012 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 2012 Clasificación según función: Sumadores. Restadores. Multiplicadores.

Más detalles

Sistema Binario. Sonia Alexandra Pinzón Nuñez. Ingeniera de Sistemas

Sistema Binario. Sonia Alexandra Pinzón Nuñez. Ingeniera de Sistemas Sistema Binario Ingeniera de Sistemas Tecnología en Sistematización de Datos Facultad Tecnológica - Universidad Distrital Sistemas Numéricos (Posicionales) Como en todo sistema de numeración, el valor

Más detalles

Bloques Aritméticos - Multiplicadores

Bloques Aritméticos - Multiplicadores Bloques Aritméticos - Multiplicadores La multiplicación es una operación cara (en términos de recursos) y lenta Este hecho ha motivado la integración de unidades completas de multiplicación en los DSPs

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

Sistemas de Numeración. I semestre 2011

Sistemas de Numeración. I semestre 2011 Sistemas de Numeración I semestre 2011 Sistema Decimal 7392 7 10 3 + 3 10 2 + 9 10 1 + 2 10 0 10 símbolos: 0 9 Un número decimal puede ser expresado por una serie de coeficientes: a 3 a 2 a 1 a 0, a 1

Más detalles

5.2. Sistemas de codificación en binario

5.2. Sistemas de codificación en binario 5.2. Sistemas de codificación en binario 5.2.1. Sistemas numéricos posicionales [ Wakerly 2.1 pág. 26] 5.2.2. Números octales y hexadecimales [ Wakerly 2.2 pág. 27] 5.2.3. Conversión general de sistemas

Más detalles

Lógica Secuencial y Combinatoria. Dr. Arturo Redondo Galván 1

Lógica Secuencial y Combinatoria. Dr. Arturo Redondo Galván 1 Lógica Secuencial y Combinatoria 1 UNIDAD II Desarrollar cálculos distintos sistemas de numeración y llevar a cabo operaciones aritméticas en el álgebra Booleana y optimizar funciones mediante métodos

Más detalles

PROBLEMA VHDL. 7 dig1. dig2. Entradas : Señales a[3..0] y b [3..0] en código GRAY Salida : Señales Dig1[6..0] y Dig2[6..0] para los visualizadores

PROBLEMA VHDL. 7 dig1. dig2. Entradas : Señales a[3..0] y b [3..0] en código GRAY Salida : Señales Dig1[6..0] y Dig2[6..0] para los visualizadores LAB. Nº: 4 HORARIO: H-441 FECHA: 2/10/2005 Se tienen 2 números en Código GRAY de 4 bits. Se requiere diseñar un circuito que obtenga la suma de estos 2 números y que muestre el resultado en formato BCD

Más detalles

CIRCUITOS DIGITALES UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ING. CRISTIAN FLORES ALUMNO: TITO GUASCO FECHA:

CIRCUITOS DIGITALES UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ING. CRISTIAN FLORES ALUMNO: TITO GUASCO FECHA: CIRCUITOS DIGITALES 2011 UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ALUMNO: FECHA: ING. CRISTIAN FLORES TITO GUASCO 11-10-2011 2 CIRCUITOS DIGITALES TEMA: COMPUERTAS LOGICAS Las computadoras

Más detalles

TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.

TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Entendemos por sistema de numeración, la forma de representar cantidades mediante un sistema de valor posicional. Los ordenadores

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

Fundamentos de Programación. Sabino Miranda-Jiménez

Fundamentos de Programación. Sabino Miranda-Jiménez Fundamentos de Programación Sabino Miranda-Jiménez MÓDULO 1. Introducción a la computación Temas: La computación en el profesional de ingeniería Desarrollo computacional en la sociedad Aplicaciones Software

Más detalles

ARQUITECTURA DE COMPUTADORAS I. Prof. Rosendo Perez Revision 1.6d

ARQUITECTURA DE COMPUTADORAS I. Prof. Rosendo Perez Revision 1.6d ARQUITECTURA DE COMPUTADORAS I Prof. Rosendo Perez Revision 1.6d 1 REPRESENTACION DE LA INFORMACION Codificación de números de punto fijo con y sin signo Números reales (números de punto flotante) Caracteres

Más detalles

INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción

INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción INDICE Prologo XIII Introducción XV 1. Introducción a la técnica digital 1.1. Introducción 1 1.2. Señales analógicas y digitales 1.2.1. Señales analógicas 1.2.2. Señales digitales 2 1.3. Procesos digitales

Más detalles

4. SUMADORES EN BINARIO PURO (I)

4. SUMADORES EN BINARIO PURO (I) TEMA 3: SISTEMAS ARITMÉTICOS Introducción y objetivos (3). Representación y codificación de la información (4-7) 2. Sistemas numéricos posicionales. Binario, hexadecimal, octal, y BCD. (8-33) 3. Números

Más detalles

2. Sumadores. Diagrama. Donde a y b son los bits a sumar, S el. resultado de la suma y C el acarreo generado. b EB. Circuito. Tabla de verdad.

2. Sumadores. Diagrama. Donde a y b son los bits a sumar, S el. resultado de la suma y C el acarreo generado. b EB. Circuito. Tabla de verdad. 2. Sumadores Los sumadores son cirtuitos muy utilizados en muchos tipos de sistemas digitales en los que se procesan datos numéricos. Para comprender su diseño y funcionamiento se parte del diseño de un

Más detalles

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles