Algoritmos Multiplicación División
|
|
|
- Purificación Romero Ojeda
- hace 8 años
- Vistas:
Transcripción
1 Algoritmos Multiplicación División 1
2 Algoritmos de Multiplicación Producto = Multiplicando * Multiplicador P : producto R: Multiplicando Q: Multiplicador P = R * Q 2
3 Algoritmos de Multiplicación Primer Algoritmo. 3
4 Algoritmos de Multiplicación Primer Algoritmo. 4
5 Algoritmos de Multiplicación Segundo Algoritmo 5
6 Algoritmos de Multiplicación Segundo Algoritmo 6
7 Algoritmos de Multiplicación Segundo Algoritmo Ejemplo 0010 * 0011 Multiplicador Multiplicando Producto
8 Algoritmos de Multiplicación Tercer Algoritmo 8
9 Algoritmos de Multiplicación Tercer Algoritmo 9
10 Algoritmos de Multiplicación Tercer Algoritmo Ejemplo Multiplicando Producto
11 Algoritmos de Multiplicación Algoritmo Booth s (operandos con signo) Multiplicando 0010 Multiplicador 1001 Multiplicando Producto Multiplicador q i qi-1 11
12 Algoritmos de Multiplicación Algoritmo Booth s (operandos con signo) Suma o Resta el multiplicando a la mitad izquierda del producto y coloca el resultado en la mitad izquierda del producto: Si q i = 0 y q i-1 = 1 suma Si q i = 1 y q i-1 = 0 resta Si q i = q i-1 no se efectúa ninguna operación. Desplaza 1 bit a la derecha registro producto. 12
13 Algoritmos de Multiplicación Algoritmo Booth s (operandos con signo) Multiplicando Producto Multiplicador qi = 1 y qi-1 = 0, resta se desplaza 1 bit qi = 0 y qi-1 = 1, suma se desplaza 1 bit qi = qi-1 = 0, solo se desplaza 1 bit qi = 1 y qi-1 = 0, resta se desplaza 1 bit
14 Algoritmos de División Dividendo = Cuociente * Divisor + Resto 14
15 Algoritmos de División Primer Algoritmo 15
16 Algoritmos de División Primer Algoritmo 16
17 Algoritmos de División Segundo Algoritmo 17
18 Algoritmos de División Segundo Algoritmo 18
19 Algoritmos de División Tercer Algoritmo 19
20 Algoritmos de División Tercer Algoritmo 20
21 Punto Flotante: Suma Ejemplo: sumar los números 9, * , * 10-1 Asuma que solo se puede almacenar cuatro dígitos significativos y dos dígitos para el exponente. Cómo se realiza esta suma? 21
22 Punto Flotante: Suma Primero alinear el punto decimal de el número que posee menor exponente: 1, *10-1 = 0, *10 0 = *10 1 Sumar ambos significandos (mantisa) 9, , , , *
23 Punto Flotante: Suma Número flotante normalizado 10, * 10 1 = 1, * 10 2 Se asume que se puede almacenar cuatro dígitos significativos, por lo que se debe redondear el número. 1, *
24 Punto Flotante: Suma Inicio Compara los exponentes de los dos número; Efectúa un corrimiento a la derecha del número más pequeño hasta que el exponente sea igual al del otro número Suma los significandos Normaliza la suma, realiza corrimiento: hacia la derecha e incrementa el exponente, O Hacia la izquierda y decremeta el exponente Overflow o underflow no si Excepción Redondear significando de acuerdo al Número de bits no Normalizado? Fin si 24
25 Punto Flotante: Suma 25
26 Punto Flotante: Multiplicación Ejemplo: multiplicar los números 1, *10 10 x 9, * 10-5 Asuma que solo se puede almacenar cuatro dígitos significativos y dos dígitos para el exponente. Cómo se realiza esta multiplicación? 26
27 Punto Flotante: Multiplicación Se calcula el exponente: sumando los exponentes de los operandos Directo 10+ (-5) = 5 O polarizado = = 122 Nuevo exponente = = = 132 =
28 Punto Flotante: Multiplicación A continuación se multiplican los significandos. 1, x 9, , , *
29 Punto Flotante: Multiplicación Normalizar Redondear 10, * 10 5 = 1, * , * 10 6 Signo El signo del producto depende de los signos de ambos operandos Si el signo de ambos es igual, el signo resultado es positivo, en otro caso es negativo +1, *
30 Punto Flotante: Multiplicación Ejemplo en base 2 1,000 2 * 2-1 x -1,110 2 * 2-2 Sumando exponentes (-1-2) = 124 ( ) + ( ) -127 =
31 Punto Flotante: Multiplicación Multiplicando significandos x , *
32 Punto Flotante: Multiplicación Verificar si esta normalizado y verificar el exponente, overflow o underflow (254 >= Ei >= 1) Redondear Signo 1,110 2 * ,110 2 *
33 Punto Flotante: Multiplicación Inicio Suma los exponentes polarizados de los dos números y resta la polarización obteniendo así en nuevo exponente Multiplica los significandos Normaliza el producto si es necesario, realizando Un corrimiento a la derecha e incremetandto el exponente Overflow o underflow no si Excepción Redondear significando de acuerdo al Número de bits no Normalizado? si Signo de acuerdo a los operandos Fin 33
Representación de datos y aritmética básica en sistemas digitales
Representación de datos y aritmética básica en sistemas digitales DIGITAL II - ECA Departamento de Sistemas e Informática Escuela de Ingeniería Electrónica Rosa Corti 1 Sistemas de Numeración: Alfabeto:
Computación I Representación Interna Curso 2011
Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Estándar IEEE 754 Primero se definen tres formatos s e F Total (bits) (bits) (bits) (bytes) simple precisión
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
Representación de datos y aritmética básica en sistemas digitales
Representación de datos y aritmética básica en sistemas digitales DIGITAL II - ECA Departamento de Sistemas e Informática Escuela de Ingeniería Electrónica Rosa Corti 1 Sistemas de Numeración: Alfabeto:
Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre
LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS
LA UNIDAD ARITMÉTICA Y LÓGICA LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS Departamento de Informática. Curso 2006-2007 1 EL SEMISUMADOR BINARIO S = ab + ba = a b C = ab Departamento de
Primera versión del Algoritmo y Hardware de la Multiplicación.
3.6 Multiplicación La multiplicación es una operación mas complicada que la suma y que la resta. Para entender como es que el hardware realiza esta operación, con base en la ALU desarrollada, daremos un
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MÁS EJEMPLOS DE OPERACIONES ARITMÉTICAS EN DIFERENTES SISTEMAS NUMÉRICOS. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO
Números. un elemento perteneciente al conjunto D b. de los dígitos del sistema. D b
1 Un número es un ente que permite representar simbólicamente las veces que la unidad está presente en la cantidad observada o medida. Números representados por una cantidad finita de dígitos o cifras.
en coma flotante Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2006
Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2006 4. Representación n de números n en coma flotante Para La números representar fraccionarios números
ELO311 Estructuras de Computadores Digitales. Algoritmos de Multiplicación y División
ELO311 Estructuras de Computadores Digitales Algoritmos de Multiplicación y División Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer
Aritmética del computador. Departamento de Arquitectura de Computadores
Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética
Sistemas Numéricos Cambios de Base Errores
Cálculo Numérico Definición: es el desarrollo y estudio de procedimientos (algoritmos) para resolver problemas con ayuda de una computadora. π + cos ( x) dx 0 Tema I: Introducción al Cálculo Numérico Sistemas
CONVERSIONES CONVERSIÓN DE BINARIO A: Binario a Octal: se agrupan de a 3 bits y luego se lee el número , B 635,15 O 6 3 5, 1 5 O
CONVERSIONES CONVERSIÓN DE BINARIO A: Binario a Octal: se agrupan de a 3 bits y luego se lee el número. 110011101,001101 B Oct 110 011 101, 001 101 B 635,15 O 6 3 5, 1 5 O Ej: 1001011011,1010 B R/. 1133,50
C U R S O : MATEMÁTICA
C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS VALOR ABSOLUTO Es la distancia que existe entre un número y el 0-3 -2-1 0 1 2 3 Z -3 = 3, 3 = 3 DEFINICIÓN:
Programación y Métodos Numéricos Errores de de redondeo en en la la representación de de números reales: CODIFICACIÓN DE NÚMEROS REALES
Programación y Métodos Numéricos Errores de de redondeo en en la la representación de de números reales: CODIFICACIÓN DE NÚMEROS REALES Carlos Conde LázaroL Arturo Hidalgo LópezL Alfredo López L Benito
OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación
OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación 1 Introducción (I) ALU / Arquitectura Von Neumann CPU banco de registros
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
Aritmética de Enteros
Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión
ESCUELA POLITÉCNICA NACIONAL
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León.
Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León Programa 1. Introducción. 2. Operaciones lógicas. 3. Bases de la aritmética
Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1
Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2
Estructura de Computadores. 1. Ejercicios Resueltos 1.1. Tema 6. La unidad aritmética y lógica
Estructura de Computadores Tema 6. La unidad aritmética y lógica Operaciones típicas de la unidad aritmético-lógica. Algoritmos de multiplicación de Robertson y de Booth. Algoritmos de división con y sin
UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse
TEMA III: OPERACIONES CON LOS DATOS
CUESTIONES A TRATAR: Cual es la función de la unidad operativa? Es necesaria? Qué tipos de circuitos implementan la unidad operativa? Unidad operativa frente a ALU Qué es una operación de múltiple precisión?
EJERCICIOS RESUELTOS DEL TEMA 5
EJERCICIOS RESUELTOS DEL TEMA 5 MULTIPLICACIÓN 1.- Multiplicar los números 27 y -7 utilizando representación binaria en complemento a 2, con el mínimo número posible de bits y empleando el algoritmo apropiado.
Organización del Computador. Prof. Angela Di Serio
Punto Flotante Muchas aplicaciones requieren trabajar con números que no son enteros. Existen varias formas de representar números no enteros. Una de ellas es usando un punto o coma fijo. Este tipo de
Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN
= RESP = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo
SUMA Y RESTA DE NUMEROS ENTEROS y ALGEBRAICOS A) SUMA Y RESTA 3 + 2 + 5 3 = RESP + 1 2 + 5 = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo + 7 6 = + 1 se restan signos contrarios
Ejercicios Representación de la información
Ejercicios Representación de la información Grupo ARCOS Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid Contenidos 1. Hexadecimal/binario 2. Alfanumérica 3.
+18 = 00010010-18 = 10010010
Capítulo 8. Aritmética del Procesador Las dos preocupaciones principales de la aritmética de una computadora son la manera en que se representan los números (el formato binario) y los algoritmos utilizados
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
UNIDAD III NÚMEROS FRACCIONARIOS
UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza
Enteros: números pertenecientes a un subconjunto finito de los números enteros. Lógicos: los dos valores lógicos, VERDADERO (true) o FALSO (false).
Tema 2 Datos y variables Versión: 16 de febrero de 2009 2.1 Tipos de datos Se denomina dato a cualquier objeto manipulable por el ordenador. Un dato puede ser un carácter leído de un teclado, información
ARITMÉTICA EN PUNTO FLOTANTE
ARITMÉTICA EN PUNTO FLOTANTE AMPLIACIÓN DE ESTRUCTURA DE COMPUTADORES Daniel Mozos Muñoz Facultad de Informática 1 Aritmética en punto flotante 1. Representación de números en punto flotante 2. IEEE 754
Guía práctica de estudio 06: Lenguaje binario
Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario
Operaciones con fracciones I
Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:
primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en
Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B
Aritmética Binaria. Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid
Aritmética Binaria Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Representación de números con signo Sistemas de Signo y Magnitud, Complemento a
Tema 1: NUMEROS ENTEROS
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número
Sistemas de Numeración
Sistemas de Numeración Parte 2: Representación de Reales Lic. Andrea V. Manna Sistemas posicionales: Repaso N= d k-1 d k-2 d 1 d 0,d -1 d -l = d k-1 *p k-1 + d k-2 *p k-2 +.+ d 0 *p 0,+ d -1 *p -1 +...+
Representación de la Información
Representar: Expresar una información como una combinación de símbolos de un determinado lenguaje. Trece -> símbolos 1 y 3 Interpretar: Obtener la información originalmente representada a partir de una
Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales
Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos
Unidad Aritmético Lógica. Escuela Superior de Informática Universidad de Castilla-La Mancha
Unidad Aritmético Lógica Escuela Superior de Informática Universidad de Castilla-La Mancha Contenido Introducción Operaciones lógicas: desplazamientos lógicos Operaciones aritméticas: multiplicación y
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICA I Lic. Manuel de Jesús
ESCUELA SECUNDARIA OFICIAL No MIGUEL LEON PORTILLA. GUIA DE EXAMEN DE RECUPERACION 3er. BIMESTRE MATEMATICAS I
ESCUELA SECUNDARIA OFICIAL No. 00 MIGUEL LEON PORTILLA GUIA DE EXAMEN DE RECUPERACION er. BIMESTRE MATEMATICAS I NOMBRE DEL ALUMNO: GRADO: _º_GRUPO: _B_ REPRESENTACIÓN DE NÚMEROS FRACCIONARIOS Y DECIMALES
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Operaciones Aritméticas en Números con Signo
Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:
Tema 2: Sistemas de numeración
Tema 2: Sistemas de numeración Definiciones Bases de numeración Modos de representación Representaciones numéricas Coma fija (números enteros) Suma-resta en base dos Representaciones alfanuméricas Bibliografía
Representación de Números Reales
Representación de Números Reales María Elena Buemi 15 abril de 2011 Introducción a la Computación Representación de Números Reales Cómo se representa un número real? Un numeral con parte entera y parte
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción
Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.
Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid
Tema 4: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas
LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES
LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS SUMA Si los números tienen el mismo signo se suman se deja el mismo signo. 3 + 5 = 8 ( 3) + ( 5) = 8 Si números tienen
Operaciones en Datos
Universidad Nacional de Ingeniería Facultad de Ciencias Introducción a la Ciencia de la Computación Operaciones en Datos Prof: J. Solano 2011-I Objetivos Despues de estudiar este cap. el estudiante sera
La velocidad no lleva a ninguna parte si no se va en la dirección correcta. Proverbio Americano. Punto Flotante
La velocidad no lleva a ninguna parte si no se va en la dirección correcta. Proverbio Americano Punto Flotante Elaborado por Prof. Ricardo González A partir de Materiales de las Profesoras Angela Di Serio
Lección 2: Notación exponencial
GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,
NÚMEROS DECIMALES PROFESOR: RAFAEL NÚÑEZ NOGALES
NÚMEROS DECIMALES 1 y 2.- ÓRDENES Y DECIMALES. FRACCIONES Y DECIMALES (A) Lectura de números decimales 241,58 241 unidades y 58 centésimas 3,007 3 unidades y 7 milésimas 4005,6 4005 unidades y 6 décimas
TEMA 2. FRACCIONES Y NÚMEROS DECIMALES
TEMA 2. FRACCIONES Y NÚMEROS DECIMALES ÍNDICE 1. Operaciones con fracciones 2. Operaciones con números decimales 3. Fracciones y números decimales 4. Fracción generatriz Tema 2. Fracciones y números decimales
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
Guía práctica de estudio 06: Lenguaje binario
Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario
SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES
SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números
1.1 Sistema de numeración binario
1.1 Sistema de numeración binario Un sistema de numeración consta de: Un conjunto ordenado de cifras y un conjunto de operaciones. Llamaremos Base al número de cifras que hay en dicho conjunto. De este
Números Enteros. Introducción
Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental
UNIDAD 4. POLINOMIOS. (PÁGINA 263)
UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE
Sistemas de Numeración Operaciones - Códigos
Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la
Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante
Organización de Computadoras 2014 Apunte 2: Sistemas de Numeración: Punto Flotante La coma o punto flotante surge de la necesidad de representar números reales y enteros con un rango de representación
Aritmética finita y análisis de error
Aritmética finita y análisis de error Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 1 / 47 Contenidos 1 Sistemas decimal
https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf
1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para
Algoritmos de multiplicación y división.
Capítulo 11. 1 Algoritmos de multiplicación y división. A continuación se estudiarán algoritmos para efectuar las operaciones de multiplicación y división entera. Usualmente estas operaciones están soportadas
Número, algoritmo y errores
Número, algoritmo y errores Índice 1.! Introducción 2.! Errores absolutos y relativos 3.! Almacenamiento de números en un ordenador! Números enteros! Números reales 4.! Concepto de algoritmo 5.! Clasificación
❷ Aritmética Binaria Entera
❷ Una de las principales aplicaciones de la electrónica digital es el diseño de dispositivos capaces de efectuar cálculos aritméticos, ya sea como principal objetivo (calculadoras, computadoras, máquinas
Sistemas Numéricos. Introducción n a los Sistemas Lógicos y Digitales 2009
Sistemas Numéricos Introducción n a los Sistemas Lógicos y Digitales 2009 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 2009 MSB = Most Significative Bit LSB = Less Significative Bit
ARQUITECTURA DE COMPUTADORAS I. Prof. Rosendo Perez Revision 1.6d
ARQUITECTURA DE COMPUTADORAS I Prof. Rosendo Perez Revision 1.6d 1 REPRESENTACION DE LA INFORMACION Codificación de números de punto fijo con y sin signo Números reales (números de punto flotante) Caracteres
Diseño de Operadores Aritméticos en Punto Flotante usando FPGAs
Diseño de Operadores Aritméticos en Punto Flotante usando FPGAs Gustavo E. Ordóñez-Fernández, Jaime Velasco-Medina, Mario E. Vera-Lizcano Grupo de Bio-Nanoelectrónica, Escuela EIEE Universidad del Valle,
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Introducción al análisis numérico
Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 26 Contenidos: 1 Sistemas
UNIDAD 6 AULA 360. Números decimales
UNIDAD 6 Números decimales 1. Números decimales. Ordenación y representación 2. Tipos de números decimales 3. Conversión de decimal a fracción 4. Operaciones con números decimales 1. Números decimales
OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS
OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS Juan F. Dorado Diego F. López Laura B. Medina Juan P. Narvaez Roger Pino Universidad de San Buenaventura, seccional Cali OPEN KNOWLEDEGE CURSO DE METODOS NUMERICOS
TEMA 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES.
TECNOLOGÍA DE COMPUTADORE. CURO 2007/08 Inocente ánchez Ciudad TEMA 1: INTRODUCCIÓN A LO ITEMA DIGITALE. 1.1. istemas Analógicos y Digitales. Magnitud analógica es aquélla que puede tomar cualquier valor
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B
Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor
NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28
Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24
1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
Tema 2. Sistemas de representación de la información
Tema 2. Sistemas de representación de la información Soluciones a los problemas impares Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 36 Tema 2: Hoja:
MULTIPLICACIÓN DE NÚMEROS NATURALES
MULTIPLICACIÓN DE NÚMEROS NATURALES La solución de una adición donde los sumandos son iguales, es decir, que se repiten, se puede obtener de una forma directa y sencilla. Por ejemplo: Al calcular la cantidad
IEE 2712 Sistemas Digitales
IEE 2712 Sistemas Digitales Clase 3 Objetivos educacionales: 1. Desarrollar la habilidad de trabajar con aritmética binaria, en complemento de 1, de 2 y BCD 2. Conocer y entender los principios de códigos
Aritmética: Fracciones
Antes de comenzar la unidad de fracciones algebraicas es preciso tener muy bien cimentados los conocimientos relativos a fracciones aritméticas adquiridos en cursos anteriores. a. Si un objeto se divide
Introducción Sabes que con la calculadora puedes encontrar interesantes patrones numéricos?
Introducción Sabes que con la calculadora puedes encontrar interesantes patrones numéricos? Las actividades a continuación te ayudarán a descubrir importantes datos sobre los números y las operaciones
Representación de la Información.... en los Computadores
Representación de la Información... en los Computadores 1 Información e Informática Un computador es una máquina que procesa información. La ejecución de un programa implica el tratamiento de los datos.
