competència matemàtica
|
|
|
- Valentín Navarrete Quiroga
- hace 7 años
- Vistas:
Transcripción
1 avaluació educació secundària obligatòria 4t d ESO curs 0-0 competència matemàtica INSTRUCCIONS Per fer la prova, utilitza un bolígaf, no un llapis. Respon a les preguntes fent una X a la casella corresponent. Si t equivoques, pots ratllar la resposta i marcar clarament la nova resposta. Pots fer servir la calculadora, però no el mòbil. Has d escriure les operacions que facis per obtenir el resultat. Tens una hora per fer la prova.
2 ACTIVITAT : PEL LÍCULES PER MES Uns alumnes, per fer el treball de síntesi, han passat una enquesta en què demanaven el nombre de pel lícules vistes durant l últim mes. A partir de les dades recollides, han fet el gràfic següent: Nombre de persones Nombre de pel lícules vistes Quantes persones han contestat l enquesta? a Quantes persones de les que han contestat l enquesta han vist 3 pel lícules o més? b 3 Quin percentatge de les persones que han contestat l enquesta ha vist exactament 3 pel lícules? c % 4 Quina és la moda del nombre de pel lícules vistes durant l últim mes? d avaluació educació secundària obligatòria
3 competència matemàtica ACTIVITAT : NOTES El curs passat, la Júlia va tenir 6,3 punts de nota mitjana global de matemàtiques. Si aquest curs la Júlia ha fet dos exàmens i ha tret un 5, en el primer i un 7 en el segon, quina nota hauria de treure en el tercer examen per obtenir la mateixa nota mitjana global que el curs passat? PRIMER EXAMEN SEGON EXAMEN TERCER EXAMEN MITJANA Nota obtinguda: 5, 7? 6,3 e En Daniel vol accedir a un lloc de treball i li fan dues proves parcials. Cada prova parcial es puntua de 0 a 0 punts. La primera prova representa el 40 % del resultat global i la segona prova, el 60 %. En Daniel ha obtingut a cada prova els resultats parcials següents: PRIMER PARCIAL: 40% SEGON PARCIAL: 60% RESULTAT FINAL Nota obtinguda: 4 9? Quin és el resultat final obtingut per en Daniel? f avaluació educació secundària obligatòria 3
4 ACTIVITAT 3: ESCALA Volem construir una escala entre dues terrasses que es troben a un desnivell de 3,60 metres i disposem de 4,80 metres de base per construir-la. Profunditat TERRASSA SUPERIOR Alçada Desnivell 3,60 m TERRASSA INFERIOR Base 4,80 m Si volem que cada esglaó faci 8 cm d alçada, a. Quants esglaons ens hi cabran? g esglaons b. Quina profunditat tindran els esglaons? h cm Si uneixes amb un segment el punt A (terrassa inferior) i el punt B (terrassa superior), formes un triangle rectangle. B 3,60 m A 4,80 m Com és l angle format en el punt A? Marca amb una X la resposta. Més petit de 45º Igual a 45º Més gran de 45º i 4 avaluació educació secundària obligatòria
5 competència matemàtica ACTIVITAT 4: LA FESTA En l organització d una festa s han format tres grups que hi participen econòmicament de diferent manera. El primer grup hi aporta la meitat de les despeses, el segon grup hi contribueix amb les /5 parts de les despeses i el tercer grup paga la resta. Expressa, en forma de fracció, la part de les despeses que paga el tercer grup. j Si el segon grup posa 40 per a la festa, quants euros aporta el primer grup? k 3 Per a la festa es compren 8 entrepans que han costat 44, en total. Els entrepans són de formatge o de pernil. Si cada entrepà de formatge val i cada entrepà de pernil val 3, quants entrepans hi ha de cada tipus? entrepans de formatge entrepans de pernil - l avaluació educació secundària obligatòria 5
6 ACTIVITAT 5: LA PLAÇA DE LA VILA S ha previst de fer unes obres a la plaça de la vila, que té forma rectangular i fa 40 metres de llarg per 30 metres d ample. 30 m 40 m Quant costaran les obres de la plaça, si s ha calculat que el preu de cada metre quadrat és de 70? m S acorda enrajolar la plaça amb rajoles quadrades de mig metre de costat. Quantes rajoles es necessitaran per enrajolar tota la plaça (considera que no es trenca cap rajola)? n 3 Es volen posar dues fonts, en dos extrems oposats de la plaça. A quina distància estaran les dues fonts? 30 m 40 m o m 6 avaluació educació secundària obligatòria
7 competència matemàtica ACTIVITAT 6: MARCS Es vol emmarcar l orla de final de curs amb un llistó de 30 cm de llarg. El marc que contindrà l orla tindrà la forma rectangular següent: 70 cm 90 cm Si no es té en compte el gruix del llistó, per emmarcar l orla faltarà llistó s utilitzarà tot el llistó sobrarà llistó p En un altre cas, el marc que conté l orla té la forma següent: Base: 90 cm Alçada: 70 cm 70 cm 90 cm Si no es té en compte el gruix del llistó, per emmarcar l orla faltarà llistó s utilitzarà tot el llistó sobrarà llistó q avaluació educació secundària obligatòria 7
8 ACTIVITAT 7: OFERTES DE PNEUMÀTICS El cotxe de la teva família necessita canviar els quatre pneumàtics. Heu trobat dues botigues que tenen les ofertes següents: 60,30 per cada pneumàtic. 95 el primer pneumàtic i 50 per cada pneumàtic extra. Si escolliu la botiga A, quant haureu de pagar pels 4 pneumàtics? r Si compreu els 4 pneumàtics a la botiga B, quin és, de mitjana, el preu de cada pneumàtic? s 3 Si el nombre de pneumàtics que voleu comprar és x i el preu total dels pneumàtics és y, quina és l expressió algebraica que correspon a la botiga A? y = 60,30x + 50 y = 60,30x y = 50x + 95 t 4 Utilitza la taula següent per calcular el nombre de pneumàtics amb què comença a ser més cara l oferta de la botiga A que la de la botiga B. Nombre de pneumàtics Cost a la BOTIGA A 60,30 0,60 80,90 Cost a la BOTIGA B u pneumàtics 8 avaluació educació secundària obligatòria
9 competència matemàtica ACTIVITAT 8: PASSEIG EN BICICLETA Dues amigues, la Clara i la Paula, han fet una excursió en bicicleta per la mateixa carretera i en el mateix sentit. Totes dues surten al mateix moment, però de punts diferents, la Clara del km 0 i la Paula del km 0. La distància recorreguda per cada una d elles segons el temps transcorregut està representada en el gràfic següent: Punts quilomètrics Temps (hores) Paula Clara Al cap de quantes hores la Clara ha atrapat la Paula? h v Quants quilòmetres ha recorregut la Paula abans de ser atrapada per la Clara? km w 3 Quina ha estat la velocitat mitjana de la Clara? km/h x avaluació educació secundària obligatòria 9
10 ACTIVITAT 9: GASOLINA PER AL VIATGE L estiu passat la teva família va utilitzar el cotxe per anar de vacances. El cotxe té un consum mitjà de gasolina de 6,5 litres cada 00 km i el dipòsit té una capacitat total de 48 litres. Quina autonomia té el cotxe, és a dir, quants quilòmetres es poden recórrer amb els 48 litres del dipòsit? y km Durant el trajecte vau haver de posar gasolina perquè l indicador del cotxe marcava que només quedaven litres en el dipòsit. En l estació de servei A la gasolina costava,5 el litre, i en l estació de servei B costava,50 el litre. Quants euros us vau estalviar omplint el que faltava del dipòsit posant gasolina a l estació A en lloc de l estació B? - z 0 avaluació educació secundària obligatòria
11 competència matemàtica ACTIVITAT 0: SAMARRETES Aprofitant l èxit del nou disc d un famós grup de música, una botiga ha posat a la venda samarretes amb el nom del grup. El benefici que obté per la venda de samarretes es pot expressar per la funció següent: B(x) = 4x -300 on x és el nombre de samarretes venudes i B(x) n és el benefici obtingut. Si han venut 4 samarretes, quin és el benefici que han obtingut? aa I si la botiga ha obtingut un benefici de 680, quantes samarretes s han venut? ab Moltes gràcies per la teva col laboració. avaluació educació secundària obligatòria
12
avaluació diagnòstica educació secundària obligatòria
curs 2011-2012 avaluació diagnòstica educació secundària obligatòria competència matemàtica Nom i cognoms Grup INSTRUCCIONS Llegeix atentament cada pregunta abans de contestar-la. Si t equivoques, ratlla
avaluació educació primària
avaluació educació primària ENGANXEU L ETIQUETA IDENTIFICATIVA EN AQUEST ESPAI curs 2015-2016 competència matemàtica instruccions Per fer la prova utilitza un bolígraf. Aquesta prova té diferents tipus
Competència matemàtica Sèrie 2
Proves d accés a cicles formatius de grau mitjà de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 2013 Competència matemàtica Sèrie 2 SOLUCIONS, CRITERIS
EQUACIONS DE PRIMER GRAU
1.- Resol les equacions següents: a) x 6x + 10 b) 6x + 1 + 4x c) 5x + -10 d) 6(x 1) 4(x ) e) 1-4x + 6x f) 5(x ) + 4 (5x 1) + 1 g) 8( 10 x ) -6 h) 11 (x + 7) x (5x 6) i) 6( 7 x ) 8( 6 x ) j) ( 1) + 5x 1
Nom. ACTIVITAT 2. Massa + ingredients = pizza. 1. Ves a la secció de plats precuinats. Agafa una pizza i anota les següents dades: a) Nom
Nom ACTIVITAT 2. Massa + ingredients = pizza 1. Ves a la secció de plats precuinats Agafa una pizza i anota les següents dades: a) Nom b) Ingredients c) Pes i preu d) % massa = % ingredients = e) % de
competència matemàtica
avaluació educació secundària obligatòria 4t d ESO curs 203-204 ENGANXEU L ETIQUETA IDENTIFICATIVA EN AQUEST ESPAI competència matemàtica versió amb respostes INSTRUCCIONS Per fer la prova, utilitza un
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE
30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000
4.- Expressa en forma de potència única indicant el signe resultant.
Pàgina 1 de 8 EXERCICIS PER LA RECUPARACIÓ 1A Avaluació 1.- Calcula de dues maneres (TP i RP): a) 25 + (-1+7) (18 9 + 15)= TP= RP= 9 (-12 + 5 8 = TP= RP= 2.- Treu factor comú i calcula: a) 5.(-3) + (-7).
Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS
M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen
MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D
En vermell comentaris per al professorat Construcció d una escultura 3D 1/8 Es disposen en grups de tres o quatre i se ls fa lliurament del dossier. Potser és bona idea anar donant per parts, segons l
Programa Grumet Èxit Fitxes complementàries
MESURA DE DENSITATS DE SÒLIDS I LÍQUIDS Activitat 1. a) Digueu el volum aproximat dels següents recipients: telèfon mòbil, un cotxe i una iogurt. Teniu en compte que un brik de llet té un volum de 1000cm3.
Hàbits de Consum de la gent gran
Hàbits de Consum de la gent gran El perfil de la gent gran PERFIL DE LA GENT GRAN Amb qui viu actualment? Sol/a 22,7% Amb la parella 60% Amb els fills 17,5% Altres familiars Altres NS/NR 0,6% 0,2% 5,3%
Hàbits de Consum de la gent gran
Hàbits de Consum de la gent gran I. PERFIL DE LA GENT GRAN PERFIL DE LA GENT GRAN Amb qui viu actualment? Sol/a 22,7% Amb la parella 60% Amb els fills 17,5% Altres familiars Altres NS/NR 0,6% 0,2% 5,3%
ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL
Francesc Sala, primera edició, abril de 1996 última revisió, desembre de 2007 ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT
Activitats de repàs DIVISIBILITAT
Autor: Enric Seguró i Capa 1 CRITERIS DE DIVISIBILITAT Un nombre és divisible per 2 si acaba en 0 o parell (2,4,6,8). Ex: 10, 24, 62, 5.256, 90.070,... Un nombre és divisible per 3 si la suma de les seves
TEMA 4: Equacions de primer grau
TEMA 4: Equacions de primer grau Full de preparació Aquest full s ha de lliurar el dia de la prova Nom:... Curs:... 1. Expressa algèbricament les operacions següents: a) Nombre de rodes necessàries per
6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6
Geometria dossier estiu 2012 2C 1. Dibuixa dues rectes, m i n, que siguin: a) Paral leles horitzontalment. c) Paral leles verticalment. b) Secants. d) Perpendiculars. 6 2. Dibuixa una recta qualsevol m
UNITAT 3 OPERACIONS AMB FRACCIONS
M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de
28 Sèries del Quinzet. Proves d avaluació
Sèries del Quinzet. Proves d avaluació INSTRUCCIONS Les proves d avaluació de l aprenentatge del Quinzet estan dissenyades per fer l avaluació interna del centre. Aquestes proves, seguint les directrius
SOLUCIONARI Unitat 1
SOLUCIONARI Unitat Comencem En un problema de física es demana el temps que triga una pilota a assolir una certa altura. Un estudiant, que ha resolt el problema correctament, arriba a la solució t s. La
UNITAT 3: SISTEMES D EQUACIONS
UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor
10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.
10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors
8. Reflexiona: Si a<-3, pot se a<0?
ACTIVITATS 1. Expressa amb nombres enters: a) L avió vola a una altura de tres mil metres b) El termòmetre marca tres graus sota zero c) Dec cinc euros al meu germà 2. Troba el valor absolut de: -4, +5,
Construcció d una escultura 3D
1/8 Construcció d una escultura 3D L'ajuntament de Sant Boi ens ha encarregat construir una escultura geomètrica de ferro. Decidim una com la que figura a continuació, de forma que tota ella està feta
UNITAT 8. FIGURES PLANES
1. Fes servir aquests punts per traçar dues línies poligonals més de cada tipus, apart de les dels exemples: Línia poligonal oberta Línia poligonal oberta creuada Línia poligonal tancada Línia poligonal
1. Triangles. Resolució d exercicis i problemes. Geometria Plana Posem en pràctica tot allò que hem après
Classificació segon els costats Classificació segon els angles Geometria Plana En aquesta activitat portarem a la pràctica i repassarem, a partir de la resolució de casos concrets, tot allò que hem anat
Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:
Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:
Com funcionen les bicicletes?
Com funcionen les bicicletes? Nom: Data: Dibuixa una bicicleta el més detalladament possible: 1/20 Nom: Data: Després d anar a buscar informació a la biblioteca i a internet, escriu les parts de la bicicleta
GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ
GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ Representem un punt A en un pla i tracem dues semirectes amb origen en aquest punt. El punt A serà el vèrtex de l angle i cada semirecta serà el costat. 1..
Generalitat de Catalunya Departament d Ensenyament Institut Obert de Catalunya. Avaluació contínua. Cognoms. Centre: Trimestre: Tardor 11
Generalitat de Catalunya Departament d Ensenyament Institut Obert de Catalunya valuació contínua Qualificació prova TOTL Cognoms una lletra majúscula a cada casella: Nom: Centre: Trimestre: Tardor 11 M4
ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE
ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE i 1-Observa la factura 2-Tria un producte 3-Mira quin és l IVA que s aplica en aquest producte i calcula l 4-Mira el descompte que s aplica en aquest
6Solucions a les activitats de cada epígraf
PÀGINA 4 Pàg. Les equacions són igualtats algebraiques (amb nombres i lletres) que permeten establir relacions entre valors coneguts (dades) i valors desconeguts (incògnites). Aprenent a manejar-les, disposaràs
NOU PROGRAMARI WEB PER A LA PETICIÓ DE NÚMEROS DE DIPÒSIT LEGAL.
NOU PROGRAMARI WEB PER A LA PETICIÓ DE NÚMEROS DE DIPÒSIT LEGAL. GUIA PER ALS SOL LICITANTS. Última actualització 16/05/2011 Contingut Adreça d accés a l aplicació... 2 Pantalla d accés... 2 Assignació
Com és la Lluna? 1 Com és la Lluna? F I T X A D I D À C T I C A 4
F I T X A 4 Com és la Lluna? El divendres 20 de març tens l oportunitat d observar un fenomen molt poc freqüent: un eclipsi de Sol. Cap a les nou del matí, veuràs com la Lluna va situant-se davant del
Instruccions per generar el NIU i la paraula de pas
Si ja tens un NIU, no has de tornar-te a registrar. Pots accedir a la inscripció directament. Només has de validar el teu NIU i la teva paraula de pas al requadre que hi ha a la dreta de la pantalla: Si
Cicle Superior Petits textos de comprensió lectora
Aquí tens la publicitat d una botiga. A partir de tot el que pots llegir, contesta les següents preguntes: 1. Quin és el nom de la botiga? 2. Quina és la oferta? 3. Quines són les característiques del
La Lluna, el nostre satèl lit
F I T X A 3 La Lluna, el nostre satèl lit El divendres 20 de març tens l oportunitat d observar un fenomen molt poc freqüent: un eclipsi de Sol. Cap a les nou del matí, veuràs com la Lluna va situant-se
TEMA 3: Polinomis 3.1 DEFINICIONS:
TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient
Funcions definides per taules: interpolació i extrapolació
Funcions definides per taules: interpolació i extrapolació 1. S han pres les temperatures d un líquid a mesura que s escalfava. La taula temperaturatemps és la següent: Temps t(min) 0 1 2 3 4 5 Temperatura
Veure que tot nombre cub s obté com a suma de senars consecutius.
Mòdul Cubs i nombres senars Edat mínima recomanada A partir de 1er d ESO, tot i que alguns conceptes relacionats amb el mòdul es poden introduir al cicle superior de primària. Descripció del material 15
Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples:
2 PROGRESSIONS 9.1 Progressions aritmètiques Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: La successió
COM ÉS DE GRAN EL SOL?
COM ÉS DE GRAN EL SOL? ALGUNES CANVIS NECESSARIS. Planetes Radi Distància equatorial al Sol () Llunes Període de Rotació Òrbita Inclinació de l'eix Inclinació orbital Mercuri 2.440 57.910.000 0 58,6 dies
UNITAT DONAR FORMAT A UNA PRESENTACIÓ
UNITAT DONAR FORMAT A UNA PRESENTACIÓ 4 Plantilles de disseny Una plantilla de disseny és un model de presentació que conté un conjunt d estils. Aquests estils defineixen tota l aparença de la presentació,
CALC 1... Introducció als fulls de càlcul
CALC 1... Introducció als fulls de càlcul UNA MICA DE TEORIA QUÈ ÉS I PER QUÈ SERVEIX UN FULL DE CÀLCUL? Un full de càlcul, com el Calc, és un programa que permet: - Desar dades numèriques i textos. -
1 Com es representa el territori?
Canvi de sistema de referència d ED50 a ETRS89 El sistema de referència ETRS89 és el sistema legalment vigent i oficial per a Catalunya establert pel Decret 1071/2007. Les cartografies i plànols existents
Barques de paper, Salvador Espriu
AUDICIÓ Escolta la següent cançó amb els ulls tancats. Explica breument les sensacions que t ha produït la cançó. És més aviat alegre o trista? De tots aquests termes musicals pinta els que indiquen estats
FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA
FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA 1. Fes els següents canvis d'unitats amb factors de conversió (a) 40 km a m (b) 2500 cm a hm (c) 7,85 dam a cm (d) 8,5 h a segons (e) 7900 s a h (f) 35 min
Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS
DOSSIER DE REPÀS 1. Ordena els nombres de més petit a més gran: 01 0 01 101 0 001 0 001 0 1. Converteix els nombres fraccionaris en nombres decimals i representa ls en la recta: /4 1/ 8/ 11/10. Efectua
Gràfiques del moviment rectilini uniforme (MRU)
x = x 0 + v (t-t 0 ) si t 0 = 0 s x = x 0 + vt D4 Gràfiques del moviment rectilini uniforme (MRU) Gràfica posició-temps Indica la posició del cos respecte el sistema de referència a mesura que passa el
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2006 Matemàtiques aplicades a les ciències socials
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 006 SÈRIE 1 Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar
operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:
Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base
Unitat 6. Introducció a les funcions
Unitat 6. Introducció a les funcions Índex: 6.1. Representació gràfica de punts 6.2. Concepte de funció 6.3. Maneres d expressar una funció 6.4. Interpretació de funcions 6.5. Funcions de proporcionalitat
Dossier d estiu de Matemàtiques. 5è d Educació Primària.
MATEMÀTIQUES 5è 1. Encercla el nombre que s indica: a) quaranta mil vuit: 48.000 40.080 40.008 408.000 b) un milió dotze mil: 1.000.012 1.120.000 1.012.000 1.000.120 c) tres milions tres-cents mil 300.300
ACTIVITATS DE REPÀS DE LES UNITATS 3 i 4 : ELS CLIMES I ELS PAISATGES
ACTIVITATS DE REPÀS DE LES UNITATS 3 i 4 : ELS CLIMES I ELS PAISATGES 1. Defineix aquests conceptes: Atmosfera: Capa de gasos que envolta la Terra. Temps: És l estat de l atmosfera en un moment determinat
EXPERIMENTE M! Durant l etapa de l educació primària, la descoberta de l entorn que. envolta els infants és un dels àmbits més importants en el seu
EXPERIMENTE M! Durant l etapa de l educació primària, la descoberta de l entorn que envolta els infants és un dels àmbits més importants en el seu desenvolupament personal i social. Els experiments i activitats
Feu el problema P1 i responeu a les qüestions Q1 i Q2.
Generalitat de Catalunya Consell Interuniversitari de Catalunya Organització de Proves d Accés a la Universitat PAU. Curs 2005-2006 Feu el problema P1 i responeu a les qüestions Q1 i Q2. Física sèrie 4
420 MATEMÀTIQUES 1r ESO MATERIAL FOTOCOPIABLE GRUP PROMOTOR / SANTILLANA EDUCACIÓN, S. L. AVALUACIÓ INICIAL
NOMBRES NATURALS Escriu en xifres i lletres. a) Un nombre que sigui deu mil unitats més gran que.08.7. b) Un nombre que sigui un milió d unitats més petit que 0.0.. Troba el valor posicional de la xifra.
La Terra i el Sistema Solar Seguim la Lluna Full de l alumnat
La Lluna canvia La Terra i el Sistema Solar Seguim la Lluna Full de l alumnat De ben segur que has vist moltes vegades la Lluna, l hauràs vist molt lluminosa i rodona però també com un filet molt prim
DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35
ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35
Exercicis d estadística. Joan Queralt Gil
Exercicis d estadística Joan Queralt Gil Joan Queralt Gil Estadística - 1-1. A un grup de persones els demanem l'edat i ens responen així: 18-5 - 6-18 - 18-9 - 18-5 - 4-18 - 5-6 - 17-5 - 4-9 - 18-9 Ordena
22a Mostra de Cinema d Animació Infantil Girona. Curs
22a Mostra de Cinema d Animació Infantil Girona. Curs 2011-2012 Fitxes per als alumnes PROGRAMA 2 SOMIADORS I VISIONARIS Cicle inicial d educació primària 1. UN DIA FANTÀSTIC La noia protagonista compra
MATEMÀTIQUES ÀREES I VOLUMS
materials del curs de: MATEMÀTIQUES ÀREES I VOLUMS EXERCICIS RECULL D APUNTS I EXERCICIS D INTERNET FET PER: Xavier Vilardell Bascompte [email protected] ÚLTIMA REVISIÓ: 08 de febrer de 2010 Aquests materials
L essencial 1. COMPARACIÓ DE NOMBRES DECIMALS 2. SUMA I RESTA DE NOMBRES DECIMALS NOMBRES DECIMALS FES-HO AIXÍ NOM: CURS: DATA:
4 NOMBRES DECIMALS NOM: CURS: DATA: L essencial 1. COMPARACIÓ DE NOMBRES DECIMALS Ordena de més petit a més gran: 1,9; 1,901; 11,901. PRIMER. Comparem la part entera dels nombres. El més gran és el que
r 1 El benefici (en euros) està determinat per la funció objectiu següent: 1. Calculem el valor d aquest benefici en cadascun 150 50 =
SOLUIONRI 6 La gràfica de la regió factible és: r2 r3= ( 150, 0) r3 r5= ( 150, 50) r4 r5= ( 110, 90) r1 r4= D( 0, 90) r r = E( 0, 0) 1 2 160 120 80 40 E D 40 80 120 160 El benefici (en euros) està determinat
DOSSIER D'ESTIU MATEMÀTIQUES. PREPARACIÓ BATXILLERAT.
INS ERNEST LLUCH I MARTI Departament de Matemàtiques DOSSIER D'ESTIU MATEMÀTIQUES. PREPARACIÓ BATXILLERAT. TREBALL D ESTIU El treball d estiu que proposa el departament de Matemàtiques està pensat per
L essencial. 1. CÀLCUL DE TOTS ELS DIVISORS D UN NOMBRE Calcula tots els divisors de RECONEIXEMENT DE SI UN NOMBRE
2 DIVISIBILITAT NOM: CURS: DATA: L essencial 1. CÀLCUL DE TOTS ELS DIVISORS D UN NOMBRE Calcula tots els divisors de 63. PRIMER. Dividim 63 entre 1, 2, 3 fins que el quocient sigui més petit que el divisor.
DIAGRAMA DE FASES D UNA SUBSTANCIA PURA
DIAGRAMA DE FASES D UNA SUBSTANCIA PURA Que es una fase? De forma simple, una fase es pot considerar una manera d anomenar els estats: sòlid, líquid i gas. Per exemple, gel flotant a l aigua, fase sòlida
DOSSIER DE RECUPERACIÓ FÍSICA I QUÍMICA. 4t. ESO
DOSSIER DE RECUPERACIÓ FÍSICA I QUÍMICA 4t. ESO NOM: COGNOM: GRUP: Nota: La realització d aquest dossier és obligatòria si es vol recuperar la matèria. El seu pes és d un pes del 20% de la nota final.
FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES
FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES Pàgina 8. Encara que el mètode per a resoldre les preguntes següents se sistematitza a la pàgina següent, pots resoldre-les ara: a) Quants radiants corresponen als
XXXV OLIMPÍADA MATEMÀTICA
XXXV OLIMPÍADA MATEMÀTICA Primera fase (Catalunya) 10 de desembre de 1999, de 16 a 0h. 1. Amb quadrats i triangles equilàters de costat unitat es poden construir polígons convexos. Per exemple, es poden
Annex 1. Entrevista de treball a Inditex.
ANNEX Annex 1. Entrevista de treball a Inditex. Com que no aconseguíem entrevistes ni amb Inditex ni amb Mango de cap manera, vam decidir apuntarnos a ofertes de treball de les empreses i veure, si així,
Reflexions sobre el càlcul a Primària (III) David Barba Cecilia Calvo OCT-NOV 2011 CREAMAT
Reflexions sobre el càlcul a Primària (III) David Barba Cecilia Calvo OCT-NOV 2011 CREAMAT EN LES TROBADES ANTERIORS el treball amb les operacions aritmètiques és independent del treball amb els seus algorismes
Geometria. Àrees i volums de cossos geomètrics
Geometria. Àrees i volums de cossos geomètrics Àrea de figures planes... Àrea dels paral lelograms... Àrea del quadrat... Àrea del rectangle... 3 Àrea del rombe... 4 Àrea del paral lelogram... 4 Àrea dels
4.7. Lleis de Newton (relacionen la força i el moviment)
D21 4.7. Lleis de ewton (relacionen la força i el moviment) - Primera Llei de ewton o Llei d inèrcia QUÈ ÉS LA IÈRCIA? La inèrcia és la tendència que tenen el cossos a mantenirse en repòs o en MRU. Dit
EXERCICI 6 PICASA PICASA.
EXERCICI 6 PICASA Es tracta de crear i compartir 3 àlbums online utilitzant Picasa Web Álbums i les 3 carpetes de fotos que trobaràs comprimides al costat de l exercici i que, abans de començar, descarregaràs
ARRIBADA A L ESTACIÓ D ESQUÍ LLOGUER DEL MATERIAL ORGANITZACIÓ DELS GRUPS
Descens escola d esquí i snowboard està formada per un equip de professionals titulats per la E.E.E. (Escola Espanyola d Esquí) i constituïm l escola d esquí del RACC. Amb una àmplia experiència en l ensenyament
Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010
Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Matemàtiques Sèrie 1 Dades de la persona aspirant Qualificació
Unitat 9. Els cossos en l espai
Unitat 9. Els cossos en l espai Pàgina 176. Reflexiona Si et fixes en la forma dels objectes del nostre entorn, descobriràs els cossos geomètrics. Els cossos geomètrics sols existeixen en la nostra ment.
2n d ESO (A B C) Física
INS INFANTA ISABEL D ARAGÓ 2n d ESO (A B C) Física Curs 2013-2014 Nom :... Grup:... Aquest dossier s ha d entregar completat al setembre de 2014; el dia del examen de recuperació de Física i Química 1.
2.5. La mesura de les forces. El dinamòmetre
D11 2.5. La mesura de les forces. El dinamòmetre Per mesurar forces utilitzarem el dinamòmetre (NO la balança!) Els dinamòmetres contenen al seu interior una molla que és elàstica, a l aplicar una força
Quina és la resposta al teu problema per ser mare? Dexeus MEDICINA DE LA REPRODUCCIÓ ESTUDI INTEGRAL DE FERTILITAT
MEDICINA DE LA REPRODUCCIÓ ESTUDI INTEGRAL DE FERTILITAT Quina és la resposta al teu problema per ser mare? Salut de la dona Dexeus ATENCIÓ INTEGRAL EN OBSTETRÍCIA, GINECOLOGIA I MEDICINA DE LA REPRODUCCIÓ
PROVA D'ACCÉS A CICLES FORMATIUS DE GRAU SUPERIOR DE FORMACIÓ PROFESSIONAL I ENSENYAMENTS D'ESPORTS 2007 S2_11_1 DADES DE LA PERSONA ASPIRANT
PROVA D'ACCÉS A CICLES FORMATIUS DE GRAU SUPERIOR DE FORMACIÓ PROFESSIONAL I ENSENYAMENTS D'ESPORTS 2007 L L E N G U A C A T A L A N A S È R I E 2 S2_11_1 DADES DE LA PERSONA ASPIRANT QUALIFICACIÓ COGNOMS
Microsoft Lync 2010: Introducció al nou programari de missatgeria instantània i conferències
Microsoft Lync 2010: Introducció al nou programari de missatgeria instantània i conferències ESADE està treballant en un projecte de millora de la comunicació intercampus i del correu electrònic de tota
PROGRAMARI LLIURE... Instal la-te l!
PROGRAMARI LLIURE... Instal la-te l! SABIES QUÈ...? El programari lliure és un conjunt de programes d ordinador que pot ser estudiat, usat i modificat sense restriccions. O sigui que tothom se l pot copiar
Bloc I. ARIMÈTICA. Tema 6: POTÈNCIES I ARREL QUADRADA TEORIA
1. INTRODUCCIÓ. IES L ASSUMPCIÒ d El http://ww w.ieslaasuncion.org Observa l arbre genealògic de Lluïsa: Rebesavis Besavis Iaios Pares Lluïsa Hi ha ocasions en les que per a resoldre un problema es necessari
ESCOLA ANNA RAVELL BATXIBAC (CURRÍCULUM MIXT BATXILLERAT - BACCALAURÉAT) CURS
ESCOLA ANNA RAVELL BATXIBAC (CURRÍCULUM MIXT BATXILLERAT - BACCALAURÉAT) CURS 2016-2017 1 El Batxibac és el programa que permet a l alumnat cursar un currículum mixt amb l objectiu d obtenir la doble titulació
Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83
5 Expressions algebraiques Objectius Crear expressions algebraiques a partir d un enunciat. Trobar el valor numèric d una expressió algebraica. Classificar una expressió algebraica en monomi, binomi,...
x = graduació del vi blanc y = graduació del vi negre
Problemes ( pàgina 44 del llibre de classe, Editorial Casals ) (21) Barregem 60 L de vi blanc amb 20 L de vi negre i obtenim un vi de 10 graus (10% d alcohol). Si, contràriament, barregem 20 L de blanc
Introducció als elements químics. Sessió 1
Introducció als elements químics Sessió 1 Que tenen en comú aquests objetes? Bateria liti Microxips Vidre Etiqueta Paper Mòbils TOTS ESTAN FORMATS PER ÀTOMS Carcassa de plàstic Pantalla LCD Polímers Poliamides
TEORIA I QÜESTIONARIS
ENGRANATGES Introducció Funcionament Velocitat TEORIA I QÜESTIONARIS Júlia Ahmad Tarrés 4t d ESO Tecnologia Professor Miquel Estruch Curs 2012-13 3r Trimestre 13 de maig de 2013 Escola Paidos 1. INTRODUCCIÓ
Districte Universitari de Catalunya
Proves d accés a la Universitat. Curs 2006-2007 Tecnologia industrial Sèrie 3 La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de
COMENTARI DE MAPA DE TEMPS EN SUPERFICIE
COMENTARI DE MAPA DE TEMPS EN SUPERFICIE PROCÉS PER FER UN COMENTARI: 1.- IDENTIFICA I SITUA ELS ELEMENTS VISIBLES DEL MAPA 2.- ANALITZA LES DADES QUE ENS APORTA LA DISPOSICIÓ DELS ELEMENTS EN EL MAPA
ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:
INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament
Unitat didàctica 2. Polinomis i fraccions algebraiques
Unitat didàctica. Polinomis i fraccions algebraiques Refleiona L Andrea té una bona col lecció d espelmes que decoren la seva habitació. Totes les espelmes cilíndriques tenen la mateia alçària: cm. Epressa,
Tema 8. Energia tèrmica. (Correspondria al Tema 8 del vostre llibre de text pàg )
Tema 8. Energia tèrmica (Correspondria al Tema 8 del vostre llibre de text pàg. 178-200) ÍNDEX 8.1. Formes de transferir energia 8.2. Temperatura, calor i energia tèrmica 8.3. Calor 8.3.1. Formes de transferència
APRENDRE A INVESTIGAR. Document 1 GLÒRIA DURBAN I ÁNGELA CANO (2008)
APRENDRE A INVESTIGAR Document 1 GLÒRIA DURBAN I ÁNGELA CANO (2008) 1r - PLANTEJAR LA NECESSITAT D INFORMACIÓ Què cerco i per què? IDENTIFICAR LA INFORMACIÓ QUE ES NECESSITA EN FUNCIÓ DE LA TASCA A RESOLDRE
1.4 Derivades: Unitat de síntesi (i repàs)
1.4 Derivades: Unitat de síntesi (i repàs) 11. Problemes de: optimització, extrems ( ), punts d inflexió ( ), rectes tangents (T) i interpretació de gràfiques (G): A.- Considereu tots els prismes rectes
