Incertidumbre No Estructurada y Estabilidad Robusta
|
|
|
- María Mercedes Franco Tebar
- hace 10 años
- Vistas:
Transcripción
1 Pontificia Universidad Católica del Perú ICA624: Control Robusto 5. No y Robusta Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 18
2 Lazo Bien Definido de No No Consideremos el lazo realimentado general (puede ser MIMO): Para que el lazo esté bien definido, hace falta que las funciones de transferencia de cada entrada (r, n, d y d u ) a cada salida (u, u p e y) sean todas propias. Porqué decimos que una función de transferencia impropia es físicamente imposible (discusión: causalidad). r Puede verse que basta con que la matriz de transferencia de los disturbios a u sea propia para que el resto de matrices sean propias: [ ] dp u d debe ser propia. K u d p u p G d y n 2 / 18
3 Condiciones para la buena definición Lazo Bien Definido de No No Definiendo ˆK = K y combinando las señales externas, el siguiente lazo captura la matriz de transferencia de interés: w e 1 Si G = (A,B,C,D) y ˆK = (Â, ˆB,Ĉ, ˆD), se demuestra (Zhou y Doyle) que el lazo quedará bien definido siempre y cuando: [ I ˆD D I G ] ˆK e w 2 sea invertible 3 / 18
4 de No No La estabilidad interna implica que las funciones de transferencia de cada entrada (r, n, d y d u ) a cada salida (u, u p e y) sean todas parte de RH. Por las razones anteriores, basta establecer que la matriz de transferencia de W = (w 1, w 2 ) a E = (e 1, e 2 ) pertenezca a RH. E(s) W(s) = = [ (I ˆKG) 1 ] ˆK(I G ˆK) 1 G(I ˆKG) 1 (I ˆKG) 1 [ I + ˆK(I ˆKG) 1 G ˆK(I G ˆK) 1 (I ˆKG) 1 G (I ˆKG) 1 Cada una de las 4 componentes (en sí matrices de transferencia) de la matriz anterior deben ser RH para obtener estabilidad interna. ] 4 / 18
5 de No No Generar G y K (MIMO) aleatoriamente (en forma de espacio de estados) y verificar si el lazo resultante es internamente estable. 5 / 18
6 : Casos Particulares de No No Corolario 5.2 (Zhou & Doyle): Supongamos que ˆK RH. Entonces el lazo será internamente estable siempre y cuando esté bien definido y G(I ˆKG) 1 RH. Corolario 5.3 (Zhou & Doyle): Supongamos que G RH. Entonces el lazo será internamente estable siempre y cuando esté bien definido y ˆK(I G ˆK) 1 RH. Corolario 5.4 (Zhou & Doyle): Supongamos que ˆK y G pertenecen a RH. Entonces el lazo será internamente estable siempre y cuando (I G ˆK) 1 RH. 6 / 18
7 de Teorema General de No No Sean n k y n g los números de polos de ˆK y G en el lado derecho abierto. El lazo será internamente estable siempre y cuando esté bien definido y: 1. El número de polos de G ˆK en el lado derecho abierto sea n k +n g 2. (I G ˆK) 1 sea estable. La primera condición evita cancelaciones de ceros con polos inestables (lo cual no afectaría la estabilidad entrada/salida pero sí la interna). 7 / 18
8 de No No Para las siguientes matrices de transferencia: [ G(s) = K(s) = s+2 1 s+1 s (s+1) 2 (s+1) 2 [ 1 s+4 s Decidir si el lazo está bien definido. Si lo estuviera, determinar la estabilidad interna. ] ] 8 / 18
9 No de Descripciones de No No : G(s) = G o (s)+w 1 (s) (s)w 2 (s) con (jw) < 1 : con (jw) < 1 G(s) = (I +W 1 (s) (s)w 2 (s))g o (s) G o (s) es el modelo nominal (nuestro mejor intento de modelar al sistema) La incertidumbre (s) no tiene una forma particular (matriz de transferencia). Es un término genérico que intenta capturar todos los errores posibles. Los pesos W 1 (s) and W 2 (s) se usan para acotar la magnitud de la incertidumbre de acuerdo a la frecuencia. 9 / 18
10 : Respuesta en Frecuencia de un Actuador de Disco Duro de Descripciones de No No Usualmente, la incertidumbre es mayor a alta frecuencia. En sistemas electromecánicos, la incertidumbre en fase podría ser de hasta ±180 para frecuencias suficientemente altas. 10 / 18
11 de No No Supongamos que existe una familia de modelos para la planta. La distribución de estos modelos representa la incertidumbre. La familia de modelos puede expresarse de manera paramétrica o experimental. de familia paramétrica: G(s) = αs+β δs+γ donde α, β, δ y γ están entre 1.5 y 3. También puede haberse estimado G(s) mediante un analizador espectral o por identificación de sistemas, resultando en una colección de modelos correspondientes a intentos repetidos. En ambos casos, se puede usar Matlab para ajustar una función W(s) cuya magnitud represente una cota superior para (s). 11 / 18
12 ... de No No El procedimiento es como sigue: 1. Se grafica el error en magnitud G(jw) G o (jw) en un rango de frecuencias apropiado usando una malla de combinaciones de parámetros. 2. El paso anterior puede provenir de datos experimentales (analizador espectral). 3. Habrá una magnitud limitante (cota superior). Se escogen puntos para ajustar una función de transferencia W(s) propia, estable y de fase mínima (ceros con partes reales negativas). Se cumplirá que (jw) W(jw). Ahora podemos usar la representación aditiva G(s) = G o (s)+w(s) (s) con (s) Se puede hacer lo mismo usando la descripción multiplicativa (s) = G(s) G o(s) G o (s) 12 / 18
13 - Matlab de No No Supongamos que cierto sistema tiene la forma w 2 n G(s) = k s 2 +2ζw n s+wn 2 donde k varía entre 0.8 y 1.2, w n entre 13 y 17, y ζ entre 0.08 y Los valores nominales (G o (s)) son 1, 15 y 0.1, respectivamente. Usar los comandos freqresp, ginput, vpck, fitmag, unpck para encontrar un peso aditivo W a (s) y un peso multiplicativo W m (s) tales que a (jw) W a (jw) y m (jw) W m (jw) 13 / 18
14 de No Ganancia Pequeña No Sea M(s) RH una matriz de transferencia fija y (s) RH una matriz de transferencia incierta: w e 1 El lazo cerrado estará bien definido y será internamente estable para cualquier (s) RH siempre y cuando: M e 2 + (s)m(s) < 1 Pensar en lo que ocurre cuando un micrófono se pone muy cerca al parlante y el volumen del amplificador es alto. + w 2 14 / 18
15 No de No No El teorema de ganancia pequeña se aplica directamente al análisis de estabilidad robusta MIMO bajo la siguiente configuración general del lazo: K Aquí G representa una familia de plantas sujetas a incertidumbre, con planta nominal G o y una de las 2 descripciones de incertidumbre: G G = G o +W 1 W 2 G = (I +W 1 W 2 )G o 15 / 18
16 de No No Teorema 8.4 (Zhou y Doyle): Sea una familia de plantas sujetas a incertidumbre con descripción aditiva G = G o +W 1 W 2 Sea K un compensador internamente estabilizante para la planta nominal G o. Entonces el sistema de lazo cerrado estará bien definido y será internamente estable para cualquier (s) RH con (s) < 1 siempre y cuando: Recordar que W 2 KS o W 1 1 S o = (I +GK) 1 16 / 18
17 de No No Sea una familia de plantas sujetas a incertidumbre con descripción multiplicativa G = (I +W 1 W 2 )G o Teorema 8.5 (Zhou y Doyle): Sea K un compensador internamente estabilizante para la planta nominal G o. Entonces el sistema de lazo cerrado estará bien definido y será internamente estable para cualquier (s) RH con (s) < 1 siempre y cuando: W 2 T o W 1 1 Recordar que T o = I S o 17 / 18
18 de No No Sean K = I y G o (s) = [ 1 s+1 1 s+1 2 s+3 1 s+1 Si G = G o + con (s) γ, encontrar el mayor valor permisible para γ para obtener estabilidad robusta. Repetir si G = (I + )G o. Repetir ambos casos con ] G o (s) = ] 5s+1 [ s 1 (s+1) 2 1 (s+1) 2 s 1 (s+1) 2 (s+1) 2 18 / 18
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Pontificia Universidad Católica del Perú ICA624: Control Robusto. 8. Desempeño (Performance) Robusto
Pontificia Universidad Católica del Perú ICA624: Control 8. (Performance) Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 14 de de... Considerar el
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores
EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u
Transformaciones canónicas
apítulo 29 Transformaciones canónicas 29.1 Introducción onsideremos una transformación arbitraria de las coordenadas en el espacio de las fases de dimensión 2(3N k) (con el tiempo como un parámetro) Q
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
Construcción de bases en el núcleo e imagen de una transformación lineal
Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.
Capítulo 7: Distribuciones muestrales
Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.
Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1
. ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio
Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:
DISEÑO DE SISTEMAS DE CONTROL 1.-Introducción. 2.-El problema del diseño. 3.-Tipos de compensación. 4.-Reguladores. 4.1.-Acción Proporcional. Reguladores P. 4.2.-Acción Derivativa. Reguladores PD. 4.3.-Acción
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones
Aplicaciones Lineales
Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
Cifras significativas e incertidumbre en las mediciones
Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades
Grupos. Subgrupos. Teorema de Lagrange. Operaciones.
1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO
Análisis en el dominio de la frecuencia 121 E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO 9 ANALISIS EN EL DOMINIO DE LA FRECUENCIA 122 Problemas de ingeniería de control RESPUESTA FRECUENCIAL
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
ESTRUCTURAS ALGEBRAICAS
ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama
EXAMEN DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA 02/09/2008
EXAMEN DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA 2/9/28 EJERCICIO I (25%) Se dispone de un ventilador de cuatro velocidades. Dichas velocidades son accionadas respectivamente por la señales V, V2, V, V4.
Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción
Pontificia Universidad Católica del Perú ICA624: 1.Introducción Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 19 Objetivos básicos del control realimentado
CAPITULO V. SIMULACION DEL SISTEMA 5.1 DISEÑO DEL MODELO
CAPITULO V. SIMULACION DEL SISTEMA 5.1 DISEÑO DEL MODELO En base a las variables mencionadas anteriormente se describirán las relaciones que existen entre cada una de ellas, y como se afectan. Dichas variables
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
El rincón de los problemas
Diciembre de 2006, Número 8, páginas 113-117 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú [email protected] Problema 1 Considera un tablero de 25 casillas como
Inversión. Inversión. Arbitraje. Descuento. Tema 5
Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro
Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales
Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected]
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected] Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad
Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz
Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información
Espacios vectoriales. Bases. Coordenadas
Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
ANÁLISIS DE DATOS NO NUMERICOS
ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas
Mantenimiento Limpieza
Mantenimiento Limpieza El programa nos permite decidir qué tipo de limpieza queremos hacer. Si queremos una limpieza diaria, tipo Hotel, en el que se realizan todos los servicios en la habitación cada
Listas de vectores y conjuntos de vectores
Listas de vectores y conjuntos de vectores La explicación de los temas Dependencia lineal y Bases en el curso de Álgebra Lineal se puede basar en uno de los siguientes dos conceptos (o en ambos): ) listas
Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}
Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar
ANÁLISIS DE BONOS. Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003
ANÁLISIS DE BONOS Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003 Métodos de Análisis Una forma de analizar un bono es comparar su rendimiento al
Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo
Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt
Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores
Tema 10. Estimación Puntual.
Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener
Tema 4: Aplicaciones lineales
Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si
Pontificia Universidad Católica del Perú ICA624: Control Robusto. 7. Incertidumbre Estructurada Introducción al Análisis µ
Pontificia Universidad Católica del Perú ICA624: Control Robusto 7. al Análisis µ Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 20 vs. No con µ K
Cap. 24 La Ley de Gauss
Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
4 Localización de terremotos
513430 - Sismología 27 4 Localización de terremotos 4.1 Localización de sismos locales Fig 27: Gráfico de la ruptura en la superficie de una falla. La ruptura se propaga desde el punto de la nucleación,
Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012
Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
Análisis de medidas conjuntas (conjoint analysis)
Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los
1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.
Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular
Espacios Vectoriales
Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................
Diagonalización de matrices
diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
9.1 Primeras definiciones
Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación
Complementos de matemáticas. Curso 2004-2005
Univ. de Alcalá de Henares Ingeniería Técnica Industrial Complementos de matemáticas. Curso 004-005 Colección de ejercicios del tema 1 Las soluciones aparecen en color azul, y si disponéis de la posibilidad
Ministerio de Educación Nacional Dirección de Calidad
FORO VIRTUAL GESTION EDUCATIVA 2007 Próximamente estaremos informando la fecha de inicio del foro virtual para que usted pueda participar activamente El foro Educativo Nacional 2007 sobre el tema de gestión
Problemas resueltos de combinatoria
Problemas resueltos de combinatoria 1) De cuántas formas distintas pueden sentarse seis personas en una fila de butacas? 2) De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es
Electrostática: ejercicios resueltos
Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos
Tema 7 COSTO ESTÁNDAR
Tema 7 COSTO ESTÁNDAR Campus Santa Fé Miguel Ángel Gutiérrez Banegas 1 Introducción En el proceso de generación de información en los negocios, la predeterminación de costos soluciona la dificultad que
TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.
TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros
Diseño de controladores en el dominio de la frecuencia
Práctica 5 Diseño de controladores en el dominio de la frecuencia Sistemas Automáticos, EPSIG Abril 2007 1. Requisitos previos Los requisitos enumerados a continuación son imprescindibles para el adecuado
2.5 Linealización de sistemas dinámicos no lineales
25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal
Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.
Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal
http://www.formarparacrecer.com/
En toda proporción el producto de los términos medios es igual al producto de los términos extremos Proporciones Una proporción es una igualdad entre dos o más razones Entonces Proporción es cuando tenemos
Introducción a la Teoría de Grafos
Introducción a la Teoría de Grafos Flavia Bonomo [email protected] do. Cuatrimestre 009 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un grafo acíclico, o sea, una unión disjunta
Aula Banca Privada. La importancia de la diversificación
Aula Banca Privada La importancia de la diversificación La importancia de la diversificación La diversificación de carteras es el principio básico de la operativa en mercados financieros, según el cual
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión?
1 RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? La respuesta es sencilla. El rendimiento requerido siempre depende del riesgo
Introducción a los sistemas de control
Introducción a los sistemas de control Sistema Un sistema es una combinación de componentes que actúan juntos y realizan un objetivo determinado A un sistema se le puede considerar como una caja negra
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Práctica de Aplicaciones Lineales
practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales
Metodología. del ajuste estacional. Tablero de Indicadores Económicos
Metodología del ajuste estacional Tablero de Indicadores Económicos Metodología del ajuste estacional Componentes de una serie de tiempo Las series de tiempo están constituidas por varios componentes que,
y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.
Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =
Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA
Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer
1) Como declarar una matriz o un vector.
MATLAB es un programa que integra matemáticas computacionales y visualización para resolver problemas numéricos basándose en arreglos de matrices y vectores. Esta herramienta posee infinidad de aplicaciones,
EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA
EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA 1. Introduccio n El propósito de este reporte es describir de manera detallada un diagnóstico de su habilidad para generar ingresos pasivos, es decir, ingresos
Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut
Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la
Tema 3: Aplicaciones de la diagonalización
TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:
Circuito RL, Respuesta a la frecuencia.
Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia
Subconjuntos destacados en la
2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,
CAPITULO 6 SISTEMA DE DETECCION DE INTRUSOS
Capitulo 6. Sistema de Detección de Intrusos con Redes Neuronales. 69 CAPITULO 6 SISTEMA DE DETECCION DE INTRUSOS USANDO REDES NEURONALES. En este capítulo se realiza la preparación adecuada de toda la
La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.
LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es
Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1
Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su
Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS
ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos
EL DISEÑO FACTORIAL COMPLETO 2 k
EL DISEÑO FACTORIAL COMPLETO 2 k Joan Ferré Grupo de Quimiometría y Cualimetría Departamento de Química Analítica y Química Orgánica Universidad Rovira i Virgili (Tarragona) INTRODUCCIÓN En el primer artículo
Uso del Programa Gantt Project
Uso del Programa Gantt Project Presentación En esta práctica guiada aprenderás varias cosas relacionadas con el uso de Gantt Project, que es una aplicación de ayuda a la gestión de proyectos: Especificar
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. SISTEMAS PLANOS. TEOREMA DE POINCARÉ-BENDIXSON. La aplicación de Poincaré Recordemos que un subconjunto H de R n es una subvariedad de codimensión uno (o una
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Lección 4: Suma y resta de números racionales
GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
Determinación experimental de la respuesta en frecuencia
Determinación experimental de la respuesta en frecuencia Análisis Dinámico de Sistemas (Teleco) Área de Ingeniería de Sistemas y Automática Escuela Politécnica Superior de Ingeniería Gijón Universidad
