Incertidumbre No Estructurada y Estabilidad Robusta

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Incertidumbre No Estructurada y Estabilidad Robusta"

Transcripción

1 Pontificia Universidad Católica del Perú ICA624: Control Robusto 5. No y Robusta Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 18

2 Lazo Bien Definido de No No Consideremos el lazo realimentado general (puede ser MIMO): Para que el lazo esté bien definido, hace falta que las funciones de transferencia de cada entrada (r, n, d y d u ) a cada salida (u, u p e y) sean todas propias. Porqué decimos que una función de transferencia impropia es físicamente imposible (discusión: causalidad). r Puede verse que basta con que la matriz de transferencia de los disturbios a u sea propia para que el resto de matrices sean propias: [ ] dp u d debe ser propia. K u d p u p G d y n 2 / 18

3 Condiciones para la buena definición Lazo Bien Definido de No No Definiendo ˆK = K y combinando las señales externas, el siguiente lazo captura la matriz de transferencia de interés: w e 1 Si G = (A,B,C,D) y ˆK = (Â, ˆB,Ĉ, ˆD), se demuestra (Zhou y Doyle) que el lazo quedará bien definido siempre y cuando: [ I ˆD D I G ] ˆK e w 2 sea invertible 3 / 18

4 de No No La estabilidad interna implica que las funciones de transferencia de cada entrada (r, n, d y d u ) a cada salida (u, u p e y) sean todas parte de RH. Por las razones anteriores, basta establecer que la matriz de transferencia de W = (w 1, w 2 ) a E = (e 1, e 2 ) pertenezca a RH. E(s) W(s) = = [ (I ˆKG) 1 ] ˆK(I G ˆK) 1 G(I ˆKG) 1 (I ˆKG) 1 [ I + ˆK(I ˆKG) 1 G ˆK(I G ˆK) 1 (I ˆKG) 1 G (I ˆKG) 1 Cada una de las 4 componentes (en sí matrices de transferencia) de la matriz anterior deben ser RH para obtener estabilidad interna. ] 4 / 18

5 de No No Generar G y K (MIMO) aleatoriamente (en forma de espacio de estados) y verificar si el lazo resultante es internamente estable. 5 / 18

6 : Casos Particulares de No No Corolario 5.2 (Zhou & Doyle): Supongamos que ˆK RH. Entonces el lazo será internamente estable siempre y cuando esté bien definido y G(I ˆKG) 1 RH. Corolario 5.3 (Zhou & Doyle): Supongamos que G RH. Entonces el lazo será internamente estable siempre y cuando esté bien definido y ˆK(I G ˆK) 1 RH. Corolario 5.4 (Zhou & Doyle): Supongamos que ˆK y G pertenecen a RH. Entonces el lazo será internamente estable siempre y cuando (I G ˆK) 1 RH. 6 / 18

7 de Teorema General de No No Sean n k y n g los números de polos de ˆK y G en el lado derecho abierto. El lazo será internamente estable siempre y cuando esté bien definido y: 1. El número de polos de G ˆK en el lado derecho abierto sea n k +n g 2. (I G ˆK) 1 sea estable. La primera condición evita cancelaciones de ceros con polos inestables (lo cual no afectaría la estabilidad entrada/salida pero sí la interna). 7 / 18

8 de No No Para las siguientes matrices de transferencia: [ G(s) = K(s) = s+2 1 s+1 s (s+1) 2 (s+1) 2 [ 1 s+4 s Decidir si el lazo está bien definido. Si lo estuviera, determinar la estabilidad interna. ] ] 8 / 18

9 No de Descripciones de No No : G(s) = G o (s)+w 1 (s) (s)w 2 (s) con (jw) < 1 : con (jw) < 1 G(s) = (I +W 1 (s) (s)w 2 (s))g o (s) G o (s) es el modelo nominal (nuestro mejor intento de modelar al sistema) La incertidumbre (s) no tiene una forma particular (matriz de transferencia). Es un término genérico que intenta capturar todos los errores posibles. Los pesos W 1 (s) and W 2 (s) se usan para acotar la magnitud de la incertidumbre de acuerdo a la frecuencia. 9 / 18

10 : Respuesta en Frecuencia de un Actuador de Disco Duro de Descripciones de No No Usualmente, la incertidumbre es mayor a alta frecuencia. En sistemas electromecánicos, la incertidumbre en fase podría ser de hasta ±180 para frecuencias suficientemente altas. 10 / 18

11 de No No Supongamos que existe una familia de modelos para la planta. La distribución de estos modelos representa la incertidumbre. La familia de modelos puede expresarse de manera paramétrica o experimental. de familia paramétrica: G(s) = αs+β δs+γ donde α, β, δ y γ están entre 1.5 y 3. También puede haberse estimado G(s) mediante un analizador espectral o por identificación de sistemas, resultando en una colección de modelos correspondientes a intentos repetidos. En ambos casos, se puede usar Matlab para ajustar una función W(s) cuya magnitud represente una cota superior para (s). 11 / 18

12 ... de No No El procedimiento es como sigue: 1. Se grafica el error en magnitud G(jw) G o (jw) en un rango de frecuencias apropiado usando una malla de combinaciones de parámetros. 2. El paso anterior puede provenir de datos experimentales (analizador espectral). 3. Habrá una magnitud limitante (cota superior). Se escogen puntos para ajustar una función de transferencia W(s) propia, estable y de fase mínima (ceros con partes reales negativas). Se cumplirá que (jw) W(jw). Ahora podemos usar la representación aditiva G(s) = G o (s)+w(s) (s) con (s) Se puede hacer lo mismo usando la descripción multiplicativa (s) = G(s) G o(s) G o (s) 12 / 18

13 - Matlab de No No Supongamos que cierto sistema tiene la forma w 2 n G(s) = k s 2 +2ζw n s+wn 2 donde k varía entre 0.8 y 1.2, w n entre 13 y 17, y ζ entre 0.08 y Los valores nominales (G o (s)) son 1, 15 y 0.1, respectivamente. Usar los comandos freqresp, ginput, vpck, fitmag, unpck para encontrar un peso aditivo W a (s) y un peso multiplicativo W m (s) tales que a (jw) W a (jw) y m (jw) W m (jw) 13 / 18

14 de No Ganancia Pequeña No Sea M(s) RH una matriz de transferencia fija y (s) RH una matriz de transferencia incierta: w e 1 El lazo cerrado estará bien definido y será internamente estable para cualquier (s) RH siempre y cuando: M e 2 + (s)m(s) < 1 Pensar en lo que ocurre cuando un micrófono se pone muy cerca al parlante y el volumen del amplificador es alto. + w 2 14 / 18

15 No de No No El teorema de ganancia pequeña se aplica directamente al análisis de estabilidad robusta MIMO bajo la siguiente configuración general del lazo: K Aquí G representa una familia de plantas sujetas a incertidumbre, con planta nominal G o y una de las 2 descripciones de incertidumbre: G G = G o +W 1 W 2 G = (I +W 1 W 2 )G o 15 / 18

16 de No No Teorema 8.4 (Zhou y Doyle): Sea una familia de plantas sujetas a incertidumbre con descripción aditiva G = G o +W 1 W 2 Sea K un compensador internamente estabilizante para la planta nominal G o. Entonces el sistema de lazo cerrado estará bien definido y será internamente estable para cualquier (s) RH con (s) < 1 siempre y cuando: Recordar que W 2 KS o W 1 1 S o = (I +GK) 1 16 / 18

17 de No No Sea una familia de plantas sujetas a incertidumbre con descripción multiplicativa G = (I +W 1 W 2 )G o Teorema 8.5 (Zhou y Doyle): Sea K un compensador internamente estabilizante para la planta nominal G o. Entonces el sistema de lazo cerrado estará bien definido y será internamente estable para cualquier (s) RH con (s) < 1 siempre y cuando: W 2 T o W 1 1 Recordar que T o = I S o 17 / 18

18 de No No Sean K = I y G o (s) = [ 1 s+1 1 s+1 2 s+3 1 s+1 Si G = G o + con (s) γ, encontrar el mayor valor permisible para γ para obtener estabilidad robusta. Repetir si G = (I + )G o. Repetir ambos casos con ] G o (s) = ] 5s+1 [ s 1 (s+1) 2 1 (s+1) 2 s 1 (s+1) 2 (s+1) 2 18 / 18

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 8. Desempeño (Performance) Robusto

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 8. Desempeño (Performance) Robusto Pontificia Universidad Católica del Perú ICA624: Control 8. (Performance) Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 14 de de... Considerar el

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

Transformaciones canónicas

Transformaciones canónicas apítulo 29 Transformaciones canónicas 29.1 Introducción onsideremos una transformación arbitraria de las coordenadas en el espacio de las fases de dimensión 2(3N k) (con el tiempo como un parámetro) Q

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Construcción de bases en el núcleo e imagen de una transformación lineal

Construcción de bases en el núcleo e imagen de una transformación lineal Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción: DISEÑO DE SISTEMAS DE CONTROL 1.-Introducción. 2.-El problema del diseño. 3.-Tipos de compensación. 4.-Reguladores. 4.1.-Acción Proporcional. Reguladores P. 4.2.-Acción Derivativa. Reguladores PD. 4.3.-Acción

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO

E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO Análisis en el dominio de la frecuencia 121 E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO 9 ANALISIS EN EL DOMINIO DE LA FRECUENCIA 122 Problemas de ingeniería de control RESPUESTA FRECUENCIAL

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

EXAMEN DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA 02/09/2008

EXAMEN DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA 02/09/2008 EXAMEN DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA 2/9/28 EJERCICIO I (25%) Se dispone de un ventilador de cuatro velocidades. Dichas velocidades son accionadas respectivamente por la señales V, V2, V, V4.

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción Pontificia Universidad Católica del Perú ICA624: 1.Introducción Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 19 Objetivos básicos del control realimentado

Más detalles

CAPITULO V. SIMULACION DEL SISTEMA 5.1 DISEÑO DEL MODELO

CAPITULO V. SIMULACION DEL SISTEMA 5.1 DISEÑO DEL MODELO CAPITULO V. SIMULACION DEL SISTEMA 5.1 DISEÑO DEL MODELO En base a las variables mencionadas anteriormente se describirán las relaciones que existen entre cada una de ellas, y como se afectan. Dichas variables

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

El rincón de los problemas

El rincón de los problemas Diciembre de 2006, Número 8, páginas 113-117 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú [email protected] Problema 1 Considera un tablero de 25 casillas como

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected]

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected] Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Mantenimiento Limpieza

Mantenimiento Limpieza Mantenimiento Limpieza El programa nos permite decidir qué tipo de limpieza queremos hacer. Si queremos una limpieza diaria, tipo Hotel, en el que se realizan todos los servicios en la habitación cada

Más detalles

Listas de vectores y conjuntos de vectores

Listas de vectores y conjuntos de vectores Listas de vectores y conjuntos de vectores La explicación de los temas Dependencia lineal y Bases en el curso de Álgebra Lineal se puede basar en uno de los siguientes dos conceptos (o en ambos): ) listas

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

ANÁLISIS DE BONOS. Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003

ANÁLISIS DE BONOS. Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003 ANÁLISIS DE BONOS Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003 Métodos de Análisis Una forma de analizar un bono es comparar su rendimiento al

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 7. Incertidumbre Estructurada Introducción al Análisis µ

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 7. Incertidumbre Estructurada Introducción al Análisis µ Pontificia Universidad Católica del Perú ICA624: Control Robusto 7. al Análisis µ Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 20 vs. No con µ K

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

4 Localización de terremotos

4 Localización de terremotos 513430 - Sismología 27 4 Localización de terremotos 4.1 Localización de sismos locales Fig 27: Gráfico de la ruptura en la superficie de una falla. La ruptura se propaga desde el punto de la nucleación,

Más detalles

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012 Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Análisis de medidas conjuntas (conjoint analysis)

Análisis de medidas conjuntas (conjoint analysis) Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

Complementos de matemáticas. Curso 2004-2005

Complementos de matemáticas. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería Técnica Industrial Complementos de matemáticas. Curso 004-005 Colección de ejercicios del tema 1 Las soluciones aparecen en color azul, y si disponéis de la posibilidad

Más detalles

Ministerio de Educación Nacional Dirección de Calidad

Ministerio de Educación Nacional Dirección de Calidad FORO VIRTUAL GESTION EDUCATIVA 2007 Próximamente estaremos informando la fecha de inicio del foro virtual para que usted pueda participar activamente El foro Educativo Nacional 2007 sobre el tema de gestión

Más detalles

Problemas resueltos de combinatoria

Problemas resueltos de combinatoria Problemas resueltos de combinatoria 1) De cuántas formas distintas pueden sentarse seis personas en una fila de butacas? 2) De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Tema 7 COSTO ESTÁNDAR

Tema 7 COSTO ESTÁNDAR Tema 7 COSTO ESTÁNDAR Campus Santa Fé Miguel Ángel Gutiérrez Banegas 1 Introducción En el proceso de generación de información en los negocios, la predeterminación de costos soluciona la dificultad que

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

Diseño de controladores en el dominio de la frecuencia

Diseño de controladores en el dominio de la frecuencia Práctica 5 Diseño de controladores en el dominio de la frecuencia Sistemas Automáticos, EPSIG Abril 2007 1. Requisitos previos Los requisitos enumerados a continuación son imprescindibles para el adecuado

Más detalles

2.5 Linealización de sistemas dinámicos no lineales

2.5 Linealización de sistemas dinámicos no lineales 25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

http://www.formarparacrecer.com/

http://www.formarparacrecer.com/ En toda proporción el producto de los términos medios es igual al producto de los términos extremos Proporciones Una proporción es una igualdad entre dos o más razones Entonces Proporción es cuando tenemos

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo [email protected] do. Cuatrimestre 009 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un grafo acíclico, o sea, una unión disjunta

Más detalles

Aula Banca Privada. La importancia de la diversificación

Aula Banca Privada. La importancia de la diversificación Aula Banca Privada La importancia de la diversificación La importancia de la diversificación La diversificación de carteras es el principio básico de la operativa en mercados financieros, según el cual

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión?

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? 1 RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? La respuesta es sencilla. El rendimiento requerido siempre depende del riesgo

Más detalles

Introducción a los sistemas de control

Introducción a los sistemas de control Introducción a los sistemas de control Sistema Un sistema es una combinación de componentes que actúan juntos y realizan un objetivo determinado A un sistema se le puede considerar como una caja negra

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Práctica de Aplicaciones Lineales

Práctica de Aplicaciones Lineales practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales

Más detalles

Metodología. del ajuste estacional. Tablero de Indicadores Económicos

Metodología. del ajuste estacional. Tablero de Indicadores Económicos Metodología del ajuste estacional Tablero de Indicadores Económicos Metodología del ajuste estacional Componentes de una serie de tiempo Las series de tiempo están constituidas por varios componentes que,

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

1) Como declarar una matriz o un vector.

1) Como declarar una matriz o un vector. MATLAB es un programa que integra matemáticas computacionales y visualización para resolver problemas numéricos basándose en arreglos de matrices y vectores. Esta herramienta posee infinidad de aplicaciones,

Más detalles

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA 1. Introduccio n El propósito de este reporte es describir de manera detallada un diagnóstico de su habilidad para generar ingresos pasivos, es decir, ingresos

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

CAPITULO 6 SISTEMA DE DETECCION DE INTRUSOS

CAPITULO 6 SISTEMA DE DETECCION DE INTRUSOS Capitulo 6. Sistema de Detección de Intrusos con Redes Neuronales. 69 CAPITULO 6 SISTEMA DE DETECCION DE INTRUSOS USANDO REDES NEURONALES. En este capítulo se realiza la preparación adecuada de toda la

Más detalles

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1. LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

EL DISEÑO FACTORIAL COMPLETO 2 k

EL DISEÑO FACTORIAL COMPLETO 2 k EL DISEÑO FACTORIAL COMPLETO 2 k Joan Ferré Grupo de Quimiometría y Cualimetría Departamento de Química Analítica y Química Orgánica Universidad Rovira i Virgili (Tarragona) INTRODUCCIÓN En el primer artículo

Más detalles

Uso del Programa Gantt Project

Uso del Programa Gantt Project Uso del Programa Gantt Project Presentación En esta práctica guiada aprenderás varias cosas relacionadas con el uso de Gantt Project, que es una aplicación de ayuda a la gestión de proyectos: Especificar

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. SISTEMAS PLANOS. TEOREMA DE POINCARÉ-BENDIXSON. La aplicación de Poincaré Recordemos que un subconjunto H de R n es una subvariedad de codimensión uno (o una

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Determinación experimental de la respuesta en frecuencia

Determinación experimental de la respuesta en frecuencia Determinación experimental de la respuesta en frecuencia Análisis Dinámico de Sistemas (Teleco) Área de Ingeniería de Sistemas y Automática Escuela Politécnica Superior de Ingeniería Gijón Universidad

Más detalles