Espacios Vectoriales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Espacios Vectoriales"

Transcripción

1 Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos Motivación Abstracción y Generalización Generalización El concepto de operación Espacio Vectorial Teoremas sobre espacios vectoriales Ejemplos de EV Subespacio Vectorial Objetivos En esta lectura se introduce el concepto de espacio vectorial. Este concepto generaliza los vectores n y las matrices m n. El concepto es abstracto y por tanto tiene alguna dificultad natural; se le pide al estudiante un esfuerzo extra para pensar las cosas desde un punto de vista general Motivación Veamos un ejemplo para introducir el concepto de las ideas invariantes en la solución a un sistema de ecuaciones lineales. Ejemplo 3. Considere el sistema homogéneo: x + 2 y + w + 2 t = 2 x + 4 y z + w + 5 t = x + 2 y + z + 2 w + t = z + w t = Si utilizamos el orden x y z w t la matriz aumentada reducida queda: De donde la fórmula para las soluciones son: x y z w = y t 2 + w + t 2

2 Si utilizamos el orden x y w z t la matriz aumentada reducida queda: De donde la fórmula para las soluciones son: x y z w = y t 2 + z + t Si utilizamos el orden x y t z w la matriz aumentada reducida queda: De donde la fórmula para las soluciones son: x y z w = y t 2 + z 2 + w Si utilizamos el orden y x z w t la matriz aumentada reducida queda: De donde la fórmula para las soluciones son: x y z w = x /2 t + w / t Todas las soluciones previas aparentant ser diferentes, sin embargo, todas representan el mismo conjunto solución. Necesitamos una teoría que nos dé confianza en los resultados obtenidos; qué nos indique las cosas que permanecen y las cosas que pueden cambiar en las múltiples respuestas válidas en R n que podemos obtener. Además de los conjuntos solución en R n, existen otras áreas de la ingeniería que requieren un apoyo matemático: las matrices tienen su importancia y uso en ingeniería industrial y en control; las series trigonométricas en procesamiento de señales; los conjuntos de polinomios y las series de potencias para los IFIs, etc.. Cómo desarrollar una teoría comodín que se pueda aplicar a diferentes contextos sin ningún cambio importante? 2

3 3.3. Abstracción y Generalización Si se hace una encuesta entre los matemáticos sobre que palabras describen a las matemáticas se notará que la mayoría responde al menos dos palabras claves: abstracción y generalización. La abstracción tiene que ver con representar cantidades por medio de símbolos,y la generalización tiene que ver con la construcción de estructuras o teorías que engloban ciertas cosas o hechos conocidos. La que nos interesa más para abrir este tema es el aspecto de la generalización. La generalización también tiene que ver con la economia del trabajo realizado para investigar, y con determinar cuáles son los elementos mínimos responsables de que ciertos resultados ocurran Generalización Para entender como ocurre la generalización en nuestra materia recordemos algunos conceptos hemos visto en diferentes cursos de matemáticas:. vectores en el espacio n dimensional (R n ), 2. matrices con entradas reales (M n m ), 3. polinomios reales, 4. series de pontencias, 5. series trigonométricas, y 6. soluciones a ecuaciones diferenciales lineales homogéneas entre otros elementos. El objetivo que se persigue en el presente tema consiste en introducir aquella estructura abstracta que engloba las anteriores construcciones, y qué resultados se pueden obtener en lo general sin importar a cual de las estructuras específicas se haga referencia El concepto de operación Antes que el concepto de espacio vectorial está el concepto de operación. Veamos algunos ejemplos de operaciones para ir entendiendo que las operaciones de suma o de multiplicación por escalares podrían ser diferentes de las que conocemos. Lo que es importante recordar es el uso de los paréntesis : sirven para indicar un orden en las operaciones. Ejemplo 3.2 Suponga que V = R 2 y que se define la operación: (x, y) (z, w) = (5 x + z, 2 w + 2 y) Si Calcule: a = ( 2, 3), b = (, 3), c = (, ). a b = (5 (x = 2) + (z = ), 2 (w = 3) + 2 (y = 3)) = (, ) 2. b a = (5 ( ) + ( 2), 2 ( 3) + 2 ( )) = ( 7, ) 3

4 3. (a b) c = (, ) (, ) = (5 ( ) + ( ), 2 ( ) + 2 ()) = ( 56, 2) 4. a (b c) = ( 2, 3) ( 6, 4) = ( 6, 2) Ejemplo 3.3 Suponga que V = R 2 y que se definen las operaciones: y Si Calcule: (x, y) (z, w) = (2 x, 3 w + y) t (x, y) = (2 t x, 3 t y) a = (, ), c =, c 2 = 4. (c + c 2 ) a = 3 (, ) = (2( 3)(), 3( 3)()) = ( 6, ) 2. (c a) (c 2 a) = (2, ) ( 8, ) = (4, ) 3. (c c 2 ) a = 4 (, ) = ( 8, ) 4. c (c 2 a) = ( 8, ) = ( 6, ) 3.6. Espacio Vectorial Definición 3. Sea V un conjunto no vacío sobre el cual existen dos operaciones. Una llamada suma de vectores y otra llamada mulitplicación de un escalar por un vector. La suma de vectores, o simplemente suma, es una regla o función que asocia a dos vectores, digamos u y v un tercer vector, a este se le representará como u v. La multiplicación es una regla que asocia a un escalar y a un vector, digamos c y u un segundo vector representado por c u. Diremos que el conjunto V se llama espacio vectorial si cumple todos y cada uno de los siguientes axiomas: (A) Para cualquiera dos vectores u y v en V Este axioma se conoce como el axioma de cerradura bajo la suma: u v V () La suma de dos elementos del conjunto debe dar como resultado también un elemento del conjunto. (A2) Para cualquiera dos vectores u y v en V Este axioma se conoce como el axioma de la conmutatividad de la suma: El orden de los sumandos no altera el resultado de la suma. (A3) Para cualquiera tres vectores u, v y w en V Este axioma se conoce como axioma de la asociatividad de la suma: u v = v u (2) u (v w) = (u v) w (3) 4

5 En una suma de vectores, no importa el orden cómo asocien la sumas entre dos; el resultado será siempre el mismo. (A4) Existe un único vector en V que se simbolizará por y que se llamará el vector cero tal que para cualquier vector u V se cumple u = u = u (4) Este axioma se conoce como el axioma de la existencia del elemento neutro: Existe en el conjunto un elemento distinguido que sumado con cualquier elemento da el mismo segundo elemento. (A5) Para cualquier vector u V existe un único vector también en V y simbolizado por u que cumple u ( u) = ( u) u = (5) Este axioma se conoce como axioma de la existencia de inversos aditivos: Cada elemento del conjunto posee un inverso aditivo; un elemento del conjunto que sumado con él da el neutro aditivo. (M) Para cualquier vector u V y para cualquier escalar c R se cumple c u V (6) Este axioma se conoce como el axioma de cerradura bajo la multiplicación por escalares: El resultado del producto entre cualquier escalar por cualquier elemento del conjunto debe dar como resultado también un elemento del conjunto. (M2) Para cualquiera dos vectores u y v en V, y para cualquier escalar c en R se cumple c (u v) = (c u) (c v) (7) Este axioma se conoce como la propiedad distributiva del producto (por escalares) sobre la suma (de vectores): En un producto de un escalar por una suma de vectores, da lo mismo realizar la suma de los vectores y el resultado multiplicarlo por el vector que individualmente multiplicar cada vector por el escalar y después sumar los resultados. (M3) Para cualquier vector u V y para cualquiera dos escalares a y b en R se cumple (a + b) u = (a u) (b u) (8) Este axioma se conoce como la propiedad distributiva del producto por escalares sobre la suma escalares. (M4) Para cualquier vector u V y para cualquiera dos escalares a y b en R se cumple a (b u) = (a b) u (9) Esta propiedad se conoce como la ley asociativa del producto entre escalares y el producto de escalar con vector. Lo llamaremos simplemente como la propiedad asociativa del producto. 5

6 (M5) Para cualquier vector u V se cumple u = u () Cuando se elabora una argumentación en algún cálculo o demostración uno debe hacer referencia a los axiomas. Por ellos es que es conveniente y elegante llamarlos por su descripción. Se le pide al alumno que entienda la lógica de cada uno de ellos y memorice sus descripciones. Ejemplo 3.4 Indique cual opción enuncia la propiedad distributiva de la suma de escalares sobre el producto..- (c + k) x = (c x) (k x) Respuesta 2.- x = x = x 3.- x y = y x Conmutatividad 4.- c x es vector Cerradura 5.- x ( x) = ( x) x = 6.- x y es vector Cerradura Ejemplo 3.5 Indique cual opción describe la propiedad:.- Cerradura del producto por escalares. 2.- Existencia del neutro de la suma. Respuesta x = x = x 3.- Distributividad del producto sobre la suma de vectores. 4.- Distributividad de la suma de escalares sobre el producto. 5.- Asociatividad del producto por escalares. 6.- Existencia del inverso aditivo Ejemplo 3.6 Apesar que nuestro interés no es hacer demostraciones matemáticas si es conveniente entender cómo se construyen. El siguiente argumento prueba que el vector cero es único. Es decir, que si hay otro vector que cumple la propiedad que define al neutro debe ser el mismo neutro. Justifique los pasos. Suponga que x + y = x Entonces por (a) existe ( x) que al sumarlo en ambos miembros da Por la propiedad (b) se deduce entonces ( x) + (x + y) = ( x) + x (( x) + x) + y = ( x) + x Por la propiedad (c) se tiene entonces + y = 6

7 Finalmente, por la propiedad (d) se tiene y =. : la propiedad del inverso aditivo, 2: asociativa, 3: del neutro Respuesta: la correspondencia es (a)=,(b)=2,(c)=,(d)= Teoremas sobre espacios vectoriales Resultados generales sobre espacios generales: Sea V es un espacio vectorial, y sean u V y c R, entonces:. u = (El escalar por cualquier vector da el vector cero) 2. c = (Cualquier escalar por el vector cero da el vector cero) 3. c u = implica c = ó u = (Cuando el producto de un escalar por un vector da el vector cero, o el escalar es cero o el vector es el vector cero) 4. ( c) u = (c u) (Multiplicar por un escalar negativo implica obtener el inverso aditivo del producto del escalar sin el signo por el vector) 3.8. Ejemplos de EV Veamos algunos de los espacios vectoriales que utilizaremos. Ejemplo EV Sea V = R + con las operaciones: x y = x y y c x = x c, veamos que V con tal operaciones cumple los axiomas de espacio vectorial: Axioma A: x y V Efectivamente, pues si x, y V entonces x, y > y por tanto x y = x y >, probando que x y V. Axioma A2: x y = y x Efectivamente, pues x y = x y = y x = y x. Esto se tiene por la propiedad conmutativa del producto de números reales. Axioma A3: x (y z) = (x y) z Efectivamente, pues x (y z) = x (y z) = x (y z) = (x y) z = (x y) z = (x y) z. Esto se tiene por la propiedad asociativa del producto de números reales. Axioma A4: Existe en V un neutro para Efectivamente, el número de V = R cumple la propiedad requerida pues x = x = x = x = x. Axioma A5: Todo elemento de V posee un inverso aditivo en V Efectivamente, si x V es número, /x también está en V = R (Pues si x >, también se cumple /x > ) y cumple la propiedad requerida pues x /x = x /x = = /x x = /x x. Axioma M: c x V Efectivamente, pues si x V entonces x > y c x = x c > para cualquier número c. (Recuerde que para x >, x c = e c ln(x) > ) Axioma M2: c (x y) = (c x) (c y) Efectivamente, c (x y) = c (x y) = (x y) c = x c y c = (x c ) (y c ) = (c x) (c y). Y esto vale por la ley de los exponentes con bases positivas. Axioma M3: (c + c 2 ) x = (c x) (c 2 x) Efectivamente, (c + c 2 ) x = x c +c 2 = x c x c 2 = (x c ) (x c 2 ) = (c x) (c 2 x). Esto vale por la ley de los exponentes con bases positivas. Axioma M4: (c c 2 ) x = c (c 2 x) Efectivamente, (c c 2 ) x = x c c 2 = (x c 2 ) c = c (x c 2 ) = c (c 2 x). Esto vale por la ley de los exponentes 7

8 con bases positivas. Axioma M5: x = x Efectivamente, x = x = x. Habiéndose cumplido los axiomas, concluimos que V con las operaciones x y = x y y c x = x c sí es un espacio vectorial Ejemplo EV 2: R n El conjunto de todas las n-adas con componentes reales R n : operaciones: La suma: La suma de dos vectores con n componentes es un vector también con n componentes cuya componente i-ésima es la suma de las componentes i-ésimas de los vectores que se están sumando: (x i ) + (y i ) = (x i + y i ) El producto por escalares: El producto de un escalar por un vector de n componentes se también un vector de n componetes cuya componente i-ésima es el producto del escalar por la i ésima componente del vector que se multiplica: c (x i ) = (c x i ) Axiomas A y M: x + y R n y c x R n De la misma definición de la suma y producto por escalares. Axioma A2 : x + y = y + x Los vectores son iguales pues tienen la misma dimensión y al comparar las componente i se tiene x i + y i = y i + x i Axioma A3: x + (y + z) = (x + y) + z Los vectores son iguales pues tienen la misma dimensión y al comparar las componente i se tiene x i + (y i + z i ) = (x i + y i ) + z i Axioma A4: Existe el vector neutro bajo la adición: Este vector es el vector con todas sus componentes cero = () y cumple + x = x + = x pues al comparar las i-ésimas componentes se cumple: + x i = x i + = x i Axioma A5: Cada vector de tiene su inverso aditivo: Para cada vector x = (x i ) el vector x = ( x i ) cumple x+( x) = ( x)+x = pues al comparar las i-ésimas componentes se cumple: x i + x i = = x i + x i Axioma M2: c(x + y) = c x + c y: Los vectores son iguales pues tienen la misma dimensión y al comparar las componentes i se tiene c(x i + y i ) = c x i + c y i 8

9 Axioma M3: (c + c 2 )x = c x + c 2 x: Los vectores son iguales pues tienen la misma dimensión y al comparar las componentes i se tiene (c + c 2 )x i = c x i + c 2 x i Axioma M4: (c c 2 )x = c (c 2 x): Los vectores son iguales pues tienen la misma dimensión y al comparar las componentes i se tiene (c c 2 )x i = c (c 2 x i ) Axioma M5: (x i ) = ( x i ) = (x i ) Habiéndose cumplido los axiomas, concluimos que R n con las operaciones (x i ) + (y i ) = (x i + y i ) y c(x i ) = (c x i ) sí es un espacio vectorial Ejemplo EV 3: M m n El conjunto de todas las matrices m n con componentes reales M m n : operaciones: La suma: La suma de dos matrices m n es una matriz también m n cuyo elemento (i, j) es la suma de los elementos (i, j) de las matrices que se están sumando: (a ij ) + (b ij ) = (a ij + b ij ) El producto por escalares: El producto de un escalar por una matriz m n es también una matriz m n cuyo elemento (i, j) es el producto del escalar por el elemento (i, j) de la matriz que se multiplica: c (a ij ) = (c a ij ) Axiomas A y M: A + B M m n y c A M m n : De la misma definición de la suma de matrices y producto por escalares. Axioma A2 ; A + B = B + A: Las matrices son iguales pues tienen la misma dimensión y al comparar los elementos (i, j) se tiene a ij + b ij = b ij + a ij Axioma A3: A + (B + C) = (A + B) + C: Las matrices son iguales pues tienen la misma dimensión y al comparar los elementos (i, j) se tiene a ij + (b ij + c ij ) = (a ij + b ij ) + c ij Axioma A4, Existe una matriz neutra bajo la adición: Esta matriz es la matriz con todas sus componentes cero = () y cumple + A = A + = A, pues al comparar los elementos (i, j) componentes se cumple: + a ij = a ij + = a ij Axioma A5: Cada matriz de tiene su invero aditivo: Para cada matriz A = (a ij ), la matriz A = ( a ij ) cumple A + ( A) = ( A) + A =, pues al comparar los elementos (i, j) se cumple: a ij + a ij = = a ij + a ij 9

10 Axioma M2: c(a + B) = c A + c B: Las matrices son iguales pues tienen la misma dimensión y al comparar los elementos (i, j) se tiene c(a ij + b ij ) = c a ij + c b ij Axioma M3: (c +c 2 )A = c A+c 2 A: Las matrices son iguales pues tienen la misma dimensión y al comparar los elementos (i, j) se tiene (c + c 2 )a ij = c a ij + c 2 a ij Axioma M4: (c c 2 )A = c (c 2 A): Las matrices son iguales pues tienen la misma dimensión y al comparar los elementos (i, j) se tiene (c c 2 )a ij = c (c 2 a ij ) Axioma M5: (a ij ) = ( a ij ) = (a ij ) Habiéndose cumplido los axiomas, concluimos que M m n con las operaciones (a ij ) + (b ij ) = (a ij + b ij ) y c(b ij ) = (c a ij ) sí es un espacio vectorial Ejemplo EV 4: P De todos los polinomios con coeficientes reales en la variable x con las operaciones: Suma: Cuando son dos polinomios, esta operación se lleva a cabo sumando los coeficientes de las mismas potencias de x de los polinomios. a + a x + + a m x m + b + b x + + b m x m = (a + b ) + (a + b ) x + + (a m + b m ) x m Alguno de los polinomios se completa hasta el grado mayor de los dos con coeficientes cero Por ejemplo, si p(x) = x 2 + x 4 y q(x) = 2 3 x + x 2 x 3 + x x 5 escribimos a los polinomios como p(x) = 2 + x + 3 x 2 + x 3 + x 4 + x 5 q(x) = 2 3 x + x 2 x 3 + x x 5 así p(x) + q(x) = (2 + 2) + ( 3) x + (3 + ) x 2 + ( ) x 3 + ( + ) x 4 + ( + 2) x 5 = 4 3 x + 4 x 2 x x x 5 Multiplicación: La multiplicación por escalar es la multiplicación de todo el polinomio por una constante: c(a + a x + a 2 x a m x m ) = c a + c a x + + c a m x m

11 En lo siguiente supondremos que cada polinomio se escribe en la forma p(x) = p + p x + p 2 x 2 + Es decir, que usaremos el nombre del polinomio para nombrar a sus coeficientes y usaremos subíndices para indicar la potencia de x a la cual acompañan. Axiomas A y M: p(x) + q(x) P y c p(x) P: De la misma definición de la suma de polinomios y producto por escalares. Axioma A2 ; p(x) + q(x) = q(x) + q(x): Los polinomios son iguales pues están en la misma variable y comparando los coeficientes de x i se tiene: p i + q i = p i + q i Axioma A3: p(x) + (q(x) + r(x)) = (p(x) + q(x)) + r(x): Los polinomios son iguales pues están en la misma variable y comparando los coeficientes de x i se tiene: p i + (q i + r i ) = (p i + q i ) + r i Axioma A4, Existe un polinomio neutro bajo la adición: Este polinomio es el polinomio con todos sus coeficientes cero: = = + x y cumple + p(x) = p(x) + = p(x), pues al comparar los coeficientes de x i se tiene: + p i = p i + = p i Axioma A5: Cada polinomio de tiene su invero aditivo: Para cada plinomio p(x) = p +p x+, el polinomio p(x) = ( p ) + ( p ) x + ( p 2 )x 2 + cumple p(x) + ( p(x)) = ( p(x)) + p(x) =, pues al comparar los coeficientes de x i se tiene: ( p i ) + p i = Axioma M2: c(p(x) + q(x)) = c p(x) + c q(x): Los polinomios son iguales pues están en la misma variable y comparando los coeficientes de x i se tiene: c(p i + q i ) = c p i + c q i Axioma M3: (c + c 2 )p(x) = c p(x) + c 2 p(x): Los polinomios son iguales pues están en la misma variable y comparando los coeficientes de x i se tiene: (c + c 2 )p i = c p i + c 2 p i Axioma M4: (c c 2 )p(x) = c (c 2 p(x)): Los polinomios son iguales pues están en la misma variable y comparando los coeficientes de x i se tiene: (c c 2 )p i = c (c 2 p i ) Axioma M5: p(x) = p(x) Habiéndose cumplido los axiomas, concluimos que P con las operaciones suma de polinomios y producto de un escalar por un polinomio conocidas sí es un espacio vectorial Ejemplo EV 5: P n Todos los polinomios con coeficientes reales en la variable x de grado menor o igual que n (n es entero mayor o igual que cero): operaciones:sea x la variable independiente de los polinomios.

12 a) Suma: Misma que en P. b) Multiplicación por escalares: Misma que en P. 2 el cero: El polinomio, es áquel cuya totalidad de coeficientes es cero. 3 inversos aditivos: El inverso de p de un polinomio p tiene por coeficientes los opuestos de los coeficientes de p Ejemplo EV 6: F (R) El conjunto de todas las funciones de valor real definidas en R: operaciones: Sean f y g dos funciones de valor real con dominio R y sea c cualquier escalar. a) Suma: Se define la suma de f + g de f y g como la función cuyos valores están expresados por: (f + g)(x) = f(x) + g(x) para toda x R b) producto por escalares: Igualmente, el producto por escalar cf se define como sigue: (c f)(x) = c f(x) para toda x A 2 el cero: La función cero, es aquella cuyos valores son todos ceros: (x)= para toda x R. 3 inversos aditivos: La inversa de f de f es la función (-)f. 4 axiomas: La comprobación de los axiomas se deja como ejercicio. Ejemplo EV 7: F (A) De manera más general que en el ejemplo de espacio vectorial 6, si A es un conjunto cualquiera definimos el conjunto F (A) de todas las funciones de valor real que tienen como dominio A; entonces F (A) es un espacio vectorial. Ejemplo EV 8: F (A, V ) De manera más general que en el ejemplo de espacio vectorial 7, si A es un conjunto cualquiera y V es un espacio vectorial (con una operación suma y producto por escalares ) definimos el conjunto F (A, V ) de todas las funciones que tienen como dominio X y como codominio V. Definimos en F (A, V ) la suma de la siguiente manera: f g : A V a f(a) g(a) y definimos el producto por escalares de la siguiente manera: c f : A V a c f(a) entonces F (A, V ) es un espacio vectorial. Normalmente, el símbolo usando para la suma de funciones es el mismo que el usando para la suma de V y el usado para el producto de un escalar por una función es el mismo que el símbolo del producto por escalares. 2

13 3.9. Subespacio Vectorial Como se ha visto probar que un conjunto es un espacio vectorial es un trabajo arduo. Sin embargo, hay situaciones en las que la prueba se reduce considerablemente: Cuando el conjunto está contenido en un conjunto mayor que ya es un espacio vectorial. En este caso, como todas las propiedades de los axiomas hacen referencia a elementos del conjunto y por tanto a elementos al conjunto mayor que ya es espacio vectorial y por consiguiente se verifican. Salvo posiblemente los axiomas A y M que hacen referencia a la cerradura. Definición 3.2 Sea V = (V, +, ) un espacio vectorial. Un subconjuto U de V (U V ) que no es vacío se dice subespacio vectorial o simplemente subespacio de V si U con las mismas operaciones de suma y multiplicación por escalares que están definidas en V, pero restringidas a vectores de U, es un espacio vectorial. Apesar que en la definción de subespacio está implicita la verificación de los axiomas, el siguiente resultado da la clave para la verificación de que un conjunto se subespacio. Teorema Un subconjunto no vacío U de un espacio vectorial V es con operaciones y es un subespacio de V si cumple las siguientes condiciones: El conjunto U es cerrado bajo la suma; Cualquiera dos elementos de U sumados dan como resultado un elemento que también está en U. El conjunto U es cerrado bajo la multiplicación por escalares; Cualquier elemento de U multiplicado por cualquier escalar da como resultado un elemento que también está en U. Demostración Debemos probar que si se cumplen las condiciones marcadas, entonces U con la suma, que ya tenía V, y el producto por escalares, que ya tenía V, satisface los axiomas para ser él mismo un espacio vectorial. newline A Sean x y y dos elementos cualquiera de U. Al cumplirse que U es cerrado bajo la suma, x y está en U. A2 A3 A4 Sean x y y dos elementos cualquiera de U, como x y y son elementos de V y V es espacio vectorial cumple A2: x y = y x Sean x, y y z elementos cualquiera de U; por tanto, son elementos de V y como V es espacio vectorial se cumple A3: x (y z) = (x y) z Como U no es vacío, U tiene al menos un elemento, digamos x. Como U es cerrado bajo el producto por escalares: c R, c x U En particular, se debe cumplir para c =. Así, x U. Pero nosotros probamos que x =. Por tanto, el neutro de V, está también en U. 3

14 A5 M Sea x un elemento cualquiera de U. Debemos ver que tiene inverso aditivo en U. Como U es cerrado bajo el producto por escalares: c R, c x U En particular, debe cumplirse para c = ; es decir, x U. Pero nosotros hemos probado que x = x (el inverso aditivo de x). Por tanto x U. Sean x un elemento cualquiera de U y c un escalar cualquiera. Al cumplirse que U es cerrado bajo el producto por escalares, c x está en U. De forma similar a la prueba de que los axiomas A2 y A3 se cumplen al cumplirse para V (los elementos de U son elementos de V ), los axiomas M2 a M5 se pueden verificar fácilmente. La prueba de que U con las operaciones y de V cumple los axiomas nos dice que es espacio vectorial; y como U V, U es subespacio vectorial de V Observe que realmente el resultado anterior hace referencia a tres condiciones: La que está en el enunciado: que el conjunto no sea vacío, y las dos explícitamente citadas. Ejemplo 3.7 El subconjuto W de P 2 formado por sólo polinomios de la forma p(x) = a x + 3 a x 2 donde a es un número real, es un subespacio vectorial? Solución Requisito : Se debe probar que el conjunto posee al menos un elemento: Debemos dar un ejemplo concreto de un polinomio que corresponde a este formato: Por ejemplo p(x) = 2 x + 6 x 2 el coeficiente de x 2, 6, es justo el doble del coeficiente de x, que es 2. Por tanto, W. Requisito : Debemos probar que si se suman dos elementos cualquiera del conjunto, el resultado también está en el conjunto. Para abarcar cualquier elemento de W no podemos utilizar un valor numérico de a; debemos utilizar letras. Sean p(x) = a x + 3 a x 2 y q(x) = a 2 x + 3 a 2 x 2 dos elementos de W, veamos si p(x) + q(x) W : p(x) + q(x) = a x + 3 a x 2 + a 2 x + 3 a 2 x 2 = (a + a 2 ) x + 3 (a + a 2 ) x 2 de donde vemos que el coeficiente de x 2 es el de x multiplicado por 3. Por tanto, p(x) + q(x) W. Por tanto, W es cerrado bajo la suma. Requisito 2: Debemos probar que si se multiplica un escalar cualquiera por un elemento cualquiera del conjunto, el resultado también está en el conjunto. Para abarcar cualquier elemento de W no podemos utilizar un valor numérico de a; debemos utilizar letras. Sea p(x) = a x + 3 a x 2 un elemento cualquiera de W y c un escalar cualquiera, veamos si c p(x) W : c p(x) = c (a x + 3 a x 2 ) = (c a ) x + 3 (c a ) x 2 de donde vemos que el coeficiente de x 2 es el de x multiplicado por 3. Por tanto, c p(x) W. Por tanto, W es cerrado bajo el producto por escalares. Como hemos probado los tres requisitos, W es un subespacio vectorial de P 2. 4

15 Ejemplo 3.8 El conjunto W de todas las matrices 2 2 de la forma: [ a b donde a y b son números reales que cumplen a b, es un subespacio vectorial de M 2 2? Solución Requisto : Como la matriz [ ] A = tiene el patrón de las matrices de W para a = y b = y se cumple a b =, A W. Por tanto, W. Requisito : Debemos probar que si se suman dos elementos cualquiera del conjunto, el resultado también está en el conjunto. Para abarcar cualquier elemento de W no podemos utilizar valores numéricos; debemos utilizar letras. Sean [ ] [ ] a a2 A = y B = b b 2 dos elementos de W, que cumplan a b y a 2 b 2 veamos si A + B W : [ ] a + a A + B = 2 b + b 2 Ahora apliquemos la prueba última para ver si pertenece a W (a + a 2 ) (b + b 2 )) = a b + a 2 b + a b + a 2 b 2? Observe que lo que es cierto es que a b y que a 2 b 2. Pero el término a 2 b + a b 2 puede cambiar la desigualdad. De hecho los valores a =, b = 5, a 2 = 3, y b 2 = cumplen Pero Estos números nos dan las matrices a b = ()( 5) = 5 y a 2 b 2 = ( 3)() = 3 (a + a 2 )(b + b 2 ) = ( + 3)( 5 + ) = ( 2)( 4) = 8 > A o = [ 5 ] ] y B o = [ 3 que sí están en W, pero cuya suma no está en W. A estos ejemplos concretos que prueban que una cierta afirmación del tipo para cualquiera no se cumpla se llaman contra ejemplos. El anterior contra ejemplo hace que W no sea cerrado bajo la suma. Fallando un requisito como ahora, W no es un subespacio. Sin embargo, como nos interesa ver la opción que se ajusta a W deberemos revisar el otro requisito. Requisito 2: Debemos probar que si se multiplica un escalar cualquiera por un elemento cualquiera del conjunto, el resultado también está en el conjunto. Para abarcar cualquier elemento de W no podemos utilizar un valor numérico de a; debemos utilizar letras. Sea [ ] a A = b un elemento cualquiera de W (y por tanto a b ) y c un escalar cualquiera, veamos si c A W : [ ] c a c A = c b 5 ]

16 Ahora apliquemos la prueba última para ver si pertenece a W Como y c 2 y a b entonces (c a ) (c b )? (c a ) (c b ) = c 2 (a b ) (c a ) (c b ) = c 2 (a b ) Por tanto, c A W. Por tanto, W es cerrado bajo el producto por escalares. Resumiendo, W no es espacio vectorial: sí es cerrado bajo el producto por escalares pero no es cerrado bajo la suma. Ejemplo 3.9 Sea V = M n n el conjunto de todas las matrices cuadradas. Este conjunto con la suma conocida de matrices y el producto de un escalar por una matriz es un espacio vectorial. Éste es nuestro espacio vectorial de referencia. Definimos un subconjunto de M n n formado por las matrices simétricas: { U = A M n m : A T } = A Es decir, U está formado por todas las matrices cuadradas n n que al tomarle la transpuesta queda la misma matriz. Vea que U es un subespacio de M n n. Demostración Veamos que U cumple los requisitos para ser subespacio:. Que U. Efectivamente, la matriz de ceros n n es una matriz que al tomarle su transpuesta queda ella misma. Por tanto, T =. Como U agrupa a todas las matrices n n que cumplen esta propiedad; es un elemento de V. Por tanto, U no es vacío. 2. Que U es cerrado bajo la suma. Tomemos dos matrices cualquiera n n de U, digamos A y B. Si son elementos de U deben ser simétricas, es decir: A T = A B T = B Veamos ahora que la matriz A + B también está en U, es decir, que A + B es una matriz simétrica: Para ello, tomemos su transpuesta y veamos que queda ella misma. Sabemos que (A + B) T = A T + B T por las propiedades de la transpuesta de una matriz. Siendo A y B simétricas, deducimos que (A + B) T = A + B Es decir, la matriz A + B es tal que cuando se obtiene su transpuesta queda ella misma. Concluimos que A + B es una matriz n n simétrica, es decir, A + B U. 3. Que U es cerrado bajo el producto por escalares. Sea c un escalar cualquiera y A es un elemento de U cualquiera. Así, A es una matriz simétrica n n: A T = A. Por las propiedades de la traza y teniendo la simetría de A: (c A) T = c A T = c A Por tanto, la matriz c A es tal que cuando se calcula su transpuesta se obtiene la misma matriz c A. Por tanto, c A es una matriz n n simétrica. Es decir, c A es un elemento de U. 6

17 De lo anterior, concluimos que el conjunto U es un subespacio de M n n Ejemplo 3. Tomemos como espacio vectorial de referencia R n con la suma y el producto por escalares comúnes. Sea A una matriz m n fija, defina en R n el conjunto formado por todos los vectores que son solución al sistema de ecuaciones homogéneas cuya matriz de coeficientes es A: U = {x R n : A x = } Vea que U es un subespacio de R n. Comente si el correspondiente conjunto de soluciones a un sistema no homogéneo es un subespacio. Demostración Veamos que U satisface los requisitos para ser espacio vectorial.. Que U. Efectivamente, como el producto de cualquier matriz A por el vector cero da como resultado el vector cero (cuando se tienen las dimensiones adecuadas para que el producto sea factible), concluimos que el vector de R n es un elemento de U. 2. Que U es cerrado bajo la suma. Sean x y x 2 dos elementos cualquiera de U. Por tanto, ellos deben ser solución al sistema homogéneo A x =, es decir: A x = y A x 2 = Así, si utilizamos la propiedad distributiva del producto: A (x + x 2 ) = A x + A x 2 = + = Esto nos dice que cuando el vector x + x 2 se sustituye por el vector de incógnitas en la ecuación A x = la ecuación se satisface. Es decir, que x + x 2 es una solución al sistema homogéneo. Como U contiene todas las soluciones a ese sistema, x + x 2 está en U. 3. Que U es cerrado bajo el producto por escalares. Sean c un escalar cualquiera y y un elemento cualquiera de U. utilizamos las propiedades del producto con matrices tenemos Así y satisface A y =. Si ahora A (c y) = c (A y) = c = Esto dice que c y es una solución al sistema A x =. Por tanto, c y es un elemento de U. Por lo anterior, U es un subespacio vectorial de R n. Si el sistema no fuera homogéneo tendría que tener la forma A x = b para b. Afirmamos que el conjunto de soluciones no podría ser subespacio de R n. Efectivamente, hemos visto que el vector cero siempre debe pertencer al cualquier subespacio. En particular, debería pertenecer al conjunto de soluciones. Pero esto es imposible debido a que A = b. Concluimos que si el sistema no es homogéneo, el conjunto de soluciones no forman un subespacio de R n 7

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación. Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CSI/ITESM 7 de junio de 28 Índice 5.. Objetivos................................................ 5.2. Motivación...............................................

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Tema 3: Producto escalar

Tema 3: Producto escalar Tema 3: Producto escalar 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que verifica

Más detalles

Aplicaciones lineales continuas

Aplicaciones lineales continuas Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas

Más detalles

Transformaciones canónicas

Transformaciones canónicas apítulo 29 Transformaciones canónicas 29.1 Introducción onsideremos una transformación arbitraria de las coordenadas en el espacio de las fases de dimensión 2(3N k) (con el tiempo como un parámetro) Q

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa: NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o

Más detalles

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Espacios Vectoriales Departamento de Matemáticas ITESM Espacios Vectoriales Álgebra Lineal - p. 1/80 En esta lectura se introduce el concepto de espacio vectorial. Este concepto generaliza

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Clasificación de métricas.

Clasificación de métricas. Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1; 3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: 1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

(Ec.1) 2α + β = b (Ec.4) (Ec.3)

(Ec.1) 2α + β = b (Ec.4) (Ec.3) Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,

Más detalles

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Dominios de factorización única

Dominios de factorización única CAPíTULO 3 Dominios de factorización única 1. Dominios euclídeos En la sección dedicada a los números enteros hemos descrito todos los ideales de Z. En este apartado introducimos una familia de anillos

Más detalles