). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo."

Transcripción

1 TEMA.- OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD El problema consiste en optimizar una función de n variables z = f(x, x,..., x n ) sujeta a las m condiciones: g (x, x,..., x n ) = b g (x, x,..., x n ) = b... g m (x, x,..., x n ) = b m siendo m < n. Método de sustitución.- Si es factible despejar m incógnitas del sistema anterior, en función de las otras nm incógnitas, sustituimos sus valores en z y el problema se reduce a una optimización sin restricciones. Un ejemplo: Se trata de maximizar u(x,y) = ln(+xy), sujeto a x + y = 8 Despejamos y = 8 x, sustituimos en u(x,y) y el problema se reduce, por lo tanto, a maximizar u(x) = ln( + 8x x 8 x ). Derivando e igualando a cero: u (x) = 8x x x = 4 y = 4. 8x x 8 x La segunda derivada: u (x) = u (4) = <, luego en 8x x 8 el punto (4,4) hay un máximo. Método de los multiplicadores de Lagrange.- /

2 /

3 .- Existirá máximo si H y H.- Existirá mínimo si H y H iii. Función objetivo con n variables independientes y m restricciones /

4 Condición suficiente de optimalidad global.- 4/

5 Interpretación de los multiplicadores de Lagrange.- Si f toma el valor óptimo en x * * df (x ), entonces k ó también df(x * ) = k db k. db EJERCICIOS k Lo resolveremos por el método de sustitución. Se tiene que x = 8 y luego U(x,y) = = f(y) = ln(8y) + lny. df(y) 4 La derivada 4y = 8 y y =. dy 8 y y d f (y) 8 La segunda derivada: que es menor que cero en todo punto del dy 8 y y dominio de f(y). Luego en y =, f(y) toma un máximo global. Por tanto en el punto (, ) se maximiza U(x,y) a) La función lagrangiana (x, y) = xy + y + (P x + P y M) y + P = x + + P = P x + P y = M M P M P Resolviendo el sistema se obtiene x = ; y = ; = 4P 4P M P P P 5/

6 El Hessiano orlado: P P H P = 4P P >, luego las cantidades obtenidas P maximizan la utilidad. b) La variación que experimentará la utilidad máxima ante un cambio (de una unidad) en la cantidad de dinero disponible es el valor opuesto del multiplicador de Lagrange, es decir, M P. P P La función lagrangiana (x, y) = 4x + y + (x + y 5) 8x + = y + = x + y = 5 Resolviendo el sistema se obtiene x =5; y =5; = 5 El Hessiano orlado: H 8 = 6 <, luego el punto (5, 5) minimiza la función objetivo. Si la constante de restricción pasa de 5 a 5, el valor de la función objetivo en el óptimo aumentará aproximadamente 5 unidades (el opuesto de ) Lo resolveremos por sustitución. x+y=4 y = 4 x f(x) = x + 8x x (6 8x + x ) = 8x x f (x) = 8 6x = x = y =. Por otra parte f (x) = 6 < en el punto (, ) hay un máximo relativo. Como la forma cuadrática asociada a la matriz hessiana de f(x,y): es definida 4 negativa, la función f(x,y) es cóncava. Además el conjunto factible es convexo, luego el punto (, ) es máximo global. Lo resolveremos por sustitución: 6/

7 x + y = y = x f(x) = x x f (x) = x x = por otra parte: f (x) = 6x f ''() (,) es mínimo f '', x y local x y 8 es máximo local Se trata de minimizar C(x, y) = x + (y ), sujeto a Q(x, y) = x + (y ) = 9. La función lagrangiana: (x, y) = x + (y ) + [x + (y ) 9] + x = (y ) + (y ) = x + (y ) = 9 admite como única solución (con los factores positivos): x =, y =, = 6. El hessiano orlado H x = 8(y ) 8x ( + ) = (y ) x (y ) = (particularizado para la solución obtenida) = 84 <, luego dicha solución minimiza el coste. El valor mínimo sería C(, ) = + ( ) =. b) El coste marginal de aumentar una pequeña cantidad, por ejemplo una unidad, el nivel de producción, sería el opuesto del valor del multiplicador, es decir 6, lo que significa que disminuiría sus costes. 7/

8 El ejercicio consiste en maximizar U(x,y,z) = 5lnx+ lny + lnz sujeto a x + y + 4z =. La función lagrangiana (x, y) = 5lnx + lny + lnz + (x + y + 4z ) 5 + = x + = y + 4 = z x + y + 4z = sistema que resuelto proporciona x = 5, y = 5, z = 5, = El Hessiano orlado: H, y H , luego las cantidades obtenidas maximizan la utilidad. La función lagrangiana: (x, y) = x + y + (x + y) x + x = + = x + y = 8/

9 8 admite como soluciones (x =, y =, = ) y ( x =, y =, = ) 7 El hessiano orlado H x x 6x = 6x. Para la primera solución H = <, luego el punto (, ) es mínimo local. Para la segunda solución H = >, luego el punto 8, 7 es máximo local. a) Se trata de maximizar U(x,y) = lnx + lny, sujeto a px + qy = r. La función lagrangiana (x, y) = lnx + lny + (px + qy r) p x q y px qy r Resolviendo el sistema se obtiene x = r r ; y = ; = p q r p q q p El Hessiano orlado: H p >, luego los valores obtenidos de x x y q y x e y maximizan la utilidad. 9/

10 b) Como la forma cuadrática asociada a la matriz hessiana de U(x,y): x es y definida negativa, la función U(x,y) es cóncava. Además el conjunto factible es convexo, luego r r el punto, es máximo global. p q c) Sería el opuesto del valor del multiplicador, r a) Se trata de maximizar U(x,y) = x,6 y,4, sujeto a x + y = 6. La función lagrangiana (x, y) = x,6 y,4 + (x + y 6),4 y 6 x,6 x 4 y x y 6 Resolviendo el sistema se obtiene x =8; y = 8; = 4 9 4,6 El Hessiano orlado: H,4,6,4,4y,4 96x 88 6y >,,4,4,6,6,4,6, 4 x x y y x y x,6,4,4x,4,6,6 x y y luego los valores obtenidos de x e y maximizan la utilidad. /

11 b) Como la forma cuadrática asociada a la matriz hessiana de U(x,y):,4,4y,4,4,4,6 x x y,6 es semidefinida negativa (el determinante es cero), la función U(x,y) es,4,4x,4,6,6 x y y cóncava. Además el conjunto factible es convexo, luego el punto (8, 8) es máximo global. c) Sería el opuesto del valor del multiplicador, 4 9 4,6,69 Se trata de minimizar x + (y ) +, sujeto a x + (y ) = 9, con x, y La función lagrangiana: (x, y) = x + (y) + + [x + (y) 9] + x = (y) + (y) = x + (y) =9 x, y admite como solución x =, y =, = 6 El hessiano orlado H x (y ) x (y ), para x =, y =, = toma el valor < luego el punto (, ) es mínimo local. 7 /

12 La función lagrangiana: (x, y) = 4x + y + (x+ y 5) 8x + = y + = x + y 5 = admite como solución x = 5, y = 5, = 5 local. El hessiano orlado H 8 = 6 < luego el punto (5, 5) es mínimo El efecto sobre el valor de la función objetivo en el óptimo, puesto que el incremento de la constante es muy pequeño ( frente a 5) es prácticamente igual al opuesto del valor del multiplicador, es decir, se producirá un aumento aproximado de 5. a) Se trata de maximizar U(x,y) = 6xy + (y ), sujeto a 4x + y = 8. La función lagrangiana (x, y) = 6xy + (y ) + (4x + y 8) 6y + 4 = 6x + + = 4x + y = Resolviendo el sistema se obtiene x = ; y = ; = 6 la utilidad. El Hessiano orlado: 4 H 4 6 = 96 >, luego las cantidades obtenidas maximizan 6 /

13 Sustituyendo los valores obtenidos en la función de utilidad se obtiene 5 7 U, 6 b) Se trataría ahora de maximizar U(x,y) = 6xy + (y ), sujeto a 4x + y 8. Las condiciones necesarias de Khun-Tucker 6y + 4 = 6x + + = (4x + y) = 8 Para que 4x + y < 8, tendría que ser = x = Luego con una renta monetaria < 8 no se aumenta la utilidad. que carece de significado. 7 /

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles

CONVEXIDAD DE CONJUNTOS.-

CONVEXIDAD DE CONJUNTOS.- CONVEXIDAD DE CONJUNTOS.- Conjunto convexo Conjunto no convexo No lo es ya que se trata de la circunferencia de centro (0,0) y radio 1. Dos puntos de ella, por ejemplo, son los de coordenadas (1, 0) y

Más detalles

Matemáticas para Economistas

Matemáticas para Economistas Matemáticas para Economistas Parte II Optimización Clásica y con Restricciones Tema 5 Optimización sin Restricciones 5 Optimización sin Restricciones 5.1 Optimización sin Restricciones con una variable

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 1 1. Dada la función f(x, y) = 2x 3 + 6xy 2 6x 2 6y 2 a) Hallar los puntos críticos de f. b) Averiguar si los puntos

Más detalles

b) Escribir una restricción de forma que los puntos obtenidos en a) no sean solución del problema restringido.

b) Escribir una restricción de forma que los puntos obtenidos en a) no sean solución del problema restringido. 1.- Sea f (x,y) = e x + e y, se pide: a) Existe algún punto óptimo de f?. b) Si se considera la función f sujeta a la restricción x + y = 2, existe algún punto óptimo?. 2.- Sea f (x,y) = x 2 + y 2 : a)

Más detalles

1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución.

1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución. Tema 1. Programas matemáticos 1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución. a) Una empresa produce tres bienes cuyos precios de mercado

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9 Soluciones a los ejercicios propuestos: Matemáticas III. Curso 10 11 9 Tema 9 1. Consideremos el problema min F x, ys.a.:gx, y = b. Siendo F y g funciones con derivadas parciales continuas en IR. Supongamos

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización con restricciones de igualdad Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización con restricciones de igualdad 1

Más detalles

TEMA 3. OPTIMIZACIÓN CON RESTRICCIONES DE DESIGUALDAD: CONDICIONES DE KUHN TUCKER

TEMA 3. OPTIMIZACIÓN CON RESTRICCIONES DE DESIGUALDAD: CONDICIONES DE KUHN TUCKER e-mail: imozas@el.uned.es https://www.innova.uned.es/webpages/ilde/web/inde.htm TEMA 3. OPTIMIZACIÓN CON RESTRICCIONES DE DESIGUALDAD: CONDICIONES DE KUHN TUCKER Observemos que minimizar f() equivale a

Más detalles

MATEMATICAS III (Lic. en Economía. 01/12/04)

MATEMATICAS III (Lic. en Economía. 01/12/04) Departamento de Métodos Cuantitativos en Economía y Gestión Universidad de Las Palmas de G.C. MATEMATICAS III (Lic. en Economía. 01/12/04 1. El dominio de la función f(x, y = ln [ (x 2 y(x 1 2] es un conjunto:

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y CONTABLES DEPARTAMENTO DE MÉTODOS CUANTITATIVOS Métodos Cuantitativos IV MAXIMOS Y MINIMOS DE FUNCIONES DE DOS

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN

TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN Preparación y Requisitos Objetivos Distinguir extremos locales de globales Utilizar las condiciones necesarias y/o suficientes para calcular los extremos de funciones

Más detalles

FUNCIONES DE VARIAS VARIABLES EJERCICIOS DE APLICACIÓN A LA ECONOMÍA

FUNCIONES DE VARIAS VARIABLES EJERCICIOS DE APLICACIÓN A LA ECONOMÍA Índice Presentación... 3 Introducción... 4 Descripción matemática mediante una función de varias variables... 5 Funciones marginales de funciones económicas... 6 Maximización de beneficios... 8 Optimización

Más detalles

Optimización con restricciones de desigualdad. Yolanda Hinojosa

Optimización con restricciones de desigualdad. Yolanda Hinojosa Optimización con restricciones de desigualdad Yolanda Hinojosa Contenido Optimización no lineal con restricciones de desigualdad. Condiciones necesarias y suficientes de óptimo Análisis de sensibilidad.

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada 1. Introducción Tema 8: Aplicaciones de la derivada En la unidad anterior hemos establecido el concepto de derivada de una función f(x) en un punto x 0 de su dominio y la hemos interpretado geométricamente

Más detalles

Preferencias particulares: Sustitutos perfectos

Preferencias particulares: Sustitutos perfectos Gasolina Terpel (galón) Preferencias particulares: Sustitutos perfectos 4 3 La TMS es constante 2 1 1 2 3 4 Gasolina Biomax (galón) Complementos Perfectos Zapato del Pie Izquierdo 4 3 2 1 1 2 3 4 Zapato

Más detalles

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr.

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr. Optimización Optimización Con Restricciones de Igualdad Dr. E Uresti ITESM Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31 ducción En esta lectura veremos el problema de optimizar

Más detalles

Slide 1. Slide 2. Slide 3. Optimización. Facultad de Economía y Empresa. Microeconomía I. Prof. Carlos R. Pitta. Resumen: Requisitos Matemáticos

Slide 1. Slide 2. Slide 3. Optimización. Facultad de Economía y Empresa. Microeconomía I. Prof. Carlos R. Pitta. Resumen: Requisitos Matemáticos Slide 1 Facultad de Economía y Empresa Microeconomía I Prof. Carlos R. Pitta Slide Resumen: Requisitos Matemáticos Slide 3 Optimización Las teorías económicas asumen que un agente se encuentra buscando

Más detalles

Facultad de Economía y Empresa. Microeconomía I. Prof. Carlos R. Pitta

Facultad de Economía y Empresa. Microeconomía I. Prof. Carlos R. Pitta Facultad de Economía y Empresa Microeconomía I Prof. Carlos R. Pitta Resumen: Requisitos Matemáticos Optimización Las teorías económicas asumen que un agente se encuentra buscando el valor óptimo de alguna

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

f(x) = + 4. (0.15 ptos.) Calcula el dominio de la función f(x, y, z) = ln(x + 3) + ln(y + 2) + z + 4 z z por qué incluyes cada condición.

f(x) = + 4. (0.15 ptos.) Calcula el dominio de la función f(x, y, z) = ln(x + 3) + ln(y + 2) + z + 4 z z por qué incluyes cada condición. MATEMÁTICAS I Grupo GF 1--15 Ia 1. (0. ptos.) Si f(x) es la función representada en la gráfica, di cuáles de las afirmaciones siguientes son verdaderas y corrige las que sean falsas (sabiendo que todos

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 51 Formulación general del problema Óptimos locales Condición de regularidad Condiciones

Más detalles

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre Departamento de Métodos Cuantitativos en Economía y Gestión Universidad de Las Palmas de G.C. MATEMATICAS III (Lic. en Economía. 14/7/4) Convocatoria adelantada de Septiembre 1. (*) Sea f(x, y) : { ax

Más detalles

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana TEORÍA DE LA EMPRESA ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana asienrag@gmail.com. Conjuntos y funciones de producción El conjunto de posibilidades

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

Tema IV : Introducción a la optimización de funciones de varias variables.

Tema IV : Introducción a la optimización de funciones de varias variables. Tema IV : Introducción a la optimización de funciones de varias variables. 1. Planteamiento de un problema de optimización.. Optimización sin restricciones. 3. Optimización con restricciones de igualdad.

Más detalles

Multiplicadores de Lagrange y dualidad

Multiplicadores de Lagrange y dualidad Multiplicadores de Lagrange y dualidad Problemas con solo restricciones de igualdad Sea x* un mínimo local y regular ( : son linealmente independientes), entonces existen tales que: Interpretación y ejemplos.

Más detalles

Tema 7: Aplicaciones de la derivada

Tema 7: Aplicaciones de la derivada Tema 7: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función f(x) en un punto x 0 de su dominio y la hemos interpretado geométricamente

Más detalles

Problemas del tema 3

Problemas del tema 3 Problemas del tema 3 y 1. Sea f(, y) = e + e, se pide: a) Eiste algún punto óptimo de f?. b) Si se considera la función f sujeta a la restricción + y =, eiste algún punto óptimo?.. Sea f(, y) = + y : a)

Más detalles

Introducción a la Optimización Matemática

Introducción a la Optimización Matemática Introducción a la Optimización Matemática Modelos de Optimización Tienen como propósito seleccionar la mejor decisión de un número de posibles alternativas, sin tener que enumerar completamente todas ellas.

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Cálculo I Curso 2016/17 19 de junio de 2017 Soluciones a los ejercicios del examen final 1) Se considera la función f : [0, ) R definida por { 1 + x(ln(x) 1) si x > 0, f(x) = 1 si x = 0. (a) Probar que

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

El Optimo del Consumidor

El Optimo del Consumidor El Optimo del Consumidor Jaime L. del Valle Caballero * Nota: Las notas que se publican a continuación (# 5 y 6) son el producto de varios años de enseñanza de los cursos de Fundamentos Matemáticos de

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO 2 étodos de solución de E de primer orden 2.7 Factor integrante Como puede observarse en todas las E resueltas hasta ahora, es frecuente que hagamos manipulaciones algebraicas para simplificar

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de ED de primer orden 2.6 Ecuaciones diferenciales exactas Antes de abordar este tema, sugerimos al lector revise la última sección de este capítulo, la cual trata sobre

Más detalles

Práctico de Optimización

Práctico de Optimización Práctico de Optimización Modelado de Redes de Telecomunicaciones 24 de mayo de 2011 1. Repaso Minimización sin restricciones de una función cuadrática. Encontrar el gradiente, el Hessiano, los puntos estacionarios

Más detalles

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo Máximos y mínimos. Anteriormente estudiamos métodos para obtener los extremos de funciones de una variable. Extenderemos esas técnicas a funciones de dos variables. Sea una función de dos variables, definida

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

TEORÍA CLÁSICA DE LA DEMANDA ADOLFO GARCÍA DE LA SIENRA 1 Instituto de Filosofía Facultad de Economía Universidad Veracruzana

TEORÍA CLÁSICA DE LA DEMANDA ADOLFO GARCÍA DE LA SIENRA 1 Instituto de Filosofía Facultad de Economía Universidad Veracruzana TEORÍA CLÁSICA DE LA DEMANDA ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana asienrag@gmail.com. La teoría clásica de la demanda La teoría clásica de la demanda

Más detalles

Optimización. Condiciones de Karush-Kuhn-Tucker ITESM. Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30. Dr. E Uresti

Optimización. Condiciones de Karush-Kuhn-Tucker ITESM. Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30. Dr. E Uresti Optimización Condiciones de Karush-Kuhn-Tucker Dr. E Uresti ITESM Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30 Las condiciones necesarias que deben satisfacer los óptimos de problemas de

Más detalles

Examen bloque Álgebra Opcion A. Solución

Examen bloque Álgebra Opcion A. Solución Examen bloque Álgebra Opcion A EJERCICIO 1A (2 5 puntos) Halle la matriz X que verifique la ecuación matricial A2 X = A B C, siendo A, B y C las matrices Halle la matriz X que verifique la ecuación matricial

Más detalles

MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. Moebius

MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. Moebius 2018-19 MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. 1. Halle la derivada de las siguientes funciones: a) f(x) = 3x 4 + 2 x 5 + 5 x 2 b) f(x) = 2x 1 2x+1

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

TEMA 3. LA ELECCIÓN RACIONAL Y EL EQUILIBRIO DEL CONSUMIDOR 1. La elección del consumidor 2. La restricción presupuestaria 3. Las preferencias del

TEMA 3. LA ELECCIÓN RACIONAL Y EL EQUILIBRIO DEL CONSUMIDOR 1. La elección del consumidor 2. La restricción presupuestaria 3. Las preferencias del TEMA 3. LA ELECCIÓN RACIONAL Y EL EQUILIBRIO DEL CONSUMIDOR 1. La elección del consumidor 2. La restricción presupuestaria 3. Las preferencias del consumidor 4. El equilibrio del consumidor. Análisis gráfico.

Más detalles

PROGRAMACIÓN LINEAL. Def.-. Un sistema de inecuaciones lineales con dos incógnitas es un conjunto de dos o más inecuaciones de dicho tipo.

PROGRAMACIÓN LINEAL. Def.-. Un sistema de inecuaciones lineales con dos incógnitas es un conjunto de dos o más inecuaciones de dicho tipo. PROGRAMACIÓN LINEAL Nota.- Un problema de programación lineal consiste en determinar los posibles valores óptimos (máximos o mínimos absolutos) de una función de dos variables F(x,y) = ax + by con a y

Más detalles

Tema 5 Aplicaciones del cálculo diferencial

Tema 5 Aplicaciones del cálculo diferencial Tema 5 Aplicaciones del cálculo diferencial 1. APLICACIONES EN UNA VARIABLE 1.1. Extremos relativos. Proposición 1.1: Monotonía Sea f : [a, b] R continua en [a, b] y derivable en (a, b), entonces: (1)

Más detalles

Teorías del Consumidor : La restricción presupuestaria

Teorías del Consumidor : La restricción presupuestaria Microeconomía I AEA214 Escuela de Negocios Teorías del Consumidor : La restricción presupuestaria Clase 2 MATERIAL PROPIEDAD DE UDLA. AUTORIZADA SU UTILIZACIÓN SÓLO PARA FINES ACADÉMICOS. Objetivos Objetivo

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0).

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0). Soluciones a los ejercicios propuestos: Matemáticas III Curso 08 09 36 Tema 4 1 Sea f : IR 3 IR 3 definida por fx, y, z = e x+y, cosz, e z a Determinar si f es localmente invertible en 0, 0, 0 J fx, y,

Más detalles

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es.

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es. Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es Entonces, Λ = Y0 J 1 = f g f Λ g = 0 Esta ecuación satisface las condiciones necesarias

Más detalles

Parcial. lim. 4. Dada la función z = f (x, y) = x 2 y 2x 2 4y 2 determinar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla

Parcial. lim. 4. Dada la función z = f (x, y) = x 2 y 2x 2 4y 2 determinar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla 1. (a) Halle el límite, si existe, o muestre que no existe lim (x,y) (2,2) x 3 + x 2 y 2xy 2 3x 3 + xy 2 3x 2 y y 3 (b) Utilizar la regla de la cadena para calcular z s ó z t si z = xe y + ye x, x = e

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. Junio de 2011. Apellidos: Nomre: DNI: Titulación: Grupo: DURACIÓN DEL EXAMEN: 2h NO se permite el uso de calculadoras.

Más detalles

INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO DEPARTAMENTO ACADÉMICO DE ECONOMÍA ECONOMÍA III. PRIMER EXAMEN PARCIAL 22 de Septiembre de 2012

INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO DEPARTAMENTO ACADÉMICO DE ECONOMÍA ECONOMÍA III. PRIMER EXAMEN PARCIAL 22 de Septiembre de 2012 Grupo: Clave Única: Nombre: INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO DEPARTAMENTO ACADÉMICO DE ECONOMÍA ECONOMÍA III PRIMER EXAMEN PARCIAL 22 de Septiembre de 2012 1 Salón: Este examen consta de 30 preguntas,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Hasta ahora, hemos estudiado como maximizar o minimizar una función sujeta a restricciones en forma de ecuaciones de igualdad.

Más detalles

PRÁCTICA 6. Para encontrar los valores que optimizan este lagrangiano hay que resolver el sistema de ecuaciones formado por las CPO: 2,, 16

PRÁCTICA 6. Para encontrar los valores que optimizan este lagrangiano hay que resolver el sistema de ecuaciones formado por las CPO: 2,, 16 0,25 1.- Una empresa cua función de producción es 2 K L adquiere sus factores productivos a unos precios r1 w2. a) Determine el coste mínimo en el que debe incurrir para producir 16 ud. de output. Para

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática de junio de 200 Ejercicio 3 pt. Considera el siguiente problema de programación no lineal:. Se trata de un problema convexo?

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de febrero de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Considera la función f!x"! ln! x ""!. Se

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Tercer Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1 (30 puntos) La compañía Xeroch vende copiadoras. Uno de los factores de

Más detalles

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 6 Aplicaciones de la derivada José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Aproximación no lineal de funciones.

Aproximación no lineal de funciones. Tema 14 Aproximación no lineal de funciones 141 Aproximación no lineal de funciones con una variable Si una función definida en un intervalo es derivable en este intervalo su función derivada asocia a

Más detalles

La Programación Lineal. H. R. Alvarez A., Ph. D. 1

La Programación Lineal. H. R. Alvarez A., Ph. D. 1 La Programación Lineal H. R. Alvarez A., Ph. D. 1 Aspectos generales Se considera a George Dantzig el padre de la P. L. Su objetivo es el de asignar recursos escasos a actividades que compiten por ellos.

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

=, y la empresa utiliza 2 unidades de

=, y la empresa utiliza 2 unidades de Universidad de la República Facultad de Ciencias Económicas y de Administración Microeconomía Avanzada AUTOEVALUACIÓN: LA PRODUCCIÓN Y LA OFERTA 1. (Universidad Complutense de Madrid). Señale la afirmación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Capítulo Cuatro TEORÍA DE LA CONDUCTA DEL CONSUMIDOR PROFESOR: RICARDO HIDALGO

Capítulo Cuatro TEORÍA DE LA CONDUCTA DEL CONSUMIDOR PROFESOR: RICARDO HIDALGO Capítulo Cuatro TEORÍA DE LA CONDUCTA DEL CONSUMIDOR PROFESOR: RICARDO HIDALGO [I] CONCEPTO.- Estudia la obtención de la forma y ubicación de la curva de demanda del consumidor para un producto (bien o

Más detalles

CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR ÁREA DE CIENCIAS BÁSICAS CÁLCULO DIFERENCIAL PERIODO ACADÉMICO: 2014-A TRABAJO FINAL PARTE 2

CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR ÁREA DE CIENCIAS BÁSICAS CÁLCULO DIFERENCIAL PERIODO ACADÉMICO: 2014-A TRABAJO FINAL PARTE 2 CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR ÁREA DE CIENCIAS BÁSICAS CÁLCULO DIFERENCIAL PERIODO ACADÉMICO: 2014-A TRABAJO FINAL PARTE 2 Fecha de entrega: 19 y 20 de mayo de 2015 RECTA TANGENTE

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES 1.- GRÁFICOS TRIDIMENSIONALES ü 1.1.- CÓMO DIBUJAR FUNCIONES EN TRES DIMENSIONES El comando que se necesita para dibujar funciones

Más detalles

Soluciones del capítulo 9 Optimización Estática

Soluciones del capítulo 9 Optimización Estática Soluciones del capítulo 9 Optimización Estática Héctor Lomelí y Beatriz Rumbos 6 de febrero de 00 9 Sean A y B dos subconjuntos convexos de R n : b Sea A + B = {a + b : a A y b B} y sean x, y A + B Se

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles

Algoritmos con restricción

Algoritmos con restricción Algoritmos con restricción El problema general de programación no lineal con restricciones se define como sigue: Maximizar (o minimizar z = f(x g(x 0 Las condiciones X 0 de no negatividad forman parte

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

1. INECUACIONES LINEALES CON DOS INCÓGNITAS.

1. INECUACIONES LINEALES CON DOS INCÓGNITAS. TEMA 2: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS. Se llama inecuación lineal con dos incógnitas a una inecuación de la forma: a x +b y c ( puede ser >,

Más detalles

Examen Parcial COMPROMISO DE HONOR. Firmo a pie el presente compromiso, como constancia de haber leído y de aceptar la declaración anterior.

Examen Parcial COMPROMISO DE HONOR. Firmo a pie el presente compromiso, como constancia de haber leído y de aceptar la declaración anterior. Examen Parcial Paralelo: Calificación: Docente: Gonzalo E. Sánchez, PhD COMPROMISO DE HONOR Yo al firmar este compromiso reconozco que el presente examen está diseñado para ser resuelto de manera individual,

Más detalles

Q x s =(3500,80,60,50) b) Grafique las funciones y calcule la cantidad y precio que equilibran el mercado.

Q x s =(3500,80,60,50) b) Grafique las funciones y calcule la cantidad y precio que equilibran el mercado. Clase 1 1. Consumidores y productores del bien X toman sus decisiones de compra y venta, respectivamente conforme a las siguientes funciones: Q x D = 0.7P x + 0.4Y + 0.2P r + 0.4T Q x s = 1.2P x 3P MP

Más detalles

Trabajo Práctico Optativo

Trabajo Práctico Optativo rofesor: Julio J. Elías Trabajo ráctico Optativo 1. El método de los multiplicadores de Lagrange Generalmente, en economía trabajamos con modelos que involucran optimización con restricciones. or ejemplo,

Más detalles

CÆlculo intgral UdeM March 19, 2015

CÆlculo intgral UdeM March 19, 2015 1 1. (a) Dada la función z = 4 (x+y) 2, graficar en un plano cartesiano la curva de nivel para z = 2 (b) Sea z = y 2 e y x comprobar que xz x +yz y = 2z 2. (a) Hallar el límite de la función, si existe

Más detalles

Clase 5: Multiplicadores de Lagrange

Clase 5: Multiplicadores de Lagrange OPT Clase 5: Multiplicadores de Lagrange 1 Clase 5: Multiplicadores de Lagrange Ignacio Ramírez 29 de agosto de 2016 1. Introducción Consideremos un problema con restricciones, en principio de igualdad,

Más detalles

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014 http://www.matematicaaplicada.info 1 de 6 jezasoft@gmail.com MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

Más detalles

Guía Semana 8 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 8 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 8 Puntos críticos y optimización sin restricciones. Dada f : Ω Ê, los puntos x 0

Más detalles