TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN"

Transcripción

1 TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN

2 Preparación y Requisitos Objetivos Distinguir extremos locales de globales Utilizar las condiciones necesarias y/o suficientes para calcular los extremos de funciones de dos variables Interpretar geométricamente las condiciones necesarias de primer orden de extremos libres y condicionados Justificar con ayuda del desarrollo de Taylor de segundo orden las condiciones suficientes para extremos libres Prerrequisitos Extremos de funciones de una variable Cálculo de derivadas parciales Derivadas direccionales y propiedades del vector gradiente Teorema de Taylor Dónde Encontrar el tema Caballero, R. et al p. 9 y 10 Caballero, R. et al.(problemas) 10 y 11 Chiang, A. Cap. 9, 11 y 12 Larson et al. Cap. 15.8, 15.9 y 15.10

3 Introducción Condición Necesaria para máximo o mínimo en x : - Algebráica: Si existe f '( x ) f '( x ) = Geométrica: Si f( x) es suave en x la tangente es horizontal 0 0

4 Definiciones básicas n Sea f : Domino f R R y S Domino f x es MAX en S: f( x ) f( x), x S. 0 0 x es MIN en S: f( x ) f( x), x S. 0 0 x es MAX ESTRICTO en S: f ( x ) > f ( x), x S. 0 0 x es MIN ESTRICTO en S: f ( x ) < f ( x), x S. 0 0 Preguntas: Existen máximos y mínimos? Cómo puedo buscarlos? a T2 M1 T1 M2 b

5 Dos comportamientos Comportamiento global (absoluto) y comportamiento local (relativo) Los puntos M1 y T1 son máximos y mínimos absolutos Pero qué sucede con M2 y T2? La característica común entre M2 y M1, y entre T2 y T1 se recoge en el concepto de: PUNTO CRÍTICO

6 Puntos Críticos Teorema (Todo extremo relativo se produce en un punto fijo): Si f( x, y ) es un extremo relativo en una región abierta R, entonces ( x, y ) es un punto crítico de f

7 Ejemplo f( x, y) = x + y Puntos Críticos: Aquellos puntos del dominio que tienen derivada nula 2x = 0 ( xc, yc) = (0,0), f(0,0) = 0 2y = 0 2- El resto de puntos del domino siempre van a ser estrictamente mayores a 0, Luego se trata de un MÍNIMO GLOBAL ESTRICTO 3.- Hemos resuelto el problema algebráicamente f ( xy, ) = y x 2 2 2y 1- Puntos críticos. (0, 0) f (0, 0) = 0 2x 2 sin embargo, para 0 (,0) 0, luego (0,0) no es MIN 2 incluso, para 0 (0, ) 0, y no puede (0,0) MAX PUNTO de SILLA x f x = x < y f y = y > 2.- Hemos resuelto el problema intersecando planos verticales, y viendo que quedan puntos por encima y debajo

8 Clasificación de los puntos fijos: Método del Hessiano Aplicar Taylor de orden 2 a f( x, y) en ( x, y ) : 2 k fyy x0 y0 R2 h k f( x0 + h, y0 + k) f( x0, y0) = hfx'( x0, y0) + kfy'( x0, y0) + [ h fxx''( x0, y0) + 2 hkfxy''( x0, y0) ''(, )] + (, ) Dado que es punto crt. su derivadas parciales son nulas, luego lo importante es el signo del determinante HESSIANO f '' xx f '' xy Dado el hessiano H( x, y) = f '' xy f '' yy A = f ''; A = H( x, y) 1 xx 2 Luego, caben las posibilidades siguientes: Formas cuadraticas: Definida positiva: A > 0,... A > 0 1 n > 0 n par Definida negativa: A1 < 0, A2 > 0... An < 0 n impar Semidefinida positiva: los menores NO-nulos >0 Semidefinida negativa: los menores NO-nulos siguen los signos -,+,-, f '' > 0, H( x, y ) > 0 F. D. + f( x + h, y + k) f( x, y ) > 0 f( x, y ) es MIN local xx xx < 0 0 > F D f x0 + h y0 + k f x0 y0 < f x0 y0 2. f '' 0, H( x, y ) 0.. (, ) (, ) 0 (, ) es MAX local 3. H( x, y ) < 0 NO DEFINIDA f( x + h, y + k) f( x, y ) CAMBIANTE P.SILLA

9 Ejemplo

10 Método del Hessiano en funciones compuestas Objetivo: Estudiar los puntos crtc de funciones objetivo complicadas (compuestas) Técnica: Sustituir las funciones objetivo por otras más simples Cuándo es posible hacerlo? Ejemplo 1. Cuando la función objetivo es la composición de una función con una función monótona g( x, y) t (, ) = es el resultado de componer y la función (, ). El resultado es que (, ) y (, ) f x y e e g x y f x y g x y t comparten los puntos fijos dado que e es una transformación monótona de g( x, y) Ejemplo 2. f( x, y) = ln( g( x, y)) comparte los mismos puntos críticos que g( x, y), exceptuando aquellos para los que el logaritmo no está definido. Ejemplo 3. f( x, y) = g( x, y) comparte los mismos puntos críticos que g( x, y), exceptuando aquellos para los que la raíz no está definida

11 Extremos condicionados Objetivo: Optimizar f( x, y) sujetos a una restricción sobre las variables g( x, y ) = 0 Solución: Corte Vertical Corte Horizontal (Multiplicadores de Lagrange) Corte Vertical: Despejar y = φ( x) de la función restricción g( x, y) = 0 Sustituir en la función objetivo: f( x, φ( x)) = h( x) El problema se convierte en una optimización de una sola variable Observaciones: a.- El extremo obtenido de hx ( ) no es un extremo de f( xy, ) considerada aisladamente. b.- Sí es el extremo de la intersección vertical entre f( x, y) y el plano g( x, y) c.- La dificultad aparece cuando no es posible despejar y en la función restricción g( x, y)

12 Ejemplo 1 Objetivo: Minimizar la siguiente función Solución Despejar y sujeto a

13 Método de las curvas de nivel Hallar las curvas de nivel de la función objetivo: Optimizar (máximo o mínimo) implica encontrar el z óptimo que cumpla la restricción g (x, y) = 0. Por tanto buscamos el corte entre la curva de nivel y g (x, y) = 0 El MÍNIMO se produce en el punto de tangencia

14 Método de los multiplicadores de Lagrange El método gráfico muestra que se busca la TANGENCIA entre la función objetivo y la restricción Dos curvas son TANGENTES si sus vectores normales son PARALELOS Los vectores GRADIENTES de cada curva son vectores NORMALES En el punto de TANGENCIA se satisface que f debe ser múltiplo de g : f ( xy, ) = λ gxy (, )

15 Criterios de clasificación g ' = = ϕ ϕ = g ' * x * * Teorema de la Función Implícita: gxy (, ) 0 define IMPL. una func. y ( x) y '( x) ( x, y) * Dado que es opt. en x, x ( x) f( x, ( x)) debe satisfacer condiciones φ ϕ dφ * de primer orden (derivada respecto de x nula): φ'( x*) = ( x ) = f ' x+ f ' yϕ'( x) = 0 dx IDEA: Para clasificarlos usamos el criterio de la segunda derivada φ ''( x) Se pude demostrar que: 2 d φ 1 = dx g '( x, y ) y 2 si f y g son de clase 2 sobre un conjunto abierto de R, y ( x0, y0, λ0) punto crit. de Lxy (,, λ), entonces: g' g' g' L'' L'', luego g' L'' L'' (1) H( x, y, λ ) < 0 Min. Local de f x x xx xy y xy yy (2) H( x, y, λ ) > 0 Max. Local de f (3) H( x, y, λ ) = 0 Caso dudoso y y

16 Maximizando la utilidad Dada la función de utilidad de un consumidor representada por El problema es con ingreso de Y euros, y unos precios de 3 y 1 euro de cada bien Sujeto a Solución: Formamos el lagrangiano C.P.O Nivel de utilidad óptima es De las dos primera ecuaciones obtenemos, por cociente: C = C = C C Sustituyendo en la ecuación #3: Y 3C 3C = 0 Y Y C C1 = C2 = λ = = C2 1 1

17 Condiciones de segundo orden Formamos el Hessiano Orlado y lo evaluamos en el punto óptimo, B Y Y 1 H,, MÁXIMO

18 Qué Hemos Aprendido Máximos y mínimos locales de funciones de dos variables Condición necesaria. Puntos críticos Puntos de silla Condición suficiente. Criterio de las derivadas segundas Máximos y mínimos locales de funciones de dos o tres variables sujetas a una restricción de igualdad Formulación del problema Método de eliminación de variables Método de Lagrange. Condiciones necesarias de primer orden

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Valores extremos de una función

Valores extremos de una función Valores extremos de una función Puntos crí5cos Máximos y mínimos Mul5plicadores de Lagrange Lilia Meza Montes Ins5tuto de Física BUAP Una variable: Máximos y mínimos donde la derivada se anula y =0 =0

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Tema 7: Programación matemática

Tema 7: Programación matemática Tema 7: Programación matemática Formulación general: Optimizar f( x) sujeto a x X f : D R n R..................................................................... función objetivo x = (x 1, x 2,..., x

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización con restricciones de igualdad Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización con restricciones de igualdad 1

Más detalles

1. El sistema: F(x,y,z) = =

1. El sistema: F(x,y,z) = = > 1. El sistema: F(x,y,z) = = Define implícitamente a la función (y, z) =f(x) en un entorno del punto x0=1. Encuentre la ecuación EXPLICITA de la recta tangente a la curva definida por f en el punto x0.

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 6 Aplicaciones de la derivada José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

Teorías del Consumidor : La restricción presupuestaria

Teorías del Consumidor : La restricción presupuestaria Microeconomía I AEA214 Escuela de Negocios Teorías del Consumidor : La restricción presupuestaria Clase 2 MATERIAL PROPIEDAD DE UDLA. AUTORIZADA SU UTILIZACIÓN SÓLO PARA FINES ACADÉMICOS. Objetivos Objetivo

Más detalles

TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos.

TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos. TEMA 2: DERIVADAS 1. Conocer el concepto de tasa de variación media de una función y llegar al concepto de derivada como límite de la tasa de variación media. 2. Conocer, sin demostración, las reglas dederivación

Más detalles

Aproximaciones de funciones y problemas de extremos

Aproximaciones de funciones y problemas de extremos Aproximaciones de funciones y problemas de extremos José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 5.- Aproximaciones de funciones y problemas de extremos 1 Teorema de

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

Tema IV : Introducción a la optimización de funciones de varias variables.

Tema IV : Introducción a la optimización de funciones de varias variables. Tema IV : Introducción a la optimización de funciones de varias variables. 1. Planteamiento de un problema de optimización.. Optimización sin restricciones. 3. Optimización con restricciones de igualdad.

Más detalles

Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados

Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados Motivación Supongamos que f : Ω R 2 R es la función que nos proporciona la altura de cada punto con respecto al nivel

Más detalles

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES Para una función de una variable puede construirse una mejor aproximación mediante una función cuadrática que mediante una función lineal, para las funciones

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que:

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que: Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos en R. b) es dierenciable en todo punto

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

1. Sea g(x, y) =. Determine, la Derivada Direccional de la función compuesta g(g(x, y),g(x, y)) en el punto (2,1) en la dirección tangente a la curva C definida implícitamente por g(x, y)=0 en el punto

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 2001, 19H

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 2001, 19H CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 00, 9H ) Para la función f) +, determine a) Dominio, raíces, paridad b) Intervalos de crecimiento y de decrecimiento c) Intervalos

Más detalles

1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones

1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones Capítulo 2 Funciones de varias variables. Diferenciabilidad 1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones reales

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Clase 5: Multiplicadores de Lagrange

Clase 5: Multiplicadores de Lagrange OPT Clase 5: Multiplicadores de Lagrange 1 Clase 5: Multiplicadores de Lagrange Ignacio Ramírez 29 de agosto de 2016 1. Introducción Consideremos un problema con restricciones, en principio de igualdad,

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

Lección 26: Extremos relativos condicionados: Multiplicadores de Lagrange. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 26: Extremos relativos condicionados: Multiplicadores de Lagrange. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 6: Extremos relativos condicionados: Multiplicadores de Lagrange Introducción al Cálculo Infinitesimal I.T.I. Gestión Ligaduras y extremos condicionados f : R n R función de varias variables Buscaremos

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Extremos de funciones de varias variables R. Álvarez-Nodarse Universidad de Sevilla Cuándo una función f (x) de una variable tiene extremo? Cuándo una función f (x) de una variable tiene extremo? Definición

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada 1. Introducción Tema 8: Aplicaciones de la derivada En la unidad anterior hemos establecido el concepto de derivada de una función f(x) en un punto x 0 de su dominio y la hemos interpretado geométricamente

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Ejercicios recomendados: Cálculo III

Ejercicios recomendados: Cálculo III Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos

Más detalles

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2.

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2. Licenciatura en Matemáticas Soluciones del examen final de de septiembre de 00 Ejercicio 1. (a) Calcular: lím n sena + 4sen(a/) + 9sen(a/3) + + n sen(a/n) n (a + 1)(a + ) (a + n) (b) Estudiar la convergencia

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Plan de Estudios 1994

Plan de Estudios 1994 LINEA DE ESTUDIO: MÉTODOS CUANTITATIVOS Programa de la asignatura: MATEMÁTICAS II Objetivo El estudiante establecerá las funciones de varias variables, así como su derivación y aplicaciones a la economía.

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 A) Primer parcial 1) Si se lanza verticalmente un objeto hacia arriba desde el nivel del suelo, con una velocidad inicial de 0 pies/s, entonces

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

Método de Multiplicadores de Lagrange: Una Versión Animada.

Método de Multiplicadores de Lagrange: Una Versión Animada. Método de Multiplicadores de Lagrange: Una Versión Animada. José D. Flores, PhD. Professor of Mathematics The University of South Dakota jflores@usd.edu Noviembre 2004 Abstract Resúmen: En este trabajo

Más detalles

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto Etremos de unciones de dos variables Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

DEPARTAMENTO DE MATEMATICA CARRERAS: QUIMICA, ALIMENTOS, FISICA, CIVIL. CALCULO II MAXIMOS Y MINIMOS (27 septiembre 2015)

DEPARTAMENTO DE MATEMATICA CARRERAS: QUIMICA, ALIMENTOS, FISICA, CIVIL. CALCULO II MAXIMOS Y MINIMOS (27 septiembre 2015) DEPARTAMENTO DE MATEMATICA CARRERAS: QUIMICA, ALIMENTOS, FISICA, CIVIL CALCULO II MAXIMOS Y MINIMOS (27 septiembre 2015) ( Docente : G. Cupé C. ). La vida es un problema de optimización con restricciones.

Más detalles

Problemas del tema 3

Problemas del tema 3 Problemas del tema 3 y 1. Sea f(, y) = e + e, se pide: a) Eiste algún punto óptimo de f?. b) Si se considera la función f sujeta a la restricción + y =, eiste algún punto óptimo?.. Sea f(, y) = + y : a)

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

Tema 6: Funciones de varias variables

Tema 6: Funciones de varias variables Tema 6: Funciones de varias variables de febrero de 6 Preliminares: derivadas parciales. Sea F una función de dos variables, como por ejemplo la función definida por F(x; y) = x y 3 Podemos derivarla con

Más detalles

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES 1.- GRÁFICOS TRIDIMENSIONALES ü 1.1.- CÓMO DIBUJAR FUNCIONES EN TRES DIMENSIONES El comando que se necesita para dibujar funciones

Más detalles

Matemática II Tema 14: valores extremos

Matemática II Tema 14: valores extremos Matemática II Tema 14: valores extremos 2012 2013 Índice Valores extremos y puntos silla 1 Criterio de las derivadas para extremos locales 1 Máximos y mínimos absolutos 5 Trabajo práctico 7 Valores extremos

Más detalles

Diez ejemplos de clasificación de puntos críticos cuando el hessiano es nulo.

Diez ejemplos de clasificación de puntos críticos cuando el hessiano es nulo. Diez ejemplos de clasificación de puntos críticos cuando el hsiano nulo. 1. Consideramos el campo calar f(x, y) = x 2 y 3 definido sobre R 2. Su gradiente f(x, y) = ( 2xy 3, 3x 2 y 2), y los puntos críticos

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Subsección de Matemáticas Esquemas teóricos de la asignatura de las licenciaturas en Economía

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

Coordinación de Matemática I (MAT021) Taller 10

Coordinación de Matemática I (MAT021) Taller 10 Coordinación de Matemática I MAT01 Taller 10 Primer semestre de 01 Semana 11: Lunes 0 viernes 08 de junio Ejercicios Ejercicio 1 Calcular las derivadas de las siguientes funciones: 1. cos x ln x. x + x

Más detalles

Matemáticas I. Carrera: AGM Participantes Representante de las academias de Ingeniería Agronomía de los Institutos Tecnológicos.

Matemáticas I. Carrera: AGM Participantes Representante de las academias de Ingeniería Agronomía de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas I Ingeniería en Agronomía AGM - 0626 3 2 8 2. HISTORIA DEL PROGRAMA

Más detalles

PROGRAMA. Asignatura MAT 215 CALCULO EN VARIAS VARIABLES"

PROGRAMA. Asignatura MAT 215 CALCULO EN VARIAS VARIABLES Facultad de Ciencias Instituto de Matemática http://ima.ucv.cl Blanco Viel 596, Cerro Barón, Valparaíso Casilla 4059, Valparaíso Chile Tel: (56-32) 2274001 Fax:(56-32) 2274041 CARLOS MARTINEZ YAÑEZ, Secretario

Más detalles

MATEMÁTICAS: EBAU 2017 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 7 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A Sean A = ( 4 ) y B = ( 3 ), a) Estudiar si A y B tienen inversa y calcularla cuando sea posible. ( punto) Una matriz cuadrada M tiene inversa

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Hasta ahora, hemos estudiado como maximizar o minimizar una función sujeta a restricciones en forma de ecuaciones de igualdad.

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

Primer Cuatrimestre Año 2015 PROBLEMAS TEMA I. (1) Consideremos una economía de intercambio con dos agentes con preferencias del tipo Cobb Douglas

Primer Cuatrimestre Año 2015 PROBLEMAS TEMA I. (1) Consideremos una economía de intercambio con dos agentes con preferencias del tipo Cobb Douglas UNIVERSIDAD CARLOS III. MICROECONOMÍA AVANZADA. Primer Cuatrimestre Año 05 PROBLEMAS TEMA I. ) Consideremos una economía de intercambio con dos agentes con preferencias del tipo Cobb Douglas u x, y) =

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

PRÁCTICA 6. Para encontrar los valores que optimizan este lagrangiano hay que resolver el sistema de ecuaciones formado por las CPO: 2,, 16

PRÁCTICA 6. Para encontrar los valores que optimizan este lagrangiano hay que resolver el sistema de ecuaciones formado por las CPO: 2,, 16 0,25 1.- Una empresa cua función de producción es 2 K L adquiere sus factores productivos a unos precios r1 w2. a) Determine el coste mínimo en el que debe incurrir para producir 16 ud. de output. Para

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

Multiplicadores de Lagrange

Multiplicadores de Lagrange Funciones de R n en R 1 Multiplicadores de Lagrange Para entender el método de los multiplicadores de Lagrange ilustraremos las ideas con un ejemplo Ejemplo Sea f : R 2 R dada por fx, y) = x + 1) 2 + y

Más detalles

Extremos de varias variables

Extremos de varias variables Capítulo 1 Extremos de varias variables Problema 1 Encontrar los extremos absolutos de la función fx, y) = xy en el conjunto A = x, y) IR : x + y 4, x 5/}. Solución: En primer lugar representamos el conjunto

Más detalles

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN MATEMÁTICAS II º Bach TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9. DERIVADA DE UNA FUNCIÓN EN UN PUNTO TASA DE VARIACIÓN MEDIA Definición Se llama tasa de variación

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles