COLECCIÓN DE PROBLEMAS DE CLASE
|
|
|
- María Rosa Fidalgo Rubio
- hace 7 años
- Vistas:
Transcripción
1 COLECCIÓN DE PROLEMS DE CLSE Tema. Cinemática de máquinas. EJERCICIO Dado el mecanismo de la figura adjunta, determinar el cinema de velocidades siguiendo los siguientes pasos: a) Determinar los grados de libertad. b) Determinar la posición de todos los Centros Instantáneos de Rotación. c) Determinar las velocidades de los puntos representativos, así como la velocidad angular de todos los eslabones. O : 60cm : 0 cm O O : 50 cm O : 79,7 cm 60º ω =0 rad/s 60º O O
2 EJERCICIO Dado el mecanismo de la figura adjunta, determinar el cinema de velocidades siguiendo los siguientes pasos: a) Determinar los grados de libertad. b) Determinar la posición de todos los Centros Instantáneos de Rotación. c) Determinar las velocidades de los puntos representativos, así como la velocidad angular de todos los eslabones. O : 0,07 m O : 0, m ω : rad/s θ : 75º θ : 0º ω θ θ O O
3 EJERCICIO Dado el mecanismo de la figura adjunta, determinar las ecuaciones de posición y de velocidades siguiendo los siguientes pasos: a) Determinar los grados de libertad. b) Identificar las variables primarias y secundarias. c) Determinar las ecuaciones que proporcionan la posición y velocidades del mecanismo. O : L O : R ω Ángulo θ L α O O C ω θ R
4 EJERCICIO Dado el mecanismo de la figura adjunta, determinar las ecuaciones de posición y de velocidades. O : L : L ω Ángulo θ ω θ O
5 EJERCICIO 5 En el cuadrilátero articulado de corredera de la siguiente figura, la manivela gira con velocidad angular ω = rad/s y una aceleración angular α = rad/s. Las longitudes de la barras son O = 0, m y = 0,5 m. La posición del instante representado está determinada por las dimensiones de las barras y el ángulo indicado en la figura. Se pide calcular la velocidad del punto. ω α θ=50º O 5
6 EJERCICIO 6 En el mecanismo articulado de la figura, la corredera se encuentra unida al eslabón de entrada permitiendo el desplazamiento a lo largo del eslabón de salida. Se pide: a) Calcular la velocidad angular del eslabón de salida (eslabón ). b) Calcular la velocidad con la que la corredera se desplaza a lo largo del eslabón. O : 0,07 m O : 0, m θ : 75º θ : 0º ω : rad/s α : rad/s θ ω α θ O Nota: Se puede identificar una posición del punto tanto en la corredera como en el eslabón de salida. Para observar el desplazamiento del punto sobre la corredera, hay que fijar un sistema de ejes coordenados sobre la posición del punto en el eslabón de salida. Sin embargo, dicho eslabón está animado de movimiento, por lo que el sistema que se fije en él, será un sistema móvil respecto de la bancada. Por consiguiente el análisis de este ejercicio hay que hacerlo teniendo en cuenta el movimiento relativo. O 6
7 EJERCICIO 7 Dado el mecanismo de la figura adjunta, determinar las aceleraciones de los puntos representativos ( y ) empleando el método gráfico. O : 60cm : 0 cm O O : 50 cm O : 79,7 cm 60º ω =0 rad/s α =00 rad/s 60º O O 7
8 EJERCICIO 8 En el mecanismo articulado de la figura, la corredera se encuentra unida al eslabón de entrada permitiendo el desplazamiento a lo largo del eslabón de salida. Determinar la aceleración con la que la deslizadera se desplaza a lo largo del elemento guía empleando el método de coordenadas relativas, así como la aceleración angular del eslabón. Longitud del eslabón : L Longitud del eslabón : L Longitud del eslabón : L Ángulo θ Ángulo θ Velocidad angular del eslabón : ω = θ& celeración angular del eslabón : α = & θ ω α θ θ O O 8
9 EJERCICIO 9 En el cuadrilátero articulado de deslizadera de la figura, la manivela gira con una velocidad angular ω = rad/s y una aceleración angular α = rad/s. Las longitudes de las barras son O =0. m y =0.5 m. La posición del instante representado está determinada por los ángulos indicados. Calcular la aceleración del punto. Nota: Se recomienda el uso del método vectorial. ω α θ=50º O 9
10 EJERCICIO 0 En el mecanismo articulado de la figura, la corredera se encuentra unida al eslabón de entrada permitiendo el desplazamiento a lo largo del eslabón de salida. Calcular la aceleración de la deslizadera así como la aceleración angular del eslabón guía (eslabón ). O : 0,07 m O : 0, m θ : 75º θ : 0º ω : rad/s α : rad/s θ ω α θ O O Nota: Se recomienda el uso del método vectorial. 0
11 Tema. Dinámica de máquinas. EJERCICIO La figura siguiente muestra una barra uniforme y delgada de 0.5 m de longitud y con una masa de 9 Kg., cuyos extremos están restringidos a moverse sobre rectas perpendiculares entre sí. Para la posición indicada, se aplica una fuerza F = 00i N en, dando lugar a que dicho punto se mueva hacia la derecha con velocidad constante de.8 m/s. La masa de las barras y se considera despreciable. Teniendo en cuenta que el mecanismo está situado en el plano horizontal, calcular la fuerza F que hay que aplicar en para conseguir el estado cinemático antes mencionado. F V =.8 m/s Longitud del eslabón : 0.5 m Masa del eslabón : 9 Kg. F 0º
12 EJERCICIO Para el cuadrilátero articulado de la figura y en la posición indicada, determine el par M que hay que aplicar a la barra para establecer el equilibrio dinámico del mecanismo. Nota: No considerar las masas de las barras y. Masa de la barra : m = Kg. M = 5k (N m) ω = 0k (rad/s) α = k (rad/s ) 50 mm 00 mm ω, α 90º O O 00 mm 50 mm
TEORÍA DE MECANISMOS ANÁLISIS DE MECANISMOS POR ORDENADOR
1/5 ANÁLISIS DE MECANISMOS POR ORDENADOR INTRODUCCIÓN En esta práctica se analizará cinemáticamente un determinado mecanismo plano empleando el método del cinema y se compararán los resultados obtenidos
Trabajo Práctico 3 - Cinemática del cuerpo rígido Edición 2014
Facultad de Ingeniería - U.N.L.P. Mecánica Racional - urso 2016 / 1 semestre Trabajo Práctico 3 - inemática del cuerpo rígido Edición 2014 Problema 1. La barra de la figura, de longitud l, está unida mediante
Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla
Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín
Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 3.- MOVIMIENTO RELATIVO 3 Movimiento Relativo
4. CINEMÁTICA DEL CUERPO RÍGIDO
ACADEMIA DE DINÁMICA DIVISIÓN DE CIENCIAS BÁSICAS FACULTAD DE INGENIERÍA Serie de ejercicios de Cinemática y Dinámica 4. CINEMÁTICA DEL CUERPO RÍGIDO Contenido del tema: 4.1 Definición de movimiento plano.
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /
Examen de TEORIA DE MAQUINAS Junio 07 Nombre...
Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición
PROBLEMAS DE MECÁNICA
PROLEMS DE MECÁNIC CLCULO VECTORIL 1. Dados los vectores a = 12 i 5 j + 9 k y b = 3 i + 7 k, calcular: a) Su producto escalar a. b. Sol: 99 b) Su producto vectorial a x b. Sol: -35 i - 67 j + 15 k 2. Dados
1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura.
1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. Solución: x C = 1,857 cm; yc= 3,857cm (medidas respecto a la esquina
CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I)
UNIVERSIDAD JOSÉ ANTONIO PÁEZ FACULTAD DE INGENIERÍA ESCUELA DE INGENIERIA MECÁNICA MECÁNICA DINÁMICA SECCIÓN 204N1 CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I) (Contenido correspondiente a parcial #3) CINEMÁTICA
R 1 CN 3 CN 4. B.1.- Construir el cinema de aceleraciones del
N 1 En el mecanismo de la figura: w 1 = 2 rad/s Longitud de todas las barras = 30 mm, O 1 y O 2 inclinadas a 45º. alcular: 1.- La posición de los centros instantáneos de rotación de los elementos y. 2.-
4.2. FUERZAS Y MOMENTOS EN DINÁMICA DE ROTACIÓN.
4.2. FUERZAS Y MOMENTOS EN DINÁMICA DE ROTACIÓN. 4.2.1. El momento de inercia de un cilindro respecto del eje que pasa por el centro de sus bases es mr 2 /2, siendo m su masa y R el radio. Si se aplica
MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch
MENI PLI I. EXMEN FINL. 07-06-99. PIME EJEIIO TIEMPO: 50 x x x 1. educir a partir de las siguientes ecuaciones y = αch, ch sh = 1 α α α las expresiones de la longitud y la tensión de la catenaria ( puntos)..
Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J
Ejercicio 2, pag.1 lanteamiento El disco de la figura está soldado a la barra acodada y ésta lo está a su vez a la barra B. El conjunto gira con una velocidad angular ω rad/s y una aceleración angular
Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento
1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción
Problemas de Física I
Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar
Física y Química 1º Bachillerato LOMCE. IES de Castuera INTRODUCCIÓN A LA CINEMÁTICA Rev 01. Mecánica. Óptica.
Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera INTRODUCCIÓN A LA CINEMÁTICA 2015 2016 Rev 01 Física Clásica Mecánica Óptica Termodinámica Cinemática Dinámica Trabajo y Energía Electromagnetismo
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS
FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS Preguntas. 1. Cuál es la distancia total recorrida por un cuerpo que ejecuta
Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.
Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector
TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS
TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en
Reporte del Análisis Dinámico de un Mecanismo de Manivela Biela Corredera.
Reporte del Análisis Dinámico de un Mecanismo de Manivela Biela Corredera. José María Rico Martínez Departamento de Ingeniería Mecánica. División de Ingenierías, Campus Irapuato-Salamanca Universidad de
Trabajo Práctico 7 - Dinámica de sistemas Edición 2014
Facultad de Ingeniería - U.N.L.P. Mecánica Racional - Curso 2016 / 1 semestre Trabajo Práctico 7 - Dinámica de sistemas Edición 2014 Parte A: Magnitudes dinámicas Q, K O, T Problema 1. El péndulo doble
MECÁNICA II CURSO 2006/07
1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12
ASIGNATURA : CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12 FACULTAD DE INGENIERÍA 2018 1 GUIAS DE PROBLEMAS Nº12 PROBLEMA Nº1 Un bloque de masa m está colocado en el punto medio de una viga de peso ligero
Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014
Universidad de Atacama Física 1 Dr. David Jones 11 Junio 2014 Vector de posición El vector de posición r que va desde el origen del sistema (en el centro de la circunferencia) hasta el punto P en cualquier
Mecánica. Ingeniería Civil. Curso 11/12 Hoja 6
R Mecánica. Ingeniería ivil. urso 11/12 Hoja 6 51) Un tren de alta velocidad viaja en un tramo rectilíneo a una velocidad de 240 km/h. a) eterminar la distancia que recorre antes de pararse si durante
Examen de Física I ( ). Solución test de teoría: código Solución test de problemas: código
Examen de Física I (19-06-12). test de teoría: código 31-4702 221212222211221111121211111211222211 test de problemas: código 10-4811 222355 Problema 1 Un jugador de fútbol lanza la pelota en un tiro libre
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE
Tema 4: Movimiento en 2D y 3D
Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice
MECÁNICA II CURSO 2004/05
1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10
PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es
Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS
Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué
Cinemática del sólido rígido, ejercicios comentados
Ejercicio 4, pag.1 Planteamiento Se sueldan tres varillas a una rótula para formar la pieza de la Figura 1. El extremo de la varilla OA se mueve sobre el plano inclinado perpendicular al plano xy mientras
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
CINEMÁTICA LA CINEMÁTICA
CINEMÁTICA LA CINEMÁTICA es la parte de la Física que estudia el movimiento de los cuerpos sin tener en cuenta sus causas. Para estudiar el movimiento de un cuerpo es necesario elegir un sistema de referencia
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan a continuación dos pruebas: OPCIÓN A y OPCIÓN B, cada una de ellas con un ejercicio y varias cuestiones.
MOVIMIENTO CIRCULAR UNIFORME (MCU I)
C U S O: FÍSICA Mención MATEIAL: FM-09 MOVIMIENTO CICULA UNIFOME (MCU I) Una partícula se encuentra en movimiento circular, cuando su trayectoria es una circunferencia, como, por ejemplo, la trayectoria
1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA.
TEMA 1 CINEMÁTICA 1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA. Un cuerpo está en movimiento cuando cambia de lugar respecto a un punto que se considera fijo, a medida que pasa el tiempo. En todo
EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES
EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
Tema 4: Movimiento en 2D y 3D
Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1
Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento
Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS 2.- CINEMÁTICA DE LA PARTÍCULA 2 Cinemática de la partícula PROBLEMA PROPUESTO 2.1. Para la curva de ecuación
UTN FACULTAD REGIONAL RECONQUISTA
GUÍA DE TRABAJOS PRÁCTICOS Nº7 TEMA: SISTEMAS DE PARTÍCULAS 1. Cuatro objetos están situados a lo largo del eje y de la siguiente manera: un objeto de2 kg se ubica a +3m, un objeto de 3 kg está a +2,50
1. Considere el mecanismo de cuatro barras que es mostrado a continuación.
1. Considere el mecanismo de cuatro barras que es mostrado a continuación. Haga lo siguiente: a) Dibuje el diagrama cinemático y determine el número de grados de libertad de este mecanismo. b) Empleando
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS GEOLOGÍA Y CIVIL ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA CIVIL PRÁCTICA DOMICILIARIA II Curso DINÁMICA (IC-244)
FÍSICA- Gymnasium-4ºB. Movimiento Curvilíneo (Notas Teóricas y Preguntas/Problemas para 13/08/2014)
Movimiento curvilineo: (apunte a completar en clase) Movimiento en el plano XY; se sitúa un sistema de coordenadas y se representa la trayectoria del móvil (conjunto de puntos del plano por los que pasa
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS
UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =
Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A.
Septiembre 2013. Pregunta 2B.- La velocidad de una partícula que describe un movimiento armónico simple alcanza un valor máximo de 40 cm s 1. El periodo de oscilación es de 2,5 s. Calcule: a) La amplitud
Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos.
Introducción. La cinemática de cuerpos rígidos estudia las relaciones existentes entre el tiempo, las posiciones, las velocidades y las aceleraciones de las diferentes partículas que forman un cuerpo rígido.
Ecuación del movimiento
Cinemática Tema 2 Ecuación del movimiento La ecuación del movimiento nos da la posición en la que se encuentra un móvil en función del tiempo. Esto quiere decir, que dado un valor del tiempo, podemos obtener
4h tgθ D. Fórmulas especiales para el movimiento compuesto: Movimiento compuesto. * Cuando g =10 m/s 2 y v o = o:
CURSO: FISICA SEMANA 4 TEMA: CINEMATICA II Movimiento compuesto Se denomina así a la combinación o superposición de dos o más movimientos simples. Para nuestro caso: x se utilizará la fórmula e=v.t para
El movimiento Circular
El movimiento Circular Definición de movimiento circular: Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Recordar: Una circunferencia es el lugar geométrico de los puntos
Capítulo 10. Rotación de un Cuerpo Rígido
Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema
Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r
Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano
1.6. MOVIMIENTO CIRCULAR
1.6. MOVIMIENTO CIRCULAR 1.6.1. Si un móvil animado de movimiento circular uniforme 0 describe un arco de 60 siendo el radio de 2 m, habrá recorrido una longitud de: 2π 3π a) m b) m c) 12 m 3 2 12 d) m
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA.
CURSO 2012/2013 DEPARTAMENTO DE CIENCIAS DE LA NATURALEZA FÍSICA Y QUIMICA 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA Profesor: José Criado Ferrándiz TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA. 1.
3. Cinemática de la partícula: Sistemas de referencia
3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 9.- ELECTRODINÁMICA 9 Electrodinámica PROBLEMA
Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,
Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de
Introducción a la Meteorología (Licenciatura en Geografía) PRACTICO 4
Introducción a la Meteorología - 2018 (Licenciatura en Geografía) PRACTICO 4 Movimiento circular Ejercicio 1: Encuentre la velocidad angular en radianes por segundo de un disco (LP) de 33 rpm. Cual es
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº10
ASIGNATURA : CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº10 FACULTAD DE INGENIERÍA 2018 1 GUIA DE PROBLEMAS Nº10 PROBLEMA Nº1 El centro del engrane doble rueda sobre la cremallera inferior estacionaria,
P B. = 1,89 m/s Un cuerpo de masa m se encuentra suspendido de un hilo. Se desvía éste de la vertical un ángulo φ
UNIVERSIDD DE OVIEDO Escuela olitécnica de Ingeniería de Gijón urso 3-4 Sabiendo que los bloques y llegan al suelo un segundo después de que el sistema en reposo se abandone a sí mismo, dedúzcanse los
DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO
DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO 1. Un aro de radio R = 0,2m y masa M = 0,4kg, partiendo del reposo, desde un plano inclinado, adquiere una velocidad angular de 20rad/s al cabo de 10s. Si el aro (I
Examen de Física I ( ). Solución test de teoría: código Solución test de problemas: código
Examen de Física I (17-01-12). Solución test de teoría: código 73-3600 211212222112222122212221111111211222 Solución test de problemas: código 89-3800 121423 Problema 1 Una pequeña cuenta de collar puede
Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar
Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar
TRABAJO DE ELEMENTOS DE MÁQUINAS Y VIBRACIONES 3º INGENIERÍA INDUSTRIAL
Trabajo 1: Dinámica de un sistema motor-volante de inercia-masa de un vehículo dinámico del sistema de la figura. Las variables que definen la posición del mecanismo serán las coordenadas indicadas en
Movimiento Circunferencial Uniforme (MCU)
Movimiento Circunferencial Uniforme (MCU) NOMBRE: Curso: Fecha: Características del movimiento circunferencial Generalmente para describir el movimiento de los cuerpos se recurre a situaciones ideales,
FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1
FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula
PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA
PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS FÍSICA 1.- Cuál es el período de un péndulo simple de 1 m de longitud? a) 4 s b) 8 s c) s d) 6 s.- Un cuerpo de 15 kg se deja caer por un plano
PRÁCTICA 9: VELOCIDAD ANGULAR DE UN SÓLIDO RÍGIDO.
Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior ng. Agrónomos PRÁCTCA 9: VELOCDAD ANGULAR DE UN SÓLDO RÍGDO. MATERAL * Panel de montaje * Varilla delgada * Puerta
1. Movimiento oscilatorio
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO ARMÓNICO
Movimiento. Cinemática
Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.
MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la
Guía de ejercicios N o 10. Cinemática y Dinámica rotacional
FIS1503 - Física general - Ingeniería 1er. Semestre 2010 Guía de ejercicios N o 10 Cinemática y Dinámica rotacional 1. Una rueda giratoria requiere 3 s para hacer 37 revoluciones. Su rapidez angular al
Trabajo Práctico 1b - Dinámica del punto
Facultad de Ingeniería - U.N.L.P. Mecánica Racional - Curso 2017 / 2 semestre Trabajo Práctico 1b - Dinámica del punto Problema 1. Obtener las ecuaciones del movimiento vertical ascendente y descendente
PUCMM FIS 101 Prof. Remigia cabrera Genao 2014
Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 8.- DINÁMICA DEL SÓLIDO 8 Dinámica del Sólido
Guía de Acústica n 1 Movimiento Armónico Simple Tecnología en Sonido
Universidad Pérez Rosales Departamento de Acústica Profesores: Jaime Undurraga, Rodrigo Olavarría, Andrés Barrera e-mail:[email protected], [email protected] Guía de Acústica n 1
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen
COMPLEMENTO DIDÁCTICO CAPÍTULO 2. CINEMÁTICA DEL CUERPO RÍGIDO
COMLEMENTO DIDÁCTICO CÍTULO 2. CINEMÁTIC DEL CUERO RÍGIDO EJEMLO RESUELTO arte 1 de 2 LICCIÓN DE LOS MÉTODOS DEL MOVIMIENTO BSOLUTO Y DEL MOVIMIENTO RELTIVO ROTCIONES LBEDS NIMCIÓN para ver una ROTCION
Docente: Angel Arrieta Jiménez
CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE.............................................. APELLIDOS........................................... CALLE................................................
Examen de TEORIA DE MAQUINAS Septiembre 96 Nombre...
Examen de TEORIA DE MAQUINAS Septiembre 96 Nombre... El mecanismo de la figura es un pantógrafo, que se utiliza para ampliar o reducir dibujos. Para ampliar un dibujo, se coloca un lápiz en el punto F
