RECUPERATORIO PRIMER PARCIAL
|
|
|
- María Luisa Montero Gallego
- hace 7 años
- Vistas:
Transcripción
1 RECUPERATORIO PRIMER PARCIAL LUNES 18 DE SETIEMBRE - 8 HS AULAS DEL COMEDOR UNIVERSITARIO PRÁCTICO EN AULA 36 BLOQUE I
2 CINEMÁTICA ROTACIONAL Cuando es constante 1 2 Aceleración tangencial Aceleración radial
3 DINÁMICA ROTACIONAL Por qué rotan los objetos? EJE DE ROTACIÓN FUERZA BRAZO DE MOMENTO O PALANCA TORCA o MOMENTO DE UNA FUERZA
4 Causa Efecto sen
5 OSCILACIONES Muchos objetos vibran u oscilan, Cuando un objeto vibra u oscila, yendo y viniendo, sobre la misma trayectoria, cada oscilación toma la misma cantidad de tiempo y el movimiento es periódico.
6 MOVIMIENTO ARMÓNICO SIMPLE Ley de Hooke Período (T): tiempo requerido para efectuar un ciclo completo. Frecuencia (f): cantidad de ciclos por segundo. 1 Amplitud (A): desplazamiento máximo, mayor distancia desde el punto de equilibrio.
7 Segunda Ley de Newton 0 cos Porque el movimiento es periódico
8
9
10 EL PÉNDULO Un péndulo simple consiste en un objeto pequeño suspendido del extremo de una cuerda ligera. El péndulo oscila a lo largo del arco de un círculo con igual amplitud a cada lado de su punto de equilibrio.
11 La 2º Ley de Newton es: Como y El desplazamiento del péndulo a lo largo del arco es La fuerza restauradora es la fuerza neta sobre la masa que oscila y es igual a la componente del peso tangente al arco: sen cos 1 2 Es un Movimiento Armónico Simple 1
12 Ejemplo 1: a) Cuál es la ecuación que describe el movimiento de una masa en el extremo de un resorte, que se estira 8.8 cm desde el equilibrio y luego se suelta desde el reposo, y cuyo periodo de oscilación es de 0.66 s? b) Cuál será su desplazamiento después de 1.8 s? Ejemplo 2: En la figura se muestra la gráfica de desplazamiento versus tiempo de una pequeña masa m en el extremo de un resorte. En t = 0, x = 0.43 cm. a) Si m = 9.5 g, encuentre la constante de resorte K. b) Escriba la ecuación para el desplazamiento x en función del tiempo.
13 RECUPERATORIO PRIMER PARCIAL LUNES 18 DE SETIEMBRE - 8 HS AULAS DEL COMEDOR UNIVERSITARIO PRÁCTICO EN AULA 36 BLOQUE I
14 Ejemplo 1: a) Cuál es la ecuación que describe el movimiento de una masa en el extremo de un resorte, que se estira 8.8 cm desde el equilibrio y luego se suelta desde el reposo, y cuyo periodo de oscilación es de 0.66 s? b) Cuál será su desplazamiento después de 1.8 s? a) La ecuación de movimiento para una masa en un resorte es: cos Debemos determinar, y. es la amplitud del movimiento y como el resorte se estira 8.8 y se suelta la masa desde el reposo 8.8 cm Para determinar la frecuencia angular, usamos el dato del período de oscilación, y las ecuaciones que los relacionan: rad s Para obtener consideramos que al tiempo 0, la posición de la masa debe coincidir con el estiramiento inicial de 8.8 cm cm Considerando esto, la ecuación para este tiempo inicial queda: cos
15 Esta ecuación se cumple cuando cos 1 Por lo tanto, 0; y la ecuación de movimiento es 8.8 cm cos 3 rad s b) Para conocer el desplazamiento al tiempo 1.8, debemos calcular 1.8 s 8.8 cm cos 3 rad s 1.8 s 1.8 s 8.8 cm cos rad 2.72 cm Entonces la masa estará a 2.72 cm a la izquierda de su posición de equilibrio, si partió a 8.8 cm a la derecha de la misma.
16 Ejemplo 2: En la figura se muestra la gráfica de desplazamiento versus tiempo de una pequeña masa m en el extremo de un resorte. En t = 0, x = 0.43 cm. a) Si m = 9.5 g, encuentre la constante de resorte K. b) Escriba la ecuación para el desplazamiento x en función del tiempo. Desde la gráfica podemos obtener los siguientes datos: el período es 0.69 s, la amplitud del movimiento es 0.82 cm, y el desplazamiento inicial es cm Considerando que la frecuencia angular para el movimiento de una masa en el extremo del resorte viene dada por
17 Como rad s Luego 9.11 rad kg Nt/m s La ecuación general para un movimiento armónico simple es Y para este caso tenemos cos Usemos la condición inicial para encontrar Entonces 0.82 cm cos 9.11 rad s cm 0.82 cm cos 9.11 rad s 0 cos 0.43 cm 0.82 cm rad rad
18 Para identificar cuál de estos dos ángulos es el correcto, usamos la ecuación de la velocidad para este movimiento 0.82 cm 9.11 rad s sen 9.11 rad s Y la evalúo en 0para ambos valores del ángulo cm s sen rad 7.47 cm s cm s cm s sen rad 7.47 cm s cm s Note que el signo es la única diferencia entre ambas velocidades, desde la gráfica se desprende que la pendiente de la curva x vs t en 0, es positiva, entonces la velocidad a ese tiempo es positiva, por lo tanto, la ecuación de movimiento correcta es: 0.82 cm cos 9.11 rad s rad
CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.
Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.
1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio
Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A.
Septiembre 2013. Pregunta 2B.- La velocidad de una partícula que describe un movimiento armónico simple alcanza un valor máximo de 40 cm s 1. El periodo de oscilación es de 2,5 s. Calcule: a) La amplitud
Ejercicio integrador - Respuestas
Ejercicio integrador - Capítulo 3 1 En qué punto del movimiento de un péndulo simple la tensión de la cuerda es mayor? a) Cuando se detiene momentáneamente antes de regresar. b) En el punto más bajo de
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
3 Movimiento vibratorio armónico
3 Movimiento vibratorio armónico Actividades del interior de la unidad. Una partícula que oscila armónicamente inicia su movimiento en un extremo de su trayectoria y tarda 0, s en ir al centro de esta,
FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS
FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS Preguntas. 1. Cuál es la distancia total recorrida por un cuerpo que ejecuta
FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1
FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula
1. Movimiento oscilatorio
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO ARMÓNICO
Guía de Acústica n 1 Movimiento Armónico Simple Tecnología en Sonido
Universidad Pérez Rosales Departamento de Acústica Profesores: Jaime Undurraga, Rodrigo Olavarría, Andrés Barrera e-mail:[email protected], [email protected] Guía de Acústica n 1
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen
CENTRO DE GRAVEDAD. Los objetos extensos reales pueden experimentar traslaciones, rotaciones y otros tipos de movimiento.
CENTRO DE GRAVEDAD Los objetos extensos reales pueden experimentar traslaciones, rotaciones y otros tipos de movimiento. Las observaciones indican que aun cuando un cuerpo gira, o varias partes de un sistema
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE OSCILADOR ARMÓNICO: Si sobre un cuerpo de masa m se aplica una fuerza resultante proporcional a la distancia a la posición de equilibrio x y siempre dirigida hacia esa posición,
Tema 5: Movimiento Armónico Simple.
Tema 5: Movimiento Armónico Simple. 5.1 Oscilaciones y vibraciones Movimientos periódicos de vaivén alrededor de la posición de equilibrio. Oscilaciones (amplitud apreciable) y vibraciones (amplitud inapreciable)
CONTENIDO INFORMATIVO
FISVIR Física virtual al alcance de todos DOCUMENTO - CONTENIDO INFORMATIVO OBJETOS VIRTUALES DE APRENDIZAJE OVA s CONTENIDO INFORMATIVO CINEMATICA DEL MOVIMIENTO ARMONICO SIMPLE. ELONGACION: Cuando el
Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física
Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.
Física Ondas 10/11/06
Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]
Física Ciclo Dos Ed Media Capacitación 2000 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S)
MOVIMIENTO ARMÓNICO SIMPLE (M.A.S) Movimiento Armónico Simple es aquel que en la aceleración está siempre apuntando hacia la posición del equilibrio y es directamente proporcional al desplazamiento. También
10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10
PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es
Módulo 4: Oscilaciones
Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el
Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de
Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una
FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA
FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA Cursada 218 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini
Movimiento oscilatorio
Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 011/01 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento
Actividades del final de la unidad
Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,
Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica
Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete
TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE
TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de
Para definir el movimiento tenemos que calcular su ecuación, donde veremos la relación entre las magnitudes que intervienen e influyen sobre él.
Para definir el movimiento tenemos que calcular su ecuación, donde veremos la relación entre las magnitudes que intervienen e influyen sobre él. Como cualquier movimiento, debemos encontrar una ecuación
Física I. Dinámica de Rotación. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA
Física I Dinámica de Rotación UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TRABAJO Y ENERGÍA EN EL MOVIMIENTO En la unidad anterior se ha estudiado con
Guía de Laboratorio y Problemas: Mov. Armónico Simple
Guía de Laboratorio y Problemas: Mov. Armónico Simple Introducción El movimiento armónico simple es un movimiento periódico de vaivén, en el cual un cuerpo oscila a un lado y a otro de su posición de equilibrio
MOVIMIENTO OSCILATORIO O VIBRATORIO
MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo
, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.
MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento
Cinemática rotacional
Cinemática rotacional θ s r s = r θ ω = θ v = r ω rapidez t α = ω a t = r α acel. tangencial t a c = v2 r = r ω2 acel. radial o centrípeta θ = θ o + ω o t + 1 2 α t2 ω = ω o + α t ω 2 = ω 2 o + 2 α (θ
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014
2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 27 septiembre 2016
2016-Septiembre A. Pregunta 2.- Un cuerpo que se mueve describiendo un movimiento armónico simple a lo largo del eje X presenta, en el instante inicial, una aceleración nula y una velocidad de 5 i cm s
Física I Apuntes de Clase 9, Turno H Prof. Pedro Mendoza Zélis
Física I Apuntes de Clase 9, 18 Turno H Prof. Pedro Mendoza Zélis Movimiento Armónico Simple (M.A.S.) Es interesante analizar un tipo de movimiento que es el que ocurre cuando un objeto es apartado de
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia
Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada
F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS
F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS 1. 1.- Comenta si la siguiente afirmación es verdadera o falsa: En un movimiento armónico simple dado por x = A senωt las direcciones
FISICA 2º BACHILLERATO
A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio
La bola realiza una oscilación cuando sale del punto A, pasa por O, llega hasta A'' y se devuelve nuevamente hasta llegar al punto A.
MOVIMIENTO ARMONICO SIMPLE GRADO ONCE 1 De acuerdo a la siguiente imagen se puede afirmar: La bola realiza una oscilación cuando sale del punto A, pasa por O, llega hasta A'' y se devuelve nuevamente hasta
BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho
BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS R. Artacho Dpto. de Física y Química ÍNDICE 1. Oscilaciones o vibraciones armónicas 2. El movimiento armónico simple 3. Consideraciones dinámicas del MAS
Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:
Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de
Física 2º Bach. Repaso y ondas 12/11/08
Física 2º Bach. Repaso y ondas 12/11/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Una partícula de 1,54 g inicia un movimiento armónico simple en el punto de máxima elongación, que se encuentra
Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.
Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones
INSTITUCIÓN EDUCATIVA FRANCISCO JOSÉ DE CALDAS
INSTITUCIÓN EDUCATIVA FRANCISCO JOSÉ DE CALDAS Sede: Grado Docente FORMATO DE ACTIVIDADES ESPECIALES DE MEJORAMIENTO Área CIENCIAS GREGORIO MIRANDA LEAL NATURALES Estudiante Grado UNDECIMO Asignatura FISICA
TEMA: MOVIMIENTO ARMÓNICO SIMPLE
TEMA: MOVIMIENTO ARMÓNICO SIMPLE C-J-04 a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento
INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3
INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 COMPROMISO DE HONOR Yo,.. al firmar este
Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento
1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción
TEMA 5.- Vibraciones y ondas
TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo
EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.
2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una
K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]
Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal
PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO.
Problemas de Física. 2º de Bachillerato. I.E.L. Curso 2015-2016 1 PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. ECUACION DEL MOVIMIENTO VIBRATORIO 1 Una partícula de masa m = 20g oscila armónicamente
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
Slide 1 / 71. Movimiento Armónico Simple
Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico
DÍA 1. c) Razone cómo cambiarían la amplitud y la frecuencia de un MAS si: i) aumentara la energía mecánica, ii) Disminuyera la masa oscilante.
DÍA 1 Problema 1: Una partícula de 0,2 Kg describe un movimiento armónico simple a lo largo del eje OX, de frecuencia 20 Hz. En el instante inicial la partícula pasa por el origen, moviéndose hacia la
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES
COMPONENTE HORIZONTAL DEL CAMPO MAGNÉTICO TERRESTRE
Laboratorio 3 de Física 111 COMPONENTE HORIZONTAL DEL CAMPO MAGNÉTICO TERRESTRE Objetivo: Determinar la componente horizontal del campo magnético de la tierra. Encontrar el momento magnético de un imán.
Unidad 7. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. El oscilador armónico.
Unidad 7 Vibraciones y ondas [email protected] Movimientos periódicos: Se repiten las posiciones cada cierto tiempo. Movimientos oscilatorios: Movimientos periódicos que cambian de sentido sobre una misma
TEMA 8: MOVIMIENTO OSCILATORIO Introducción
TEMA 8: MOVIMIENTO OSCILATORIO 8..-Introducción Decimos que una partícula realiza un movimiento periódico cuando a intervalos iguales de tiempo, llamados periodo T, su posición, x, velocidad, v, y aceleración,
Dinámica del movimiento rotacional
Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición
B. REPASO DE MECÁNICA ÍNDICE
BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A MARZO 4 DE 015 SOLUCIÓN Analice las siguientes siete preguntas,
Movimiento Armónico Simple
Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos
Ejercicios. Movimiento horizontal
U.E.C. Agustiniano Cristo Rey Cátedra de Física. Cuarto año C de Bachillerato Prof.: Rosa Fernández Guía orientada a los temas más importantes para la prueba de revisión Ejercicios Movimiento horizontal
PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período
PÉNDULO SIMPLE 1.- OBJETIVOS 1) Estudio experimental de la ecuación de movimiento del péndulo simple. ) Cálculo de la aceleración de la gravedad terrestre..- FUNDAMENTO TEÓRICO Una masa m cuelga verticalmente
ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.
MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la
Tema 1: movimiento oscilatorio
Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.
2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades
Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía
Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,
PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación:
PROBLEMAS Ejercicio 1 Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal
Universidad de Sonora Departamento de Física. Dr. Roberto Pedro Duarte Zamorano 2018
Universidad de Sonora Departamento de Física Dr. Roberto Pedro Duarte Zamorano 018 Temario 1) Cinemática rotacional. ) Dinámica rotacional. 3) Las leyes de Newton en sistemas de referencia acelerados.
FACULTAD DE INGENIERIA
ASIGNATURA: FÍSICA I GUIA DE PROBLEMAS N 6 OSCILACIONES FACULTAD DE INGENIERIA Carreras: Ing. en Alientos Ing. Quíica Ing. de Minas Ing. en Metalurgia Extractiva 2º Seestre - 2018 GUÍA Nº 6: OSCILACIONES
LABORATORIO Nº 4 MOMENTO DE INERCIA. Verificar experimentalmente el teorema de Steiner.
LABORATORIO Nº 4 MOMENTO DE INERCIA I. LOGROS Determinar experimentalmente el momento de inercia de cuerpos s respecto a sus ejes de simetría. Verificar experimentalmente el teorema de Steiner. II. PRINCIPIOS
Tema 5: Dinámica del punto II
Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico
Examen Final - Fisi 3161/3171 Nombre: lunes 14 de diciembre de 2009
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: lunes 14 de diciembre de 2009 Sección: Prof.: Lea cuidadosamente las instrucciones.
Movimiento Armónico Simple
Slide 1 / 71 Slide 2 / 71 MS y Movimiento ircular Movimiento rmónico Simple Hay una profunda conexión entre el Movimiento armónico simple (MS) y el Movimiento ircular Uniforme (MU). Movimiento armónico
C OC: +A OD: -A. P OP: y (elongación)(m) PCDP: oscilación(m) mecedora. péndulo. muelle
MOVIMIENTO ARMÓNICO SIMPLE Se trata de un movimiento rectilíneo oscilatorio, es decir, un movimiento de vaivén en el que el cuerpo oscila de un lado a otro en torno a un punto (punto de equilibrio) y periódico,
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
Física Curso: Física General
UTP FIMAAS Física Curso: Física General Sesión Nº 16 : Oscilaciones Mecánicas Oscilaciones Mecánicas Movimiento oscilatorio Movimiento periódico Movimiento armónico simple (MAS) Elementos del MAS Ecuación
Movimiento oscilatorio
Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento
Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido Pregunta 1 Considere un péndulo formada por una masa de,
Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014
Universidad de Atacama Física 1 Dr. David Jones 11 Junio 2014 Vector de posición El vector de posición r que va desde el origen del sistema (en el centro de la circunferencia) hasta el punto P en cualquier
MOVIMIENTO ARMÓNICO PREGUNTAS
MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud
Unidad 12: Oscilaciones
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
