COLUMNAS Y ENTRAMADOS
|
|
|
- Pedro Moya Martin
- hace 7 años
- Vistas:
Transcripción
1 COLUMNAS Y ENTRAMADOS Dr. Diseño estructral del de Pozo columnas y entramados 1/43
2 Hipótesis de Análisis Material homogéneo Comportamiento lineal y elástico Elementos lineales se analizan ignorando la anisotropía del material 2/42
3 3/42
4 4/42
5 5/42
6 6/42
7 Columna biarticulada equivalente 7/42
8 El modo de pandeo se muestra en líneas segmentadas Coeficiente de longitud efectiva teórico Valor recomendado para diseño Símbolos Traslación y rotación restringidas Traslación restringida, rotación libre Traslación libre, rotación restringida Extremo libre 8/42
9 Esbeltez L ef d Para columnas o pie derechos de sección rectangular d es la dimensión de la sección en la dirección en que se considera el posible pandeo; para secciones circulares d es el diámetro. 9/42
10 Esbeltez (sección rectangular) 10/42
11 Longitud Efectiva de Pandeo en entramados 11/429
12 Longitud Efectiva de Pandeo en entramados Longitud Efectiva Longitud Efectiva 12/429
13 Clasificación de Columnas Rectangulares Columna cortas: 10 Columnas intermedias: Columnas largas: 10 C k C 0, 7025 k E f C C k 50 13/429
14 Carga Admisible en Columnas N adm A fc 2/3 A fc Cortas Intermedias Largas C k Esbeltez 14/429
15 Clasificación de Columnas Circulares Columna cortas: 9 Columnas intermedias: Columnas largas: 9 C k C k 43 15/429
16 MÓDULO DE ELASTICIDAD (kg/cm 2 ) Grupo Estructural E mínimo E promedio A B C Valores para madera en condición verde; pueden ser usados para madera seca 16/42
17 Esfuerzos Admisibles (kg/cm 2 ) Grupo Estructural Flexión f m Tracción Paralela f t Compresión paralela f c// Compresión Perpendicular f c Corte Paralelo f v A B C Esfuerzos para madera en condición verde; pueden usarse para madera seca 17/42
18 Cargas Admisibles en Compresión Columnas cortas (resistencia): N adm f c A Columnas intermedias: N adm f c A C k 4 Columnas largas (pandeo): N adm 2 cr EI Lef N 18/42
19 19/49
20 Simplificación para Columnas Largas Columnas de sección rectangular: N adm EA 2 Columnas de sección circular: N adm EA 2 20/42
21 Esbeltez Límite C k El límite entre columnas intermedias y largas corresponde a la carga admisible: 2 cr fc A 3 Columnas de sección rectangular: N k 2.5 C E f c Columnas de sección circular: C k E f c 21/42
22 22/49
23 23/42
24 Ejemplo: columna sometida a carga Madera grupo C. Las cargas aplicadas : carga concentrada de 3000 kg. Condiciones de apoyo: columna empotrada en la base y parcialmente impedida de rotar pero libre de desplazarse en el extremo superior Tabla 9.1 k= 1,5 l ef = 2,4 x 1,5 = 3,6m axial 24
25 Ejemplo: f c, E min, C k Tabla 9,2 f c = 80 kg/cm 2 Tabla 9,3 E min = kg/cm 2 Tabla 9,4 C k = 18,42 Seleccionar escuadría: Tantear sección 9 x 9cm Área = 81 cm 2 25
26 Ejemplo: esbeltez longitud efectiva igual en ambas direcciones, así como las dimensiones de la sección transversal l 360 ef 40 C k 18, 42 d 9 C k luego es una columna larga: N adm EA 2 26
27 Ejemplo: carga admisible 55000x81 N adm 0, kg 3000kg 2 40 No cumple. Se tantea una escuadría de 14 x 14cm, A= 196cm 2 l 360 ef 25,71 Ck 18, 42 d 14 Ck 55000x196 N adm 0, kg 3000kg 2 25,71 27
28 28/49
29 29/42
30 Flexo - Compresión N N adm k m Z M f m 1 N N K M Z adm m carga axial aplicada carga admisible en compresión pura factor de magnificación de momentos valor absoluto del momento máximo módulo de sección f N m cr esfuerzo admisible en flexión pura carga crítica de Euler 30/42
31 Magnificación de momentos: k m N N cr Carga crítica de Euler: N cr 2 L EI 2 ef 31/42
32 Ejemplo 32
33 Ejemplo Madera grupo C. Las cargas: una vertical repartida proveniente del techo y una presión del viento de 50 kg/m 2. Se considerará la columna como articulada en sus extremos (para el pandeo fuera del plano del muro). De la Tabla 9.1 k = 1.0 En el plano del muro se considera la columna articulad a también entre apoyos intermedios, o sea donde se ubican las riostras entre piederechos. En este caso k = 1 también pero la longitud efectiva es distinta 33
34 Ejemplo Efectos máximos Carga axial por pie-derecho= 690 x 0.5 = 345 kg Carga horizontal por pie-derecho, w = 50 x 0.5 = 25 kg/m Momento máximo, M = 25 X (240) 2 /8= 1800 kg cm Tabla 9,2 f c = 80 kg/cm % = 88 kg/cm 2 Tabla 9,3 E prom = kg/cm 2 Tabla 9,4 C k = 22,47 34
35 Ejemplo Seleccionar escuadría: Tantear sección 4 x 9cm Área = 36 cm 2 Ix = 243 cm 4 Iy = 48 cm 4 Zx = 54 cm2 Zy = 24 cm2 35
36 Ejemplo: esbeltez Longitud efectiva: En el plano del entramado k=1, L=120cm, b=4 l ef C y k 22, 47 b 4 Fuera del plano del entramado k=1, L= 240cm, b=9cm y l ef h ,67 N adm EA C k 2 36
37 Ejemplo: carga admisible 90000x36 N adm 0,329 1, 499kg 2 26,67 Carga crítica de Euler, Ncr N 2 x90000x24,3 N cr 3747kg cr 2 EI L 2 ef 37
38 Ejemplo Factor de magnificación de momentos, k m : k m , ,16 Verificando ecuación de flexo compresión: N N adm 1,16x x110 k m Zf M m 1 0,23 0,35 0,
39 39/49
40 Ejemplo 40
41 41/42
42 42/42
ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 07/03/2018 INGENIERÍA EN CONSTRUCCION- U.VALPO 1
ESTRUCTURAS METALICAS Capítulo III Compresión Axial INGENIERÍA EN CONSTRUCCION- U.VALPO 1 Compresión Axial Casos más comunes de miembros que trabajan a compresión. Columnas. Cuerdas superiores de armaduras.
PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO
PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo
Capitulo IV Diseño a Flexión. Esc.Ing.Construcción-Universidad de Valparaíso
Capitulo IV Diseño a Flexión 1 Esc.Ing.Construcción-Universidad de Valparaíso 07/03/2018 07/03/2018 Esc.Ing.Construcción-Universidad de Valparaíso. 2 07/03/2018 Esc.Ing.Construcción-Universidad de Valparaíso.
ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 05/04/2016 INGENIERÍA EN CONSTRUCCION- U.VALPO 128
ESTRUCTURAS METALICAS Capítulo III Compresión Axial INGENIERÍA EN CONSTRUCCION- U.VALPO 18 Compresión Axial Casos más comunes de miembros que trabajan a compresión. Columnas. Cuerdas superiores de armaduras.
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de
Ref. NCh1198 (Madera - Construcciones en madera - Cálculo)
LA MADERA Grupo Polpaico Siempre en Obra 5.2. Diseño en madera Ref. NCh1198 (Madera - Construcciones en madera - Cálculo) Este capítulo tiene como finalidad entregar al profesional en obra, herramientas
NORMA E 010 MADERA ING. ISABEL MOROMI NAKATA
NORMA E 010 MADERA ING. ISABEL MOROMI NAKATA INTRODUCCIÓN EL USO RACIONAL DE LA MADERA DE NUESTROS BOSQUES TROPICALES, ES UNA ALTERNATIVA DE UTILIZACIÓN DE UN RECURSO RENOVABLE PARA LA CONSTRUCCIÓN. EXISTEN
NORMA E 010 MADERA ING. ISABEL MOROMI NAKATA
NORMA E 010 MADERA ING. ISABEL MOROMI NAKATA INTRODUCCIÓN EL USO RACIONAL DE LA MADERA DE NUESTROS BOSQUES TROPICALES, ES UNA ALTERNATIVA DE UTILIZACIÓN DE UN RECURSO RENOVABLE PARA LA CONSTRUCCIÓN. EXISTEN
Tema 6.3 FLEXIÓN HIPERESTÁTICA
Tema 6.3 Nota: A continuación se muestra el sistema de coordenadas de todos los problemas donde se definen las condiciones de contorno. Problema 6.3.1 Una viga de 12 m de longitud está construida con una
60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min
RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en
1 Fernando San Hipólito Egurtek 14 ANÁLISIS ESTRUCTURAL Y OPTIMIZACIÓN DEL ENTRAMADO LIGERO
1 ANÁLISIS ESTRUCTURAL Y OPTIMIZACIÓN DEL ENTRAMADO LIGERO 2 ENTRAMADO LIGERO DE MADERA 3 OPTIMIZACIÓN ESTRUCTURAL 4 SIGLO XX: ABANDONO DE LA MADERA 5 LA MADERA: NUEVO SISTEMA ESTRUCTURAL?? QxL 6 L VIENTO
ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico
A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real
Calcular el soporte extremo de la nave, la placa de anclaje, si es necesario, las cartelas, del supuesto recogido en la figura, sabiendo que: La altura del pilar es de 5 m. La separación entre pilares
LECCIÓN 9 PANDEO DE PIEZAS A COMPRESIÓN
LECCIÓN 9 PANDEO DE PIEZAS A COMPRESIÓN 1. INTRODUCCIÓN. FENÓMENOS DE INESTABILIDAD. PANDEO TEÓRICO. FÓRMULA DE EULER 3. LONGITUD DE PANDEO 4. CAPACIDAD DE UNA BARRA A PANDEO POR FLEXIÓN EN COMPRESIÓN
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de
Introducción a las Estructuras
Introducción a las Estructuras Capítulo nueve: Pandeo DOS 6. Método omega. General. Este método simplificado utiliza un coeficiente de seguridad establecido en tablas y determina las cargas y tensiones
DIMENSIONAMIENTO PARA ESFUERZOS DE TRACCIÓN
Tracción DIMENSIONAMIENTO PARA ESFUERZOS DE TRACCIÓN N N Ϭadm = N (kg) F (cm²) Ϭadm: TENSIÓN ADMISIBLE DEL MATERIAL / N: ESFUERZO AXIL DE TRACCIÓN F: SECCIÓN TRANSVERSAL ADOPTADA Esquema de cálculo 1)
RESISTENCIA DE MATERIALES
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE
Elementos comprimidos - Columnas
Elementos comprimidos - Columnas Columnas simples: Barras prismáticas formadas por perfiles laminados o secciones armadas donde todos los elementos están conectados en forma continua. Secciones compactas
Capitulo 6 Diseño a Flexión. Ingeniería en Construcción-UV
Capitulo 6 Diseño a Flexión 1 Ingeniería en Construcción-UV 02/07/2013 1.- Las Solicitaciones. Capítulo IV: Diseño a Flexión Si una viga recta se somete a q y P. P q A L B 02/07/2013 Ingeniería en Construcción-UV
RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS. Mohamed Hamdy Doweidar
RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS Mohamed Hamdy Doweidar Diseño Portada e impresión.- [ [email protected] ] impreso en España / printed in Spain Depósito Legal: Z-1541-017 ISBN: 978-84-1685-8-8
MEMORIA ESTRUCTURAS METÁLICAS
EORIA ESTRUCTURAS ETÁLICAS Javier Sansó Suárez Ana Sánchez Gonzálvez Ingeniería tec. Industrial ecánica DESCRIPCIÓN amos a realizar el cálculo de una estructura metálica de 913 m2 de las siguientes dimensiones:
ÍNDICE GENERAL PROLOGO PREFACIO CAPITULO 1 GENERALIDADES
ÍNDICE GENERAL PROLOGO PREFACIO CAPITULO 1 GENERALIDADES 1.1. Definición 1.2. Clasificación del acero 1.2.1. Aceros al carbono 1.2.2. Aceros aleados 1.2.3. Aceros de baja aleación ultrarresistentes 1.2.4.
Contenido " '* Prefacio. Alfabeto griego
Contenido Prefacio Símbolos ix Xlll Alfabeto griego XVI ""' y 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Introducción a la mecánica de materiales 1 Esfuerzo y defonnación unitaria normales 3 Propiedades mecánicas
MEMORIA DE CALCULO Fecha: 23/04/12
1.1.0 SISTEMA DE SOPORTE HI - LOAD SHORING Sistema compuesto por marcos metálicos de alta resistencia, de fácil armado y muy versátil, con el cual se puede cubrir grandes áreas a grandes alturas. La separación
FLEXION Y COMPRESION PARALELA
FLEXION Y COMPRESION PARALELA SECCIONES SIMPLES SECCIONES CIRCULARES INGENIERÍA EN CONSTRUCCION 1 Ejercicio 6 Diseñar la viga maestra de madera de Lingue cepillado, Grado#1, con las siguientes cargas:
ESTRUCTURAS METALICAS MEMORIA RAIMUNDO VEGA CARREÑO
ESTRUCTURAS METALICAS MEMORIA RAIMUNDO VEGA CARREÑO ESTRUCTURAS METÁLICAS 1. Geometría. Tenemos una nave industrial de 41 metros de largo por 20 metros de ancho. En este caso hemos optado debido al diseño,
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL ASIGNATURA: RESISTENCIA DE MATERIALES CÓDIGO: 1102 UNIDADES: 6 Teoría: 5 horas/semana REQUISITOS: 1101,0254-0255
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1
Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A
página 1 de 6 MUROS: Entramado vertical de MONTANTES: DATOS REALES ENSAYO APPLUS RESISTENCIAS de CALCULO "Rd" H/b > 11 : Columnas largas (Código Usa) => inestabilidad "pandeo" Altura Montante H = 285,3
La carga uniforme que actuará sobre esta cercha:
c 1,75 m La carga uniorme que actuará sobre esta cercha: Siendo: 1 Pr p luz P r carga por nudo real, es decir, la que es debida al peso real de la cercha. P total c arg as verticales + conducciones + P
Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas
Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre
Elementos de acero 4 MIEMBROS EN COMPRESIÓN. 2.3 Relaciones ancho/grueso y pandeo local Clasificación de las secciones
4 MIEMBROS EN COMPRESIÓN.3 Relaciones ancho/grueso y pandeo local.3.1 Clasificación de las secciones Las secciones estructurales se clasifican en cuatro tipos en función de las relaciones ancho/grueso
En el presente Anejo sólo se incluyen los símbolos más frecuentes utilizados en la Instrucción.
PARTE SEGUNDA: ANEJOS Anejo 1 Notación En el presente Anejo sólo se incluyen los símbolos más frecuentes utilizados en la Instrucción. Mayúsculas romanas A A c A ct A e A j A s A' s A s1 A s2 A s,nec A
Diseño estructural ANÁLISIS Y PREDIMENSIONADO DE COLUMNAS
Diseño estructural ANÁLISIS Y PREDIMENSIONADO DE COLUMNAS JUNIO 2013 Predimensionado de columnas Introducción La columna es el elemento estructural vertical empleado para sostener la carga de la edificación.
Análisis Estructural 1. Práctica 1
Análisis Estructural 1. Práctica 1 Estructura para nave industrial 1 Objetivo Esta práctica tiene por objeto el diseñar y estudiar el comportamiento de la estructura principal de un edificio industrial
DISEÑO SÍSMICO: MUROS. Dr. Javier Piqué del Pozo 1/43
DISEÑO SÍSMICO: MUROS Dr. Javier Piqué del Pozo 1/43 Acción sísmica en una edificación Javier Piqué Diseño sísmico: muros 2/41 Acción sísmica en una edificación M3.. U3 F3 M2.. U2 F = m.a F2 M1.. U1 F1..
Problemas de la Lección 6: Flexión. Tensiones
: Flexión. Tensiones Problema 1: Para las siguientes vigas hallar los diagramas de esfuerzos cortantes y momentos flectores. Resolver cada caso para los siguientes datos (según convenga) P = 3000 kg ;
CURSO DE ESTRUCTURAS METALICAS Y CONEXIONES.
TEMARIO: 1.- ESFUERZOS ACTUANTES. 1.1 DETERMINACIÓN DE INERCIAS TOTALES. 1.2 DETERMINACIÓN DE CENTROIDES. 1.3 DETERMINACIÓN DEL MODULO DE SECCIÓN ELÁSTICO Y PLÁSTICO DE SECCIONES CUADRADAS Y SECCIONES
Cátedra: ESTRUCTURAS - NIVEL 3 - PLAN VI. Taller: VERTICAL III - DELALOYE - NICO - CLIVIO. Trabajo Práctico 1: Estructuras aporticadas
6,0 7,00 7,00,00 UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP Cátedra: ESTRUCTURAS - NIVEL - PLAN VI Taller: VERTICAL III - DELALOYE - NICO - CLIVIO Trabajo Práctico :
LECCIÓN 12 PANDEO LATERAL
LECCIÓN 1 PANDEO LATERAL 1. INTRODUCCIÓN. OENTO CRÍTICO ELÁSTICO DE PANDEO LATERAL 3. RESISTENCIA A PANDEO LATERAL 4. ELEENTOS FLECTADOS Y TRACCIONADOS 5. CONSIDERACIONES DE DISEÑO. ARRIOSTRAIENTOS Dpto.
Dr. Bernardo Gómez González
EJEMPLO DEL CÁLCULO DE LOS ESFUERZOS PERMISIBLES POR COMPRESIÓN AXIAL Y POR FLEXIÓN ALREDEDOR DEL EJE DE MAYOR MOMENTO DE INERCIA DE LA SECCIÓN TRANSVERSAL DISEÑO ESTRUCTURAL UNIVERSIDAD TECNOLÓGICA DE
1 - PROPIEDADES ESTRUCTURALES
1 - PROPIEDADES ESTRUCTURALES RESISTENCIA : ESTADOS DE TENSIÓN Un material sometido a un esfuerzo desarrolla una tensión interior: cuanto mayor es la sección menor la tensión; y a la inversa. (analogía
APLICACIÓN CIRSOC 301-EL
APLICACIÓN CIRSOC 301-EL SOLICITACIONES COMBINADAS Y TORSIÓN Capítulo H Apéndice H *** * APLICACIÓN CIRSOC 301-EL * 09-Esfuerzos Combinados_1 1 Esfuerzos combinados Comprende: Flexo-compresión o flexo-tracción
Ejercicio resuelto VIGA ALIVIANADA METALICA Año 2014
TALLER VERTICAL ESTRUCTURAS VILLAR FAREZ-LOZADA Nivel 1 Ejercicio resuelto VIGA ALIVIANADA METALICA Año 014 EJEMPLO DE CÁLCULO Consideremos tener que cubrir un espacio arquitectónico con una cubierta liviana
********************************************************************** En primer lugar hallaremos la excentricidad de la carga:
31.- Calcular la flecha máima la σ máima que resultan con el modelo de soporte esbelto sometido a carga ecéntrica. E =,1 10 6 kg/cm m. P=10000 kg. M=5000 kgm Sección pn 0 soldados a tope en las alas **********************************************************************
Madera Diseño flexocompresión ( usando NDS-05 )
Madera Diseño flexocompresión ( usando NDS-05 ) Ejemplo # 1: La figura muestra la cuerda superior de una armadura en la que puede suponerse tiene conexiones articuladas con un pasador de 1,9 cm ( ¾ ) de
Sistema Estructural de Masa Activa
Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,
Estructuras de acero: Problemas Pilares
Estructuras de acero: Problemas Pilares Dimensionar un pilar de 4 m de altura mediante un perfil, sabiendo que ha de soportar una carga axial de compresión F de 400 una carga horiontal P de 0, que estos
La Madera en la Construcción
La Madera en la Construcción primeros elementos que utilizó el hombre para construir sus viviendas Usos: elemento estructural revestimientos muebles Cubiertas - etc. Origen orgánico vegetal - fibras de
APLICACIÓN CIRSOC 301-EL
APLICACIÓN CIRSOC 301-EL SOLICITACIONES COMBINADAS Y TORSIÓN Capítulo H Apéndice H *** * APLICACIÓN CIRSOC 301-EL * 09-Esfuerzos Combinados_1 1 Esfuerzos combinados Comprende: Flexo-compresión o flexo-tracción
NORMA TÉCNICA E.010 MADERA
NORMA TÉCNICA E.010 MADERA 1 PRIMER CAPITULO AGRUPAMIENTO DE MADERAS PARA USO ESTRUCTURAL 2 ÍNDICE 1 NORMAS A CONSULTAR...04 2 OBJETIVO...04 3 CAMPO DE APLICACIÓN...04 4 DEFINICIONES...04 5 AGRUPAMIENTO......05
PANDEO TORSIONAL PANDEO FLEXO-TORSIONAL. F.R.M. - U.T.N. Curso Aplicación CIRSOC 301-EL 1
PANDEO TORSIONAL PANDEO FLEXO-TORSIONAL F.R.M. - U.T.N. Curso Aplicación CIRSOC 301-EL 1 Pandeo torsional y flexotorsional Parámetros que intervienen en la capacidad de la barra Material E, G Condiciones
Cátedra: ESTRUCTURAS - NIVEL 3 Plan 6. Taller: VERTICAL III - DELALOYE - NICO - CLIVIO TENSEGRITY
100,00 m UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP14 Cátedra: ESTRUCTURAS - NIVEL 3 Plan 6 Taller: VERTICAL III - DELALOYE - NICO - CLIVIO Trabajo Práctico 14: Estructuras
400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn
Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación
Dimensionado y comprobación de secciones
péndice B Dimensionado y comprobación de secciones El Código Técnico de la Edificación (CTE), en el Documento Básico-Seguridad Estructural cero (DB-SE- cero), hace una clasificación de las secciones atendiendo
Arquitectura. Francisco Betancourt Cesar López Navarro Ricardo Méndez Hernández Verónica Pérez Caballero Alejandra Rubí
ESTRUCTURAS Arquitectura Francisco Betancourt Cesar López Navarro Ricardo Méndez Hernández Verónica Pérez Caballero Alejandra Rubí OBJETIVOS 1. Conocer que es una estructura 2. Estudiar e identificar las
MÉTODO PARA EL DIMENSIONAMIENTO DE PILAS ESBELTAS EN PUENTES
UNIVERSIDAD POLITÉCNICA DE MADRID Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Grupo de Hormigón Estructural
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos.
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería
MECANICA Y RESISTENCIA DE MATERIALES
PLANIFICACION DE LA ASIGNATURA MECANICA Y RESISTENCIA DE MATERIALES Equipo Docente: Responsable: Ing. María Marcela Nieto Auxiliar: Ing. Ricardo Loréfice Ing. Manuel Martín Paz Colaboran: Ing. Alejandro
Introducción a las Estructuras
Introducción a las Estructuras Capítulo once: Dimensionado DOS 6. Dimensionado en hormigón armado. 6.1. General. El diseño y cálculo de las piezas de hormigón armado se debe realizar según el Reglamento
Pontificia Universidad Católica del Ecuador
1. DATOS INFORMATIVOS MATERIA O MODULO: Diseño de Estructuras Metálicas y de Madera CARRERA: Ingeniería Civil NIVEL: Séptimo No. CREDITOS: 4 CREDITOS TEORIA: 4 CREDITOS PRACTICA: 0 PROFESOR: Ing. Lauro
CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo
CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades
CÁLCULOS EN ACERO Y FÁBRICA
CÁLCULOS EN ACERO Y FÁBRICA Con la entrada del Código Técnico la edificación sufrió un cambio en todos sus niveles, proyecto, construcción y mantenimiento, obteniendo por tanto, todo un conjunto de variaciones
SYLLABUS DE ASIGNATURA
SYLLABUS DE ASIGNATURA I. DATOS GENERALES Facultad: Ciencia, Tecnología y Ambiente Departamento: Desarrollo Tecnológico Carrera: Ingeniería Civil. Nombre de la Asignatura: Mecánica de solidos I. Código:
Análisis Estructural 1. Práctica 2. Estructura de pórtico para nave industrial
Análisis Estructural 1. Práctica 2 Estructura de pórtico para nave industrial 1. Objetivo Esta práctica tiene por objeto el dimensionar los perfiles principales que forman el pórtico tipo de un edificio
Mercedes López Salinas
ANÁLISIS Y DISEÑO DE MIEMBROS ESTRUCTURALES SOMETIDOS A FLEXIÓN Mercedes López Salinas PhD. Ing. Civil Correo: [email protected] ESTRUCTURAS DE ACERO Y MADERA Facultad de Ciencia y Tecnología Escuela
Diseño de Piso de Concreto
Diseño de Piso de Concreto GRUPO GARZA PONCE Proyecto MULTI 18-20 RAMOS ARIZPE, COAH. CALCULO ESTRUCTURAL QUE CONTEMPLA LA CAPACIDAD DE CARGA UNIFORMEMENTE REPARTIDA, CARGA PUNTUAL (RACKS) Y CARGA RODANTE
Pontificia Universidad Católica del Ecuador
1. DATOS INFORMATIVOS: FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL MATERIA O MODULO: Diseño de Estructuras Metálicas y de Madera CÓDIGO: 11290 CARRERA: Ingeniería Civil NIVEL: VII No. CRÉDITOS:
7.3.1 Listado de datos de la obra ADOSADOS CECAFII GETAFE Fecha: 14/03/12 ÍNDICE 1.- VERSIÓN DEL PROGRAMA Y NÚMERO DE LICENCIA 3
ÍNDICE 1.- VERSIÓN DEL PROGRAMA Y NÚMERO DE LICENCIA 3 2.- DATOS GENERALES DE LA ESTRUCTURA 3 3.- NORMAS CONSIDERADAS 3 4.- ACCIONES CONSIDERADAS 3 4.1.- Gravitatorias 4 4.2.- Viento 4 4.3.- Fuego 5 4.4.-
Prácticas de Resistencia 12-13
Prácticas de Resistencia 12-13 1) Calcular las reacciones en los apoyos de la viga de la figura 1 para los siguientes dos casos de la carga actuante: parábola de 2º grado con tangente horizontal en C;
DOCUMENTO EE2 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID
DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO EE2 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 01 de Febrero de
Estructuras de acero: Problemas Cercha
Estructuras de acero: roblemas Cercha Se pretende dimensionar las barras de la cercha de una nave situada en Albacete, de 8 m de luz, 5 m de altura de pilares, con un 0% de pendiente de cubierta. La separación
CAPÍTULO G.2 BASES PARA EL DISEÑO ESTRUCTURAL
APÍTULO G.2 BASES PARA EL DISEÑO ESTRUTURAL G.2.1 REQUISITOS DE DISEÑO G.2.1.1 Todos los elementos de una estructura deberán ser diseñados, construidos y empalmados para resistir los esfuerzos producidos
Documento III Rosa Mª Cid Baena Memoria de cálculo Diseño de una nave industrial destinada a logística
Como el viento únicamente provoca succiones, su acción resulta favorable y únicamente se ha de comprobar que no se produce en ninguna barra, para la hipótesis de cálculo, una inversión de esfuerzos que
2.11. CÁLCULO DE ESTRUCTURAS. TABLAS DE EJEMPLOS PRÁCTICOS. ESTRUCTURAS DE ACERO EN EDIFICACIÓN. NORMA NBE EA-95.
( 2. PERFILES ESTRUCTURALES 2.1. PERFILES HE DE ALAS ANCHAS Y CARAS PARALE-LAS (UNE 36-524-94, UNE 36-524-99 ERRATUM) 2.2. PERFILES IPE (UNE 36-526-94) 2.3. PERFIL I CON ALAS INCLINADAS(UNE 365:96) 2.4.
MANUAL DE DISEÑO COVINTEC
MANUAL DE DISEÑO COVINTEC Preparado por: CARGAZ INGENIERIA LTDA. APROBACIONES TECNICAS Ingeniero de Área Jefe de Proyecto Cliente Propietario F.C.W. F.C.W. COVINTEC COVINTEC Rev. Fecha Preparado Revisó
DISEÑO DE ESTRUCTURAS DE ACERO
DISEÑO DE ESTRUCTURAS DE ACERO Traducido y adaptado por Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil Morelaia Mich. 1 Miembros en compresión: Capítulo E: Resistencia en compresión
CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil
1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno
MADERA ESTRUCTURAL ESCANDINAVA
MADERA ESTRUCTURAL ESCANDINAVA La madera aserrada escandinava para uso estructural debe cumplir una serie de propiedades mecánicas, por tanto la clasificación de ésta pretende formar lotes homogéneos en
Montacargas a cremallera de 1000 kg de carga nominal 1. Índice...1. A Cálculos...3
Montacargas a cremallera de 1000 kg de carga nominal 1 Índice Índice...1 A Cálculos...3 A.1 Viento durante el servicio. Acción sobre el bastidor inferior...3 A.1.1 Fuerza ejercida por el viento sobre puertas
TEMA 11: CIMENTACIONES POR PILOTAJE. NOCIONES BÁSICAS DE GRUPOS DE PILOTES TEMA 11 MECÁNICA DEL SUELO Y CIMENTACIONES - E.T.S.A. SEVILLA-2.009/2.
TEMA 11: CIMENTACIONES POR PILOTAJE. NOCIONES BÁSICAS DE GRUPOS DE PILOTES ÍNDICE INTRODUCCIÓN EFICACIA DE UN GRUPO DE PILOTES SEPARACIÓN MÍNIMA ENTRE LOS PILOTES DE UN GRUPO DISTRIBUCIÓN DE ESFUERZOS
GUÍA DOCENTE ELASTICIDAD Y RESISTENCIA DE MATERIALES
GUÍA DOCENTE 2015-2016 ELASTICIDAD Y RESISTENCIA DE MATERIALES 1. Denominación de la asignatura: ELASTICIDAD Y RESISTENCIA DE MATERIALES Titulación GRADO DE INGENIERÍA DE ORGANIZACIÓN INDUSTRIAL Código
ELASTICIDAD Y RESISTENCIA DE MATERIALES
GUÍA DOCENTE 2014-2015 ELASTICIDAD Y RESISTENCIA DE MATERIALES 1. Denominación de la asignatura: ELASTICIDAD Y RESISTENCIA DE MATERIALES Titulación GRADO DE INGENIERÍA DE ORGANIZACIÓN INDUSTRIAL Código
Índice. DISEÑO DE ESTRUCTURAS METALICAS METODO ASD 4/ED por MCCORMAC Isbn Indice del Contenido
Índice DISEÑO DE ESTRUCTURAS METALICAS METODO ASD 4/ED por MCCORMAC Isbn 9701502221 Indice del Contenido Capítulo 1 Introducción al diseño estructura] en acero 1-1 Ventajas del acero como material estructural
Cátedra Estructuras 3 FAREZ LOZADA LANGER
FACULTAD DE ARQUITECTURA Y URBANISMO UNLP Cátedra Estructuras 3 FAREZ LOZADA LANGER EJERCICIO RESUELTO: Viga Alivianada y viga Reticulada Plana CURSO 2016 Elaboración: NL Tutor: PL Nov 2016 Nivel I EJEMPLO
Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos
Barra N3/N4 Perfil: IPE 300, Perfil simple Material: Acero (S275) Z Y Inicial Nudos Final Longitud (m) Área (cm²) Características mecánicas I y I z I t N3 N4 5.000 53.80 8356.00 603.80 20.12 Notas: Inercia
VERIFICACION DE LA RESISTENCIA AL CORTE
ERIFICACION DE LA RESISTENCIA AL CORTE TENSIONES DE CORTE Y TANGENCIALES T T Se producen fuerzas de CORTE y de DESLIZAMIENTO Cortadura Deslizamiento FUERZAS RASANTES O DE DESLIZAMIENTO PLACAS SIN PEGAMENTO
CÓDIGO TÉCNICO de la EDIFICACIÓN DB SE-A Seguridad Estructural: Acero
CÓDIGO TÉCNICO de la EDIFICACIÓN MÉTODOS de CÁLCULO Tensiones Admisibles σ σ h adm = σ γ s Estados Límites Efectos de 1 er Orden Efectos de 2 o Orden NBE MV-102 NBE MV-103 NBE MV-104 NBE MV-105 NBE MV-106
