Matemáticas Básicas para Computación. Sesión 8: Relaciones
|
|
|
- Esteban Villalobos Alvarado
- hace 7 años
- Vistas:
Transcripción
1 Matemáticas Básicas para Computación Sesión 8: Relaciones
2 Contextualización Las Relaciones son de mucha importancia en el ámbito matemático y sobre todo en el área de computación, pues resulta ser una herramienta de suma importancia en la creación de bases de datos, programación, entre otros. Se podría decir que en la mayoría de las materias, de alguna manera se utiliza el concepto de relación.
3 Introducción Una relación binaria es una comparación entre dos o más elementos u objetos, por lo general de dos conjuntos arbitrarios. La manera de hacer práctico un concepto formal de las relaciones para usarlo en computación, es necesario considerar a una relación como un conjunto de pares ordenados, esto puede extenderse a tuplos para poder definir relaciones de diferentes elementos.
4 Relaciones Las relaciones se clasifican de acuerdo a la asociación que hay entre sus elementos, sin olvidar que una relación es un conjunto de pares ordenados: Uno a mucho 1-M: Existen dos pares con el mismo primer elemento, es decir (x,y) y (x,z) en la relación. Muchos a uno M-1: Existen dos pares con el segundo elemento igual, es decir (x,y) y (z,y) en la relación. Muchos a muchos M-M: Existen por lo menos dos pares con el primer elemento igual y de igual forma dos pares con el mismo segundo elemento, es decir se cumplen las 2 condiciones anteriores. Uno a uno 1-1: No hay dos pares con el primer elemento y no hay dos pares con el mismo segundo elemento.
5 Relaciones Relación Reflexiva e Irreflexiva Teorema: Una Relación R en un conjunto es reflexiva si y sólo si la diagonal principal de la matriz asociada a la relación tiene únicamente unos. De la misma forma es irreflexiva si tiene solamente ceros. Una relación R es: Reflexiva: Si todo elemento en R tiene relación consigo mismo. Irreflexiva: si ningún elemento en R tiene relación consigo mismo.
6 Relaciones Relación Simétrica, Asimétrica, Antisimétrica y Transitiva Teorema: Una relación R es simétrica si y sólo si los elementos opuestos con respecto a la diagonal principal son iguales. Simétrica: Una elación es simétrica cuando el primer elemento está relacionada con un segundo elemento, y el segundo elemento también se relaciona con el primero. (x,y) R (y,x) R Asimétrica: En un conjunto D una relación R es asimétrica si arb, entonces bra. Por consiguiente R no es simétrica si tiene a y b dentro de D en ambos.
7 Relaciones Teorema: Una relación R en conjunto es Antisimétrica si y sólo si los elementos opuestos con respecto a la diagonal principal no pueden ser iguales a 1, esto es, puede aparecer 0 con 1 o pueden aparecer ceros. Antisimétrica: esto es cuando en un conjunto un elemento está relacionado con un segundo elemento diferente y el segundo elemento no se relaciona con el primero. (x, y) R (y, x) R x = y Cabe mencionar que la antisimétrica no es lo opuesto a la simétrica. Transitiva: es transitiva cuando un elemento está relacionado con un segundo elemento y el segundo se relaciona con un tercer elemento, por lo tanto el primer elemento se relaciona con el tercero.
8 Conclusión Al igual que en las matemáticas, en la vida cotidiana existen relaciones que ocurren en el universo. Por ejemplo, a cada carro le corresponde un número de placa, cada estudiante un número de cuenta, cada usuario una contraseña, entre otros. Como vemos en los ejemplos mencionados existe una relación entre dos conjuntos de los cuales sus elementos son números u objetos del mundo que nos rodea, así son las matemáticas, cualquiera de sus áreas las podemos aplicar en la vida diario.
9 Referencias Gutiérrez, F. J. (Octubre de 2004). Apuntes de Matemática Discreta. Obtenido de Universidad de Cádiz: Jacobo, I. M. (s.f.). Relaciones entre Conjuntos. Obtenido de Instituto Tecnológico de Chetumal: Relaciones.pdf Matemáticas para computadora. (2013). Obtenido de Propiedades de las Relaciones:
10
Capítulo 6. Relaciones. Continuar
Capítulo 6. Relaciones Continuar Introducción Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones se utilizan en base de datos,
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.
PRODUCTO CARTESIANO RELACIONES BINARIAS
PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un
Ing. Bruno López Takeyas. Relaciones
Relaciones Las relaciones son conjuntos, por lo tanto se puede usar la representación de conjuntos para representar relaciones. Una relación n-aria es un conjunto de n-tuplas. Las relaciones binarias con
UNIDAD 2 RELACIONES Y ESTRUCTURAS DE ORDEN. M.C. Mireya Tovar Vidal
UNIDAD 2 RELACIONES Y ESTRUCTURAS DE ORDEN M.C. Mireya Tovar Vidal CONTENIDO 2.1 Producto cartesiano 2.2 Tipos de relaciones 2.3 Ordenes lineales y parciales 2.4 Aplicaciones IDEA INTUITIVA DE RELACIÓN
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 9 Nombre: Funciones Objetivo: Durante la sesión el participante identificará las características y los tipos de funciones
5 RELACIONES DEFINICION
5 RELACIONES 5.. Conjuntos parcialmente ordenados Las relaciones transitivas antisimétricas conducen a los órdenes parciales. De hecho, existen dos tipos de órdenes parciales, según indicamos mediante
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.
RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal
RELACIONES Y FUNCIONES M.C. Mireya Tovar Vidal IDEA INTUITIVA DE RELACIÓN Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones
28/06/2011 CONTENIDO UNIDAD 3 RELACIONES Y GRAFOS IDEA INTUITIVA DE RELACIÓN DEFINICIÓN FORMAL DE RELACIÓN
CONTENIDO 3.1 Relaciones y sus propiedades 3.2 Relaciones de equivalencia y particiones. 3.3 Relaciones de orden parcial y retículos 3.4 Congruencia módulo n. UNIDAD 3 RELACIONES Y GRAFOS M.C. Mireya Tovar
7. Seguiría siendo válida la proposición anterior si algunos de los conjuntos A, B, C y D son vacíos?
UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE COMPUTACIÓN Y TECNOLOGÍA DE LA INFROMACIÓN ESTRUCTURAS DISCRETAS I GUÍA PRÁCTICA Nº 2. Demuestre lo siguiente mediante inducción matemática: a) 3 + 2 4 + 3 5 +...
Definiciones Un conjunto es una colección de objetos distintos. Notaremos. A = {a, b, c, d, } por extensión
CONJUNTOS Definiciones Un conjunto es una colección de objetos distintos. Notaremos A = {a, b, c, d, } por extensión A = {x / x tiene la propiedad P} por comprensión El cardinal de un conjunto es el número
Matemática Matricial y relaciones
Matemática Matricial y relaciones por Iván Cruz Aceves Por lo general en las matemáticas se utilizan sistemas de ecuaciones para dar solución a problemas de diversas índoles y es aquí donde tienen su aplicación
INSTITUTO TECNOLÓGICO DE NUEVO LAREDO ING. EN SISTEMAS COMPUTACIONALES UNIDAD: 5
NOMBRE DE LA Ejercicios de Relaciones OBJETIVO: El estudiante desarrollará diversos ejercicios de representación y operaciones con relaciones MATERIAL Y EQUIPO NECESARIO: Papel y lápiz Pág. 270 4.- Dar
Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad
Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean
Conjuntos y relaciones
Conjuntos y relaciones Introducción Propiedades de las relaciones Sobre un conjunto Reflexivas Simétricas y transitivas Cerradura Relaciones de equivalencia Órdenes parciales Diagramas de Hasse Introducción
Apuntes de Matemática Discreta 8. Relaciones de Equivalencia
Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 8 Relaciones de Equivalencia
Análisis Matemático I: Numeros Reales y Complejos
Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.
Contenido. Capítulo I Sistemas numéricos 2. Capítulo II Métodos de conteo 40
CONTENIDO v Contenido Contenido de la página Web de apoyo... xi Página Web de apoyo... xvii Prefacio... xix Capítulo I Sistemas numéricos 2 1.1 Introducción... 4 1.2 Sistema decimal... 5 1.3 Sistemas binario,
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 3 Conjuntos, Relaciones y Funciones Conjuntos y Operaciones Los conjuntos se representan con letras mayúsculas,
Introducción a los números reales
Grado en Matemáticas Curso 2009-2010 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 El axioma fundamental
INSTITUTO TECNOLÓGICO DE NUEVO LAREDO ING. EN SISTEMAS COMPUTACIONALES UNIDAD: 2
NOMBRE DE LA Ejercicios de Conjuntos y Relaciones OBJETIVO: El estudiante desarrollará diversos ejercicios de representación y operaciones con conjuntos y con relaciones MATERIAL Y EQUIPO NECESARIO: Papel
2. Estructuras Algebraicas
2. Estructuras Algebraicas 2.1. Conjuntos Un conjunto es una reunión en un todo de determinados objetos bien definidos y diferentes entre sí. Llamamos elementos a los objetos que lo forman. Requisitos:
Matemáticas Discretas
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote [email protected] http://ccc.inaoep.mx/~jemc Oficina
Matemáticas Discretas Relaciones y funciones
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas y funciones Cursos Propedéuticos 2010 Ciencias Computacionales INAOE y funciones Propiedades de relaciones Clases de equivalencia
Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.
Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por
Sistema de ecuaciones lineales. Expresión matricial. Matriz de los coeficientes 3 filas 3 columnas matriz 3 3. x y z
MTRICES Sistema de ecuaciones lineales 2 3 1 5 2 2 1 1 3 Matriz de los coeficientes 3 filas 3 columnas matriz 3 3 2x+ 3y z= 5 5x 2y+ 2z= 10 x y+ 3z= 8 x y z Matriz de las incógnitas 3 filas 1 columna matriz
MATEMATICAS DISCRETAS
MTEMTICS DISCRETS Propiedad reflexiva Sea R una relación binaria R en, ( ). Definición: Diremos que R es reflexiva si a, a R a Ejemplo: 1) En N la relación R definida por: x R y x divide a y es reflexiva
Teoría de Conjuntos: Producto Cartesiano y Relaciones
Teoría de Conjuntos: Producto Cartesiano y Relaciones COMP 2502: Estructuras Computacionales Discretas II Dra. Madeline Ortiz Rodríguez 1 Repaso sobre Conjuntos Los elementos de un conjunto pueden organizarse
Universidad Tecnológica Nacional Regional Académica Reconquista. Carrera: Técnico Superior en Programación
1 Relaciones inarias PRODUCTO CRTESINO ENTRE CONJUNTOS El producto cartesiano aplicado a dos conjuntos y da como resultado el conjunto cuyos elementos son los pares ordenados que tienen como primera componente
Unidad V. Se dice que una pareja ordenada es un esquema en el que un elemento x de un conjunto estä relacionado con un elemento y de otro conjunto.
Unidad V Relaciones 5.1 Conceptos básicos. AREJA ORDENADA Se dice que una pareja ordenada es un esquema en el que un elemento x de un conjunto estä relacionado con un elemento y de otro conjunto. Una pareja
Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias
UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos
Matemática Discreta. SOLUCIONES DEL EXAMEN FINAL Septiembre Ingeniería Técnica en Informática de Sistemas (tarde) y de Gestión
Matemática Discreta SOLUCIONES DEL EXAMEN FINAL Septiembre 2004 Ingeniería Técnica en Informática de Sistemas (tarde) y de Gestión Ejercicio 1: (12 puntos) Demuestra por inducción que para todo n N \ {1},
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES RESPUESTA Y DESARROLLO DE EJERCICIOS AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO 6.1.- a) b) S={(4,1),(4,3),(5,1),(5,3)}
ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4. ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas
ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4 ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas 1. Decir, justificando adecuadamente, si las siguientes afirmaciones son verdaderas o falsas: (a) { } (b) { }
Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:
Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =
Relaciones de orden. Álgebras de Boole
Relaciones de orden. Álgebras de Boole MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de orden. Álgebras de Boole F. Informática. UPM 1 / 52 Conjuntos y relaciones entre
. 1 TEORIA DE NUMEROS. Tema: ARITMETICA MODULAR. (Apuntes de apoyo a clases teóricas) Tiempo de exposición: 2hs
. 1 TEORIA DE NUMEROS Tema: ARITMETICA MODULAR (Apuntes de apoyo a clases teóricas) Tiempo de exposición: 2hs Bibliografía: 2 1. T. Hibbard. Apuntes de Cátedra. Año 2000. 2. J. Yazlle. Apuntes de Cátedra:
GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS
UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS 1. Sean los conjuntos A = {x
Índice. Programación de las unidades. Unidad 1 Matrices 6. Unidad 2 Determinantes 8. Unidad 3 Sistemas de ecuaciones lineales 10
Índice Programación de las unidades Unidad 1 Matrices 6 Unidad 2 Determinantes 8 Unidad 3 Sistemas de ecuaciones lineales 10 Unidad 4 Geometría en el espacio 12 Unidad 5 Producto escalar 14 Unidad 6 Productos
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES.
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES La construcción más habitual, es la que se utiliza los límites las sucesiones de Cauchy del cuerpo Donde Una sucesión, se dice que es de CAUCHY si satisface:
MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS
Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...
Ordenación parcial Conjunto parcialmente ordenado Diagrama de Hasse
Ordenación parcial Un orden parcial es una relación binaria R sobre un conjunto X, que cumple las propiedades: Reflexiva: R es reflexiva sii para todo a A ara Antisimétrica: R es antisimétrica sii para
MATRICES. Jaime Garrido Oliver
MATRICES Jaime Garrido Oliver ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 2 MATRICES... 3 1.1. INTRODUCCIÓN.... 3 2. TIPOS DE MATRICES... 4 2.1. Matriz Fila, Matriz Columna... 4 2.2. Matrices cuadradas...
Tema 1: Simetría y teoría de grupos.
Propiedades y clasificación de los grupos. Todos los grupos matemáticos, dentro de los cuales se incluyen los grupos puntuales, tienen las siguientes propiedades: 1.- Cada grupo debe contener la operación
En lo particular, esta materia permitirá al alumno aplicar las herramientas básicas de matemáticas discretas en:
Nombre de la asignatura: Matemáticas Discretas Créditos: 3 2-5 Aportación al perfil En lo particular, esta materia permitirá al alumno aplicar las herramientas básicas de matemáticas discretas en: El análisis
Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias
UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos
Introducción a los números reales
Grado en Matemáticas Curso 2010-2011 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 4 Objetivos Objetivos
6 RELACIONES Y FUNCIONES
6 RELACIONES Y FUNCIONES Relacionar elementos de conjuntos es usual en el lenguaje matemático, v.gr., "3 es mayor que 1", "true es más débil que false", "Adán es el padre de Caín", etc. En general, esta
Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.
UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.
Matrices simétricas y antisimétricas
Matrices simétricas y antisimétricas Ejercicios Objetivos Definir matrices simétricas y antisimétricas estudiar sus propiedades básicas Requisitos Matriz transpuesta propiedades de la matriz transpuesta
Algebra Lineal Tarea No 9: Espacios vectoriales Maestra Dora Elia Cienfuegos, Enero-Mayo 2017
Algebra Lineal Tarea No 9: Espacios vectoriales Maestra Dora Elia Cienfuegos, Enero-Mayo 2017 Grupo: Matrícula: Nombre: Tipo:-1 1. Suponga que V = R 2 y que se definen las operaciones: y Si Calcule: 1.
Números reales Suma y producto de números reales. Tema 1
Tema 1 Números reales Comprender el conjunto de los números reales, su estructura y sus principales propiedades, es el primer paso imprescindible en el estudio del Análisis Matemático. Presentaremos dicho
ÁLGEBRA I. Curso Grado en Matemáticas
ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A
El cuerpo de los números reales
Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
Conjuntos, Aplicaciones y Relaciones
Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características
Tema 1: Simetría y teoría de grupos.
Ejemplos y aplicaciones de la simetría: QUIRALIDAD. La quiralidad no es solo un concepto ligado a la química orgánica donde se asocia a la presencia del carbono asimétrico: QUIRALIDAD. El experimento En
OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador
OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador Sea V un espacio con producto interno y sea T : V V un operador lineal. Un operador T * : V V se dice que es un adjunto de T
Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.
Definición de matriz Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz
Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.
TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Conjuntos, relaciones y funciones
Conjuntos, relaciones y funciones Matemáticas Discretas para el Diseño Geométrico Teoría de conjuntos Representación y manipulación de grupos 2 1 Motivación Las nociones que estudiaremos constituyen fundamentos
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque
y exámenes. Temas 3 y 4
U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios
MÉTODOS MATEMÁTICOS DE LA FÍSICA I
MÉTODOS MATEMÁTICOS DE LA FÍSICA I Ignacio Sánchez Rodríguez Curso 2006-07 TEMA PRELIMINAR ÍNDICE 1. Lenguaje matemático 2 2. Conjuntos 6 3. Aplicaciones 10 4. Relaciones 12 5. Estructuras algebraicas
Teoría de Conjuntos. Conjunto es: colección de cosas, o una colección determinada de objetos.
Teoría de Conjuntos Apuntes Fernando Toscano tomados por A.Diz-Lois La teoría de conjuntos es una herramienta formal semántica que trata de dotar de significado, o lo que es lo mismo dotar de interpretación.
A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn
Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA
Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva.
RELACIONES DE ORDEN Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Un conjunto parcialmente ordenado ( A, R ) es
1. Matrices Introducción (Miguel de Guzmán) 1.2. Matrices: definiciones. 1 - Matrices c rafaselecciones
- Matrices c rafaselecciones Matrices Introducción Miguel de Guzmán Cuando uno trabaja ordenadamente con sistemas de ecuaciones lineales, pronto se percata de que está escribiendo muchas veces los mismos
Notación Asintótica 2
Notación Asintótica 2 mat-151 1 Éxamen Rápido (6 minutos) Cada operación fundamental usa c milisegundos, cuánto tiempo toma contar hasta 1,000,000? Cuál es el valor de N? Cuál es el órden de complejidad
Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.
Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
TEORÍA DE GRAFOS Ingeniería de Sistemas
TEORÍA DE GRAFOS Ingeniería de Sistemas Código: MAT-31114 AUTORES Ing. Daniel Zambrano Ing. Viviana Semprún UNIDADES DE LA ASIGNATURA» UNIDAD I. Relaciones» UNIDAD II. Estructuras Algebraicas» UNIDAD III.
Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.
Tema 1 Espacios Vectoriales 1.1 Repaso de Estructuras Algebraicas 1. Producto cartesiano de conjuntos. Dados los conjuntos A y B, se llama producto cartesiano de A y B, y se denota por A B al conjunto
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta Lógica y Estructuras Discretas Febrero 2013 1ª, Modelo B Datos X 1 : ( q p) ( p q) X 2: ( p ( q r)) s X 3: ( p r s) X 4: r (r s) Y 1 : x
Preferencias Regulares Axiomas
Preferencias Regulares Microeconomía Douglas Ramírez El problema de elección El problema de la elección del consumidor es un problema de elección bajo restricciones: se trata de escoger las mejores opciones
P xx ( r) P xy ( r) P xz ( r) P xy ( r) P yy ( r) P yz ( r) P xz ( r) P yz ( r) P zz ( r) d S = ds ˆn( r) (2)
EL TENSOR DE PRESIONES La discusión siguiente se centra en el tensor de presiones; sin embargo, los conceptos matemáticos pueden ser extendidos a otras clases de tensores. El tensor de presiones es un
Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G
Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que
TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:
TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,
3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.
Tema I Capítulo 3 Matrices Álgebra Departamento de Métodos Matemáticos y de Representación UDC 3 Matrices 1 Definiciones básicas Definición 11 Una matriz A de dimensión m n es un conjunto de escalares
