5 RELACIONES DEFINICION
|
|
|
- Domingo Calderón Saavedra
- hace 9 años
- Vistas:
Transcripción
1 5 RELACIONES 5.. Conjuntos parcialmente ordenados Las relaciones transitivas antisimétricas conducen a los órdenes parciales. De hecho, existen dos tipos de órdenes parciales, según indicamos mediante la siguiente definición. DEFINICION Una relación R : S «S se denomina un orden parcial débil si es reflexiva, antisimétrica y transitiva. R se denomina un orden parcial estricto si no es reflexiva,antisimétrica y transitiva. Los órdenes parciales, débiles y estrictos están íntimamente relacionados. De hecho, si R es un orden parcial estricto, su cierre reflexivo es un orden parcial débil. Por otra parte, si S es un orden parcial débil sobre cierto conjunto A y si es la relación de identidad sobre A, entonces es un orden parcial estricto. EJEMPLO La relación < es un orden parcial estricto : es no reflexiva, antisimétrica y transitiva. El cierre reflexivo de < es, y esta relación es un orden parcial débil: es reflexiva, antisimétrica y transitiva. Por otra parte, se obtiene el orden parcial estricto < a partir del orden parcial débil mediante la eliminación de todos los pares de la forma ( x,x ). Todos los ordenes parciales estrictos son no cíclicos, esto es, es imposible encontrar una tal que por consiguiente, es imposible encontrar un camino que comience y finalice en x. La razón es que un camino de tamaño s = s' desde a establecería y para relaciones transitivas Por lo tanto en una relación transitiva, todo camino que comience y termine en el mismo punto x implica que xrx es verdadera, puesto que un orden parcial estricto es irreflexivo, esto es imposible. pág.
2 Esto tiene una implicación importante para las llamadas funciones. Si xry significa que la función x puede llamar a la función y, y se puede determinar que estas llamadas a funciones forman un orden parcial, entonces es imposible que las llamadas causen un bucle. La noción de conjunto parcialmente ordenado es muy importante ORDENES ESPECIALES Las ordenes especiales se refiere aquellos arreglos no comunes es el caso de las Matrices de relaciones. Una matriz en una manera conveniente de representar una relación R de X a Y. Esta representación se puede usar en una computadora, para analizar la relación. Se etiquetan los renglones con elementos de X( en algún orden arbitrario), Y se etiquetan las columnas con elementos de Y (de nuevo, en algún orden arbitrario), y se etiquetan las columnas con elementos de Y (de nuevo, el algún orden arbitrario). Después, el elemento en el renglón x y la columna y se hace igual a si x R y, y a 0 de otra manera. Esta matriz se llama matriz dela relación R (relativa al orden de X y Y). Ejemplo La matriz de relación R= {(, b),(, d),(2, c),(3, c),(3, b),(4, a) } De X= = {,2,3,4} a Y { a, b, c, d} = respectos a los ordenes,2,3,4 y a, b, c, d es a b c d Teorema Sea R, una relación de X a Y y sea R una relación de Y a Z. Seleccione el oren de X Y y Z. Sea A la matriz de relación R y sea A 2 la matriz de relación R 2 respectos a los ordenes seleccionados. La matriz de la relación R 2 o R respecto al orden pág. 2
3 seleccionado se obtiene sustituyendo por cada término diferente de cero en la matriz de producto A A RELACIONES DE EQUIVALENCIA Definición Sean A un conjunto y R una relación. Se dice que R es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Suponga que se tiene un conjunto de X de 0 pelotas, cada una de las cuales es roja, azul, ó verde. Si se dividen las pelotas en conjuntos R, A, y V de acuerdo con R, AV, es una partición de X. el color, la familia { } Una partición es útil para definir una relación. Si S es una partición de X,se puede definir x R y de modo que signifique que para algún conjunto S S,tanto x como y perteneces a S. Para el ejemplo la relación obtenida se describe como es del mismo color que. El siguiente teorema muestra este tipos de relación siempre es reflexiva, simétrica y transitiva. Teorema Sea S una partición de un conjunto X. Defina xry de modo que signifique que para algún conjunto S en S, tanto x como y pertenecen a S. Entonces R es reflexiva, simétrica y transitiva. Ejemplo Considere la relación R = {(,2)(,,3, )(,5, )( 2,2)(, 2,4)(, 3,)( 3,3, )( 3,5, )( 4,2)( 4,4)(, 5,)( 5,3)( 5,5) } La relación es reflexiva porque (,),(2,2),/3,3),(4,4),(5,5) R.La relación es simétrica por que siempre que (x, está en R,(y,x) también está en R. Por último, la relación es transitiva porque siempre que (x, y (y,z) están en R,(x,z) también está en R. Como R es reflexiva, simétrica y transitiva.r es un a En {,2,3,4,5} relación de equivalencia en {,2,3,4,5}. pág. 3
4 Teorema Sea R una relación de equivalencia en un conjunto X Para cada [ a] = { x Xx R a} a X,sea ( En palabras [ a] es el conjunto de todos los elementos de X que están relacionados con a). Entonces S = Es una partición de X. Ejemplo { aa X} Existen dos clases de equivalencia para la relación de equivalencia. R = {(,, )(,3, )(,5)(, 2,2)(, 2,4)(, 3,)( 3,3, )( 3,5)(, 4,2)( 4,4)(, 5,)( 5,3)( 5,5) } En {,2,3,4,5} del ejemplo anterior a saber, [] = [ 3] = [ 5] = {, 3, 5, }, y [ 2 ] = [ 4] = { 2, 4, } Teorema Sea R una relación de equivalencia en un conjunto finito X, Si cada clase de equivalencia tiene r elementos, existen X /r clases de equivalencia. Demostración Sean X,, X2, Κ Xk las distintas clases de equivalencias. Como estos conjuntos hacen una partición de X, X = X + X + Κ + Xk = r+ r+ Κ + r = kr Y se deriva la conclusión ejemplos 2 ) La relación R sobre Z definida por: a R b a b es múltiplo de 3. 2) Sea k Ν, la relación R sobre Z: a R b a b es múltiplo de k. pág. 4
5 3) Dado un conjunto D U, la relación: A R B A D = B D 4) Sobre los números reales R, la relación R: x R y x y Z 5) La relación R sobre R 2 definida por: (x, R (a,b) x.y = a.b 6) La relación R sobre Z 2 definida por: (m,n) R (p,q) m+q = n+p 5.4 Relaciones generales Las relaciones generalizan el concepto de funciones. La presencia la presencia del par ordenado (a,b) en una relación se interpreta como que existe una de a de b. El modelo de base de datos relacional que ayuda a los usuarios a tener acceso a tener acceso a la información de una base de datos (una colección de registros manejados por una computadora) se basa en el concepto de relación. Se puede pensar en una relación de un conjunto a otro como en una tabla de lista los elementos del primer conjunto que se relaciona como los elementos del segundo conjunto. La tabla siguiente muestra que estudiantes están inscritos en cuales cursos. Por ejemplo Guillermo toma Computación y Arte. María tomo Matemáticas. En la terminología de las relaciones se dice que Guillermo, está relacionada con Matemáticas. Por supuesto, la tabla en realidad es sólo un conjunto de pares ordenados. De manera abstracta, se define una relación como un conjunto de pares ordenados. En este contexto, se considera que el primer elemento del par ordenado está relacionado con el segundo elemento del par ordenado. Estudiantes Guillermo María Guillermo Beatriz Beatriz Davis Curso Computación Matemáticas Arte Historia Computación Matemáticas Definición pág. 5
6 Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto de producto cartesiano X Y.Si (x, R, se escribe x R y,y se dice que x está relacionada con y. Si X=Y se llama relación (binaria) sobre X. El conjunto { x X ( x, para alguna y Y} Se llama dominio de R. El conjunto { y X ( x, para alguna x Y} Se llama rango de R. Una función es un tipo especial de relación. Una función f de X a Y es una relación de X a Y que tiene la propiedades: a) El dominio de f es igual X b) Para cada x X, existe exactamente y Y tal que (x, f. Una relación R sobre un conjunto X se llama simétrica si para toda x, si( x, entonces ( x,. y X. Si Una relación R sobre un conjunto X se llama antisimétrica si para toda x, Si si( x, y y x entonces ( x,. y X. Una relación R sobre un conjunto X se llama transitiva si para toda si( x, y( y, z) y entonces ( x,. x, y, z X. Si pág. 6
7 BIBLIOGRAFIA Matemáticas Discretas y Combinatoria ;Ralph P. Grimaldi 3 edición Pretince Hall. Matematica Discretas Sexta edición Richard Johnsonbaugh; Pretince Hall. Matematicas Discretas eduard R. Sheninerman; thomson Leraning pág. 7
8 Actividades Complementarias.- Sea A el conjunto de cursos ofrecidos en una escuela. Definimos la relación R sobre A como xry si xy son el mismo curso o si x es un prerrequisito para y. es un conjunto parcial mente ordenado? 2.-Verifique que la relación R= {( a, a),( b, b),( c, c) } sobre { a, b, c, } reflexiva, simétrica, y transitiva. X = es 3.-Determine la relación indicada es una relación de equivalencia en {,2,3,4,5}.Si la la relación es una relación de equivalencia,liste las clases de equivalencia. a) {(,),(2,2),(3,3),(4,4),(5,5),(,3),(3,) } b) {(,),(2,2),(3,3),(4,4),(5,5),(,5),(5,),(3,5),(5,3),(,3),(3,) } c) {( x, 3divideax y} pág. 8
INSTITUTO TECNOLÓGICO DE NUEVO LAREDO ING. EN SISTEMAS COMPUTACIONALES UNIDAD: 2
NOMBRE DE LA Ejercicios de Conjuntos y Relaciones OBJETIVO: El estudiante desarrollará diversos ejercicios de representación y operaciones con conjuntos y con relaciones MATERIAL Y EQUIPO NECESARIO: Papel
Ing. Bruno López Takeyas. Relaciones
Relaciones Las relaciones son conjuntos, por lo tanto se puede usar la representación de conjuntos para representar relaciones. Una relación n-aria es un conjunto de n-tuplas. Las relaciones binarias con
Matemáticas Discretas Relaciones y funciones
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas y funciones Cursos Propedéuticos 2010 Ciencias Computacionales INAOE y funciones Propiedades de relaciones Clases de equivalencia
Matemáticas Discretas
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote [email protected] http://ccc.inaoep.mx/~jemc Oficina
Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias
UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos
Capítulo 4: Conjuntos
Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.
Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves
CONJUNTOS: DEFINICIÓN Y CARDINAL DE UN CONJUNTO : Un conjunto es una colección bien definida de objetos en la que el orden es irrelevante. Dichos objetos pueden ser reales o conceptuales y se llaman elementos
PRODUCTO CARTESIANO RELACIONES BINARIAS
PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1
MATEMATICAS DISCRETAS
MTEMTICS DISCRETS Propiedad reflexiva Sea R una relación binaria R en, ( ). Definición: Diremos que R es reflexiva si a, a R a Ejemplo: 1) En N la relación R definida por: x R y x divide a y es reflexiva
Conjuntos y relaciones
Conjuntos y relaciones Introducción Propiedades de las relaciones Sobre un conjunto Reflexivas Simétricas y transitivas Cerradura Relaciones de equivalencia Órdenes parciales Diagramas de Hasse Introducción
7. Seguiría siendo válida la proposición anterior si algunos de los conjuntos A, B, C y D son vacíos?
UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE COMPUTACIÓN Y TECNOLOGÍA DE LA INFROMACIÓN ESTRUCTURAS DISCRETAS I GUÍA PRÁCTICA Nº 2. Demuestre lo siguiente mediante inducción matemática: a) 3 + 2 4 + 3 5 +...
Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad
Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean
Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias
UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos
Conjuntos, Aplicaciones y Relaciones
Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto
Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática
Contenido BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Nociones de teoría de conjuntos
. 1 TEORIA DE NUMEROS. Tema: ARITMETICA MODULAR. (Apuntes de apoyo a clases teóricas) Tiempo de exposición: 2hs
. 1 TEORIA DE NUMEROS Tema: ARITMETICA MODULAR (Apuntes de apoyo a clases teóricas) Tiempo de exposición: 2hs Bibliografía: 2 1. T. Hibbard. Apuntes de Cátedra. Año 2000. 2. J. Yazlle. Apuntes de Cátedra:
Capítulo 6. Relaciones. Continuar
Capítulo 6. Relaciones Continuar Introducción Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones se utilizan en base de datos,
PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura.
1 PRELIMINARES 1. CONJUNTOS En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1.1 Def:. Se define un conjunto como una colección de objetos.
Universidad Tecnológica Nacional Regional Académica Reconquista. Carrera: Técnico Superior en Programación
1 Relaciones inarias PRODUCTO CRTESINO ENTRE CONJUNTOS El producto cartesiano aplicado a dos conjuntos y da como resultado el conjunto cuyos elementos son los pares ordenados que tienen como primera componente
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
Lección No.4: Relación de equivalencia
Sol: B-A1, c, (A B) c 3, e y (A B) c 1, c, 3, d, 4, e,5 Ejercicio 2: Si U 1,2,3,4,5,6,7,8,9, A 3,7,9, B 1,3,4,5 y C 1, 5,8 encontrar (A B) (BC) -A y C c Sol: A B BC -A1,5} y C c = {2,3,4,6,7,9}. Lección
TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN
1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir
CAPÍTULO III RELACIONES Y FUNCIONES
RELACIONES Y FUNCIONES 41 CAPÍTULO III RELACIONES Y FUNCIONES 3.1 RELACIONES 1 Una relación R de un conjunto A a un conjunto B asigna a cada par (a,b) en A x B exactamente uno de los enunciados siguientes:
Matemáticas Discretas TC1003
Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo
2. Estructuras Algebraicas
2. Estructuras Algebraicas 2.1. Conjuntos Un conjunto es una reunión en un todo de determinados objetos bien definidos y diferentes entre sí. Llamamos elementos a los objetos que lo forman. Requisitos:
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
PROGRAMA DE MATEMATICAS DISCRETAS
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS PROGRAMA DE MATEMATICAS DISCRETAS 1. DATOS INFORMATIVOS 1.1 Escuela : Ingeniería 1.2 Carrera : Ingeniería
RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal
RELACIONES Y FUNCIONES M.C. Mireya Tovar Vidal IDEA INTUITIVA DE RELACIÓN Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones
Contenido. Capítulo I Sistemas numéricos 2. Capítulo II Métodos de conteo 40
CONTENIDO v Contenido Contenido de la página Web de apoyo... xi Página Web de apoyo... xvii Prefacio... xix Capítulo I Sistemas numéricos 2 1.1 Introducción... 4 1.2 Sistema decimal... 5 1.3 Sistemas binario,
Apuntes de Matemática Discreta 8. Relaciones de Equivalencia
Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 8 Relaciones de Equivalencia
1. Conjuntos y funciones
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos:
TEMA 1 Teoría de Conjuntos Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: i) A = { }, B = {{ }} ii) A = {, { }}, B = {, {, { }}} iii) A = {{ }, {, { }}}, B = {{ }} Ejercicio 1.2. Dar
TEORÍA DE GRAFOS Ingeniería de Sistemas
TEORÍA DE GRAFOS Ingeniería de Sistemas Código: MAT-31114 AUTORES Ing. Daniel Zambrano Ing. Viviana Semprún UNIDADES DE LA ASIGNATURA» UNIDAD I. Relaciones» UNIDAD II. Estructuras Algebraicas» UNIDAD III.
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS A. 1 Conjuntos. A. TEORÍA DE CONJUNTOS. Un conjunto
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
Análisis Matemático I: Numeros Reales y Complejos
Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.
Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva.
RELACIONES DE ORDEN Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Un conjunto parcialmente ordenado ( A, R ) es
MATEMATICA PARA INFORMATICA III
INFORMACION GENERAL FACULTAD O CENTRO: CIENCIAS DE LA EDUCACION Y HUMANIDADES PLAN DE ESTUDIO: 1999 CARRERA: INFORMATICA EDUCATIVA ORIENTACION: EDUCATIVA ASIGNATURA: ESTRUCTURAS DISCRETAS AÑO ACADEMICO:
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.
Relaciones binarias I
Relaciones binarias I Dos hombres juegan un partido de tenis al mejor de cinco sets, cuando terminan el partido ambos han ganado tres sets. Cómo puede ser esto? Par ordenado A. Diagrama sagital o de flechas:
ÁLGEBRA I. Curso Grado en Matemáticas
ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A
Introducción a los números reales
Grado en Matemáticas Curso 2009-2010 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 El axioma fundamental
Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición
Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar
En lo particular, esta materia permitirá al alumno aplicar las herramientas básicas de matemáticas discretas en:
Nombre de la asignatura: Matemáticas Discretas Créditos: 3 2-5 Aportación al perfil En lo particular, esta materia permitirá al alumno aplicar las herramientas básicas de matemáticas discretas en: El análisis
Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.
UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.
LA FUNCIÓN INVERSA. Si R es una relación, la relación R definida por la proposiciones. (a, b) R (b, a) R. (a, b) R (c, b) R a = c
LA FUNCIÓN INVERSA Existen diferentes definiciones de función inversa, aunque el concepto matemático es el mismo. Expondremos aquí tres de ellas, para efectos formales, ya que para hallar la inversa de
CONJUNTOS. Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas.
CONJUNTOS CPR. JORGE JUAN Xuvia-Narón Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas. Un conjunto está formado por una serie de elementos susceptibles de poseer
Conjuntos. Relaciones. Aplicaciones
Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B
Operaciones extendidas de conjuntos
234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.
RELACIONES Y FUNCIONES
ELCIONES Y FUNCIONES INTODUCCION a B b c 3 Cuando manejamos esquemas de este tipo, solemos decir que se estableció una relación o correspondencia entre los conjuntos y B en donde al elemento a le corresponde
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 2015 Lic. Manuel
Tema 1: Fundamentos.
Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará
Capitulo V: Relaciones
Capitulo V: Relaciones Relaciones Binarias: Consideremos dos conjuntos A B no vacíos, llamaremos relación binaria de A en B o relación entre elementos de A B a todo subconjunto R del producto cartesiano
Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.
Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos [email protected] niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección
Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:
Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E
Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de
b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A
APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:
Programa de Asignatura
Departamento de Ingeniería Industrial Programa: Ingeniería Mecatrónica Plan 007- Asignatura: Tópicos de Matemáticas Discretas Clave: 9938 Semestre: II Tipo: Obligatoria H. Teoría: H Práctica: HSM: 4 Créditos:
MATEMÁTICAS TEMA 50. Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas
MATEMÁTICAS TEMA 50 Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas ÍNDICE. 1. Introducción. 2. El anillo de los polinomios. 3. Potencia de un polinomio.
TEMA IV TEORÍA DE GRAFOS
TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos
Ejercicios resueltos Introducción a la teoría de los grupos. J. Armando Velazco
Ejercicios resueltos Introducción a la teoría de los grupos J. Armando Velazco 1 de mayo de 2015 Ejercicio 1: Pruebe que si G es un grupo finito con identidad e y con un número par de elementos, entonces
Relaciones y Funciones.
Capítulo 7 Relaciones y Funciones. Esta parte sólo es necesaria para entender la semántica de la lógica de primer orden que se introducirá en apartados posteriores, hemos creído conveniente situarla aquí
Estructuras Algebraicas
Estructuras Algebraicas Luis Manuel Hernández Ramos 12 24 de mayo de 2007 1 Centro de Calculo Científico y Tecnológico, Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 2 e-mail: [email protected]
GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS
UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS 1. Sean los conjuntos A = {x
Lección 8. Matrices y Sistemas de Ecuaciones Lineales
Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En
Lenguajes, Gramáticas y Autómatas Conceptos
Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y
UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :
UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 I / Ejercicios sugeridos para : los temas de las clases del 2 y 23 de abril de 29. Tema : Matrices. Operaciones con matrices. Ejemplos. Operaciones elementales
Conjuntos, relaciones y funciones
Conjuntos, relaciones y funciones Matemáticas Discretas para el Diseño Geométrico Teoría de conjuntos Representación y manipulación de grupos 2 1 Motivación Las nociones que estudiaremos constituyen fundamentos
Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad
Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.
1. Números reales. Análisis de Variable Real
1. Números reales Análisis de Variable Real 2014 2015 Índice 1. Sistemas numéricos 2 1.1. Números naturales. Principio de Inducción... 2 1.2. Números enteros... 4 1.3. Números racionales... 6 2. Los números
Si un objeto x es elemento de un conjunto A, se escribe: x A.
Conjuntos. Dentro de la teoría se consideran como primitivos o términos no definidos los conjuntos y los elementos. En general, se designan los conjuntos usando letras latinas mayúsculas y los elementos
CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA?
CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA? Comenzó siendo un conjunto de reglas y conocimientos obtenidos por la experiencia, usados por los constructores y medidores de terrenos. Luego se organiza en forma
Producto de Kronecker y potencias de matrices.
y potencias de matrices. M.G. Eberle M.J. Redondo Departamento de Matemática Universidad Nacional del Sur Bahía Blanca septiembre de 2016 berle Redondo (Universidad Nacional del Sur) Argentina 1 / 23 Dadas
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
INSTITUCIÓN EDUCATIVA SANTA TERESA DE JESÚS IBAGUÉ - TOLIMA GUIA No.4 ALGEBRA DOCENTE: EDGARD RODRIGUEZ USECHE GRADO : NOVENO
TEMA: ECUACIÓN DE LA LÍNEA RECTA Las coordenadas cartesianas o coordenadas rectangulares son un ejemplo de coordenadas ortogonales usadas en espacios euclídeos caracterizadas por la existencia de dos ejes
Algebra lineal Matrices
Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en
INSTITUTO POLITÉCNICO NACIONAL
PROGRAMA SINTÉTICO UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO PROGRAMA Ingeniero en Sistemas Computacionales ACADÉMICO: UNIDAD DE APRENDIZAJE: Discretas NIVEL: I OBJETIVO GENERAL: Aplicar las principales
TEMA 5: NÚMEROS RACIONALES ÍNDICE:
TEMA 5: NÚMEROS RACIONALES ÍNDICE: 1 INTRODUCCIÓN 2 EL CONJUNTO DE LOS NÚMEROS RACIONALES 3 REPRESENTACIÓN GEOMÉTRICA DE LOS NÚMEROS RACIONALES 4 SUMA DE NÚMEROS RACIONALES 5 MULTIPLICACIÓN DE NÚMEROS
6 Relaciones Binarias
6 Relaciones Binarias 21 Sean A = {a, b, c, d}, B = {2, 3, 4, 5} y C = {6,, 8,, 10}. Sean R1 A B y R2 B C definidas por R1 = {(a, 2), (a, 5), (b, 4), (c, 2), (c, 3), (d, 3)} y x R2 y x divide a y. a) Hallar
ticas Discretas Conjuntos Cont... Cont... Capítulo 2: El lenguaje de las Matemáticas Definiciones
Matemáticas ticas Discretas Capítulo 2: El lenguaje de las Matemáticas Definiciones Un conjunto es una colección de objetos en la cual no importa su orden, y no se admiten objetos repetidos. Colección
