Cap1: Initial Value Problems (IVP)
|
|
|
- Trinidad Gómez Crespo
- hace 7 años
- Vistas:
Transcripción
1 Universidad Nacional de Ingeniería Facultad de Ciencias Cálculo Numérico 2 IF392 Cap1: Initial Value Problems (IVP) Prof: J. Solano 2018-I
2 Solve y =F(x,y), y(a)= )= 2
3 IVPs Problemas de Valor Inicial Resolver la ecuación diferencial de 1 er orden y = F(x,y) ; y(a) =, donde a x b 3
4 Método de Serie de Taylor El error de truncado es Usando la aproximación por diferencias finitas Obtenemos esta forma, computable numéricamente 4
5 Método de Serie de Taylor En el ejemplo: Determinar y(0,2). La solución analítica es: SOLUCIÓN: por serie de Taylor 5
6 Método de Serie de Taylor Derivando de la ecuación diferencial: Determinar y(0,2). La solución aproximada/numérica es: 6
7 Método de Serie de Taylor El error de truncamiento seria: Donde: La solución analítica da: Y el error sería: 0,4515-0,4539 = -0,0024 7
8 Método de Serie de Taylor Ejemplo: Método de serie de Taylor de integración orden 4 donde i=1,2,3,.,n Tenemos: Resolver: de x=1 a 2, usando h=0.25 8
9 SOLUCIÓN Método de Serie de Taylor Usando y 1 =y, y 2 =y, las ecs de primer orden equivalentes y condiciones iniciales son: Diferenciación repetida de las ecuaciones diferenciales da: 9
10 Eliminar error de truncamiento y j+1 - y j = k f(t j,y j ) PASO 4: Método de Euler para j = 0,1,2,..,M-1, además y 0 = 10
11 Métodos Runge-Kutta de 1 er orden El fin principal del método Runge-Kutta es eliminar la necesidad para derivadas repetidas de las ecuaciones diferenciales. Como la fórmula de integración por serie de Taylor de 1 er orden no envuelve diferenciación entonces el método de Euler puede ser considerado un método Runge-Kutta de 1 er orden. Problema: excesivo error por truncamiento Interpretación gráfica de la ecuación de Euler para y = f(x,y) Cambio en la solución de y entre x y x+h 11
12 Métodos Runge-Kutta de 1 er orden El error de truncamiento es proporcional a la pendiente, o sea a y (x) 12
13 Métodos Runge-Kutta de 2 do orden Aquí asumimos una fórmula de integración de la forma y tratamos de hallar los parámetros c 0, c 1, p y q comparándola con la serie de Taylor, notar que donde n es el número de ecuaciones diferenciales de 1 er orden 13
14 Métodos Runge-Kutta de 2 do orden Podemos reescribir la fórmula de la forma y también, aplicando series de Taylor en varias variables, lo que nos da la ecuación inicial y comparando con ecuación anterior, término a término tres ecuaciones y cuatro parámetros 14
15 Métodos Runge-Kutta de 2 do orden Lo que nos da varias opciones: Método modificado de Euler Método de Heun Método de Ralston todas esas fórmulas son clasificadas como métodos de Runge-Kutta de 2 do orden, y si escogemos el método modificado de Euler La fórmula de integración puede ser evaluada con la siguiente secuencia de operaciones 15
16 Métodos Runge-Kutta de 2 do orden Representación gráfica de la fórmula modificada de Euler para la ecuación diferencial simple y = f(x,y) La primera de las ecuaciones anteriores da un estimado de y en el punto medio x+h/2: y(x+h/2) = y(x) + f(x,y)h/2 = y(x) + K 1 /2. La segunda ecuación aproxima el área bajo la curva de y =f(x,y) por el área K 2 del rectángulo achurado. 16
17 Métodos Runge-Kutta de 2 do orden Usar el método de Runge-Kutta de orden para integrar y = sin y y(0) = 1 desde x=0 a 0.5, en pasos de h=0.1. Precisión computacional de 4 decimales. SOLUCIÓN: Tenemos f(x,y) = sin y entonces las fórmulas de integración dan: 17
18 Métodos Runge-Kutta de 2 do orden Recordar que y(0) = 1, entonces en la integración se procede así: 18
19 Métodos Runge-Kutta de 2 do orden Resumen de todos los cálculos computacionales (máquina o hombre :)): La solución exacta es lo que da para x(1,4664)= La solución numérica es precisa hasta 4 casas decimales, pero si el rango, los pasos, y las casas decimales, aumentan sería difícil mantener esta precisión (errores acumulados de truncamiento y rendondeo) 19
METODOS DE RUNGE KUTTA
METODOS DE RUNGE KUTTA Los métodos de Runge-Kutta (RK logran una exactitud del procedimiento de una serie de Taylor, sin requerir el cálculo de derivadas superiores. Probablemente uno de los procedimientos
Análisis Numérico para Ingeniería. Clase Nro. 3
Análisis Numérico para Ingeniería Clase Nro. 3 Ecuaciones Diferenciales Ordinarias Introducción Problemas de Valores Iniciales Método de la Serie de Taylor Método de Euler Simple Método de Euler Modificado
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES ORDINARIAS (EDO) MOTIVACIÓN Se llamará ecuación diferencial a aquella ecuación que contiene una variable dependiente
Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0
187 9.1. Fórmula de Euler El objetivo de los métodos numéricos es proporcionar fórmulas generales y algoritmos que no dependan de los datos de un problema particular. Las siguientes fórmulas y algoritmos
Unidad IV: Diferenciación e integración numérica
Unidad IV: Diferenciación e integración numérica 4.1 Diferenciación numérica El cálculo de la derivada de una función puede ser un proceso "difícil" ya sea por lo complicado de la definición analítica
Métodos Numéricos CÓDIGO: Teórico - Práctico. Agosto 5 de 2018.
Página 1 de 4 FACULTAD: CIENCIAS BASICAS PROGRAMA: _FISICA DEPARTAMENTO DE: FISICA Y GEOLOGIA CURSO: ÁREA: Métodos Numéricos CÓDIGO: 157103 Profundización REQUISITOS: 167003 CORREQUISITO: -------------
Ecuaciones Diferenciales Ordinarias (2)
MODELACION NUMERICA CON APLICACIONES EN INGENIERIA HIDRAULICA Y AMBIENTAL Ecuaciones Diferenciales Ordinarias (2) Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile
Observación: El método de Euler, es el método de Taylor de orden 1.
METODO DE TAYLOR TEOREMA DE TAYLOR DE ORDEN N Sea y(t) una función tal que sea n veces continuamente diferenciable en el intervalo [a,b] y existe y (N+1) existe en [a, b] Para todo t k + [a, b] abrá un
Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS
ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones
Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8
No se puede mostrar la imagen en este momento. Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 Ecuaciones Diferenciales Ordinarias (EDO) Una Ecuación Diferencial es aquella ecuación
Cálculo Numérico (0258) TEMA 6 SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS. Semestre
Cálculo Numérico (58) Semestre - TEMA 6 SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS Semestre - Septiembre U.C.V. F.I.U.C.V. CÁLCULO NUMÉRICO (58) - TEMA 6 Las notas presentadas a continuación
Métodos numéricos para Ecuaciones Diferenciales Ordinarias. Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es
Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es Ecuación Diferencial Ordinaria (EDO) n Gran cantidad de problemas de la física y la ingeniería
Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta
Clase No. 24: Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta MAT 251 Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/alram/met_num/
Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias
Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Lunes, 11 de noviembre de 2014
Ecuaciones Diferenciales Tema 1. Parte 2: Métodos Numéricos para Ecuaciones Diferenciales
Tema 1. Parte 2: Métodos Numéricos para Ester Simó Mezquita Matemática Aplicada IV 1 Tema 1. Parte 2: Métodos numéricos para 1. Introducción 2. El método de Euler 3. El término de error 4. Método de Euler
Métodos numéricos. Aproximación para la solución de ecuaciones diferenciales ordinarias. Bioing. Analía S. Cherniz
Métodos numéricos Aproximación para la solución de ecuaciones diferenciales ordinarias Bioing. Analía S. Cherniz Modelización de Sistemas Biológicos por Computadora 03/08/2010 Organización 1 Introducción
Ecuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com Universidad: ITESM
Integración de ODEs. Miguel Ángel Otaduy. Animación Avanzada 30 de Enero de 2014
Integración de ODEs Miguel Ángel Otaduy Animación Avanzada 30 de Enero de 2014 Índice Integración de ODEs Problema estático vs. dinámico. Ecuaciones diferenciales ordinarias (ODEs). Desarrollo de Taylor.
Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Métodos de Rungo-Kutta
Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Métodos de Rungo-Kutta Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno: José Armando Lara Ramos Equipo: 9 4
Licenciatura en Electrónica y Computación: Métodos Numéricos
Licenciatura en Electrónica Computación: Métodos Numéricos METODO DE EULER Este método se aplica para encontrar la solución a ecuaciones dierenciales ordinarias (EDO), esto es, cuando la unción involucra
Comparación de Métodos Numéricos para la Solución Ecuación Diferencial de 1 er Orden
Comparación de Métodos Numéricos para la Solución Ecuación Diferencial de er Orden Francisco M. Gonzalez-Longatt Resumen Este documento presenta un comparación de los resultados obtenidos por tres métodos
Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes
Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO SECRETARÍA ARAGUA VENEZUELA
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO SECRETARÍA ARAGUA VENEZUELA FACULTAD: ESCUELA: ASIGNATURA: CODIGO: INGENIERIA SISTEMAS CALCULO NUMERICO MAT604
CAPÍTULO. 7 Métodos numéricos
CAPÍTULO 7 Métodos numéricos 7.4 Método de Runge-Kutta En las secciones previas se resolvió el PVI y 0 D f.x; y/, con y.x 0 / D y 0 utilizando aproximaciones lineal y cuadrática de la solución y.x/. Observamos
Métodos Numéricos en Ecuaciones Diferenciales Ordinarias
Tema 4 Métodos Numéricos en Ecuaciones Diferenciales Ordinarias 4.1 Introducción Estudiaremos en este Tema algunos métodos numéricos para resolver problemas de valor inicial en ecuaciones diferenciales
4. Ecuaciones lineales de orden n 5. Ecuación de Euler 6. Oscilaciones 6.1. Oscilaciones libres 6.2. Oscilaciones forzadas 7. Problemas 7.1. Problemas
Índice Capítulo 1. Ecuaciones diferenciales de primer orden 2. Nociones generales 2.1. Definiciones básicas 2.2. Observaciones generales sobre las soluciones 2.3. Formación de ecuaciones diferenciales
Análisis Numérico para Ingeniería. Clase Nro. 13
Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de
Solución numérica de ED Métodos de Runge-Kutta. Juan Manuel Rodríguez Prieto
Solución numérica de ED Métodos de Runge-Kutta Juan Manuel Rodríguez Prieto Método de Heun Para mejorar la estimación de la pendiente emplea la determinación de dos derivadas en el intervalo (una al inicio
Introducción al MathCad
Resolución de Ecuaciones Diferenciales Ordinarias (EDO s EDO: problemas de valores iniciales (P.V.I. Sistema de EDO s Fisicoquímica 4 Sistema de EDOs ondición inicial dy f(t,y, y,.., y n y (t y, dy f(t,y,
METODOS MULTIPASOS METODOS DE ADAMS
METODOS MULTIPASOS Los métodos de euler, Heun, Taylor y Runge-Kutta se llaman método de un paso porque en el cálculo de cada punto sólo se usa la información del último punto. Los métodos multipaso utiliza
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA MECANICA ENERGIA DEPARTAMENTO ACADÉMICO DE INGENIERÍA MECÁNICA
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA MECANICA ENERGIA DEPARTAMENTO ACADÉMICO DE INGENIERÍA MECÁNICA Av. Juan Pablo II S/N Bellavista Callao Teléfonos 429-0740 Anexos 291 293-294 Telefax:
Bloque IV. Ecuaciones Diferenciales de primer orden Tema 4 Métodos de Aproximación Numérica Ejercicios resueltos
Bloque IV. Ecuaciones Diferenciales de primer orden Tema Métodos de Aproimación Numérica Ejercicios resueltos IV.- Usar el método de Euler para aproimar la solución del P.V.I. dado en los puntos =.,.,.,.,.5
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos
Mg. Lic. ADÁN, TEJADA CABANILLAS Página 1
PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú. Permisos que vayan más allá de lo cubierto por
Diferenciación numérica: Método de Euler explícito
Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I MÉTODOS NUMÉRICOS
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I MÉTODOS NUMÉRICOS NIVEL : LICENCIATURA CRÉDITOS : 8 CLAVE : ICAC23002818 HORAS TEORÍA : 3 SEMESTRE : TERCERO HORAS PRÁCTICA : 2 REQUISITOS
CAPÍTULO. 7 Métodos numéricos
CAPÍTULO 7 Métodos numéricos 7.3 Método de Euler mejorado Consideremos ahora el polinomio de Taylor de orden de y.x/ en x D x 0 para aproximar a la solución del PVI y 0 D f.x; y/, con y.x 0 / D y 0. Esta
APLICACIONES COMPUTACIONALES
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA DIFERENCIACIÓN NUMÉRICA [email protected] IEM APLICACIONES COMPUTACIONALES SERIE DE TEYLOR => Serie de Taylor => Residuo SERIE DE TEYLOR
7.3 Método de Euler mejorado
43 Ecuaciones diferenciales Ejercicios 7..1 Euler. Soluciones en la página 477 Determine una aproximación lineal de la solución y.x/ de cada una de los siguientes PVI en el punto indicado utilizando el
Práctica II: Problemas de valor inicial en EDO s.
AMPLIACIÓN DE MATEMÁTICAS o Ing. de Telecomunicación y Aeronáutica) Departamento de Matemática Aplicada II. Universidad de Sevilla CURSO ACADÉMICO 008-009 Práctica II: Problemas de valor inicial en EDO
Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler
Lección 6 Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler 61 Introducción a los métodos numéricos En este capítulo y en los anteriores estamos estudiado algunas técnicas
1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Métodos Numéricos. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEE 0624
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Métodos Numéricos Ingeniería en Pesquerías PEE 0624 2 2 6 2.- HISTORIA DEL PROGRAMA
Unidad VI: Solución de ecuaciones diferenciales 6.1 Métodos de un paso
Unidad VI: Solución de ecuaciones diferenciales 6. Métodos de un paso Los métodos de Euler. MÉTODO NUMÉRICO UNIDAD 6 Una de las técnicas más simples para aproximar soluciones de ecuaciones diferenciales
ANÁLISIS NUMÉRICO. 4 horas a la semana 6 créditos Cuarto semestre
ANÁLISIS NUMÉRICO 4 horas a la semana 6 créditos Cuarto semestre Objetivo del curso: El estudiante deducirá y utilizará métodos numéricos para obtener soluciones aproximadas de modelos matemáticos que
Análisis Numérico para Ingeniería. Clase Nro. 13
Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de
FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS EXAMENFINALDEANÁLISIS NUMÉRICO SEMESTRE
EXAMENFINALDEANÁLISIS NUMÉRICO SEMESTRE 014- Estudiante: Calificación: INSTRUCCIONES: Este examen es la demostración de su capacidad de trabajo y comprensión de la asignatura, es un documento oficial de
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: MÉTODOS NUMÉRICOS FECHA DE ELABORACIÓN: FEBRERO 2005 ÁREA DEL PLAN DE ESTUDIOS: AS ( ) AC ( X
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA DERIVADA Aproximación Definición MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA INTEGRAL
Integracion Numerica
Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Integracion Numerica Prof: J. Solano 202-I Problema: Integrando un espectro Un experimento ha medido dn(t)/dt, el numero
5. SOLUCIÓN DE ECUACIONES DIFERENCIALES ORDINARIAS Y PARCIALES
5. SOLUCIÓN DE ECUACIONES DIFERENCIALES ORDINARIAS Y PARCIALES 5.1. Fundamentos matemáticos 5.2. Métodos de un paso 5.2.1. Método de Euler La idea del método de Euler es muy sencilla y está basada en el
Métodos Numéricos. DOMINIO DEL PERFIL DE EGRESO RELACIONADO CON LA ASIGNATURA: Modelamiento de Procesos Decisionales
Nombre del (la) Docente Responsable: Ing. Elton F. Morales Blancas, M.Sc. Nombre del (la) Docente Colaborador:---------------------------------------- Métodos Numéricos Carrera / Programa Ingeniería Civil
INGENIERÍA EN ENERGÍAS RENOVABLES EN COMPETENCIAS PROFESIONALES ASIGNATURA DE MATEMÁTICAS PARA INGENIERÍA II
INGENIERÍA EN ENERGÍAS RENOVABLES EN COMPETENCIAS PROFESIONALES ASIGNATURA DE MATEMÁTICAS PARA INGENIERÍA II 1. Competencias Plantear y solucionar problemas con base en los principios y teorías de física,
Complementos de Matemáticas, ITT Telemática
Introducción Métodos numéricos para EDOs Complementos de Matemáticas, ITT Telemática Tema 4. Solución numérica de problemas de valor inicial para ecuaciones diferenciales ordinarias Departamento de Matemáticas,
Métodos Numéricos. Carrera: BQM Participantes. Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Métodos Numéricos Ingeniería Bioquímica BQM - 0524 3-2-8 2.- HISTORIA DEL PROGRAMA
Métodos Numéricos 1.- DATOS DE LA ASIGNATURA. Métodos Numéricos. Nombre de la asignatura: Ingeniería Bioquímica. Carrera: Clave de la asignatura:
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Métodos Numéricos Ingeniería Bioquímica BQM - 0524 3-2-8 2.- HISTORIA DEL PROGRAMA.
Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.
CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión
Métodos Numéricos para problemas de valor inicial
Práctica 4 Métodos Numéricos para problemas de valor inicial 4.1. Introducción Los métodos analíticos de integración de ecuaciones diferenciales sólo son útiles para resolver una pequeña parte de las ecuaciones
ETS Minas: Métodos matemáticos
ETS Minas: Métodos matemáticos Guía de estudio: Tema 7 EDOs de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre 2008,
CAPÍTULO. Métodos numéricos
CAPÍTULO 7 Métodos numéricos 7.2 Método de Euler En general, la solución de un PVI, y 0 D f.x; y/, con y.x 0 / D y 0, es una función y.x/ que se puede desarrollar mediante un polinomio de Taylor de cualquier
1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores
1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores Jorge Eduardo Ortiz Triviño [email protected] http://www.docentes.unal.edu.co/jeortizt/ Objetivos de la sección Exponer los
Los errores asociados a todo cálculo numérico tienen su origen en dos grandes factores:
Errores El concepto de error es consustancial con el cálculo numérico. En todos los problemas es fundamental hacer un seguimiento de los errores cometidos a fin de poder estimar el grado de aproximación
PROGRAMA ANALÍTICO DE ASIGNATURA
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO PROGRAMA ANALÍTICO DE ASIGNATURA _ 1.- DATOS GENERALES 1.1 INSTITUTO: 1.2 LICENCIATURA:
