Métodos numéricos. Aproximación para la solución de ecuaciones diferenciales ordinarias. Bioing. Analía S. Cherniz

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos numéricos. Aproximación para la solución de ecuaciones diferenciales ordinarias. Bioing. Analía S. Cherniz"

Transcripción

1 Métodos numéricos Aproximación para la solución de ecuaciones diferenciales ordinarias Bioing. Analía S. Cherniz Modelización de Sistemas Biológicos por Computadora 03/08/2010

2 Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

3 Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

4 cuaciones diferenciales ordinarias (EDOs) Introducción Frecuentemente sucede que no es posible hallar la solución analítica de las ecuaciones diferenciales planteadas en los modelos. En estos casos los métodos numéricos permiten resolver el modelo alcanzando una solución aproximada del mismo. Ecuaciones Diferenciales Ordinarias f ( t, y, dy ) dt, d2 y dt 2,, dn y dt n = 0 Solución única: n condiciones Condiciones en t = t 0 : Problema de condiciones iniciales Condiciones en más de un valor de t: Problema de condiciones de contorno A. Cherniz Métodos numéricos 03/08/ / 33

5 cuaciones diferenciales ordinarias (EDOs) Introducción Frecuentemente sucede que no es posible hallar la solución analítica de las ecuaciones diferenciales planteadas en los modelos. En estos casos los métodos numéricos permiten resolver el modelo alcanzando una solución aproximada del mismo. Ecuaciones Diferenciales Ordinarias f ( t, y, dy ) dt, d2 y dt 2,, dn y dt n = 0 Solución única: n condiciones Condiciones en t = t 0 : Problema de condiciones iniciales Condiciones en más de un valor de t: Problema de condiciones de contorno A. Cherniz Métodos numéricos 03/08/ / 33

6 cuaciones diferenciales ordinarias (EDOs) Introducción Clasicación según la cantidad de puntos evaluados Métodos de Paso Simple Métodos de Paso Múltiple Clasicación según los puntos evaluados Métodos Explícitos Métodos Implícitos A. Cherniz Métodos numéricos 03/08/ / 33

7 cuaciones diferenciales ordinarias (EDOs) Introducción Clasicación según la cantidad de puntos evaluados Métodos de Paso Simple Métodos de Paso Múltiple Clasicación según los puntos evaluados Métodos Explícitos Métodos Implícitos A. Cherniz Métodos numéricos 03/08/ / 33

8 cuaciones diferenciales ordinarias (EDOs) Introducción Ecuacion Diferencial Ordinaria donde p es una constante. t 2 d2 y dt 2 + tdy dt + (t2 p 2 )y = 0 Sistema de Ecuaciones Diferenciales de Primer Orden y 1 = dy dt = dy 1 dt = d2 y dt 2 y 1 dy dt = 0 t 2 dy 1 dt + ty 1 + (t 2 p 2 )y = 0 A. Cherniz Métodos numéricos 03/08/ / 33

9 cuaciones diferenciales ordinarias (EDOs) Introducción Ecuacion Diferencial Ordinaria donde p es una constante. t 2 d2 y dt 2 + tdy dt + (t2 p 2 )y = 0 Sistema de Ecuaciones Diferenciales de Primer Orden y 1 = dy dt = dy 1 dt = d2 y dt 2 y 1 dy dt = 0 t 2 dy 1 dt + ty 1 + (t 2 p 2 )y = 0 A. Cherniz Métodos numéricos 03/08/ / 33

10 cuaciones diferenciales ordinarias (EDOs) Introducción EDO 1er orden F ( t, y, dy ) = 0 dt denida en el intervalo [a, b]. Se puede escribir en forma explícita: Solución aproximada dy dt = f(t, y) Se divide el intervalo de variación de t en subintervalos o pasos Se aproxima la solución verdadera y(t) en n + 1 valores igualmente espaciados de t: t 0, t 1,, t n. A. Cherniz Métodos numéricos 03/08/ / 33

11 cuaciones diferenciales ordinarias (EDOs) Introducción EDO 1er orden F ( t, y, dy ) = 0 dt denida en el intervalo [a, b]. Se puede escribir en forma explícita: Solución aproximada dy dt = f(t, y) Se divide el intervalo de variación de t en subintervalos o pasos Se aproxima la solución verdadera y(t) en n + 1 valores igualmente espaciados de t: t 0, t 1,, t n. A. Cherniz Métodos numéricos 03/08/ / 33

12 cuaciones diferenciales ordinarias (EDOs) Introducción Solución aproximada Tamaño de paso: Valores de t: h = b a n t i = t 0 + ih; i = 0, 1, 2,, n La solución se da en forma tabular para n + 1 valores discretos de t. A. Cherniz Métodos numéricos 03/08/ / 33

13 rrores Errores Error de discretización o de truncamiento Si y(t i ) es la solución verdadera en los puntos t i y y i la aproximación calculada. El error de truncamiento es: ɛ i = y i y(t i ) El error de truncamiento queda determinado únicamente por el particular procedimiento o método numérico utilizado, esto es, por la naturaleza de las aproximaciones efectuadas en el método. A. Cherniz Métodos numéricos 03/08/ / 33

14 rrores Errores Otros errores Errores de redondeo Errores asociados a la formulación del problema A. Cherniz Métodos numéricos 03/08/ / 33

15 eries de Taylor Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

16 eries de Taylor Series de Taylor La serie de Taylor de una función f(x) innitamente derivable (real o compleja), denida en un intervalo abierto (a-r, a+r) se dene como la siguiente suma: f(x) = n=0 f (n) (a) (x a) n n! Se puede expresar la solución y(t) alrededor del punto t i como una expansión en series de Taylor: y(t i + h) = y(t i ) + hy (t i ) + h2 2 y (t i ) hn n! y(n) (t i ) + h(n+1) (n + 1)! y(n+1) (ε) A. Cherniz Métodos numéricos 03/08/ / 33

17 eries de Taylor Aproximación por Series de Taylor Dado que y = f(t, y), utilizando la regla de la cadena obtenemos: y = f (t, y) = f t (t, y) + f y (t, y)y = f t (t, y) + f y (t, y)f(t, y) Ecuación donde y i+1 = y i + y ih + + y(n) i n! hn y (k) (t) = d(k 1) f(t, y(t)) dt k 1 A. Cherniz Métodos numéricos 03/08/ / 33

18 eries de Taylor Aproximación por Series de Taylor Dado que y = f(t, y), utilizando la regla de la cadena obtenemos: y = f (t, y) = f t (t, y) + f y (t, y)y = f t (t, y) + f y (t, y)f(t, y) Ecuación donde y i+1 = y i + y ih + + y(n) i n! hn y (k) (t) = d(k 1) f(t, y(t)) dt k 1 A. Cherniz Métodos numéricos 03/08/ / 33

19 eries de Taylor Aproximación por Series de Taylor Ejemplo dy dt ky = 0 y(t 0 ) = y 0 donde k es una constante. A. Cherniz Métodos numéricos 03/08/ / 33

20 eries de Taylor Aproximación por Series de Taylor Características No se utiliza si f no es sencilla de derivar. La expansión en series de Taylor es válida si t i+1 t i. A. Cherniz Métodos numéricos 03/08/ / 33

21 étodos de Paso Simple Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

22 étodos de Paso Simple Métodos de Paso Simple Método de Euler Método de Runge-Kutta Son métodos explícitos que permiten obtner y i+1 teniendo solamente la ecuación diferencial y la información en el punto t i. Sólo requieren de la condición inicial para arrancarlos. Permiten el avance paso a paso en el tiempo sin necesidad de recurrir a procedimientos iterativos. A. Cherniz Métodos numéricos 03/08/ / 33

23 étodos de Paso Simple Método de Euler Ecuación Interpretación geométrica y i+1 = y i + hf(t i, y i ) A. Cherniz Métodos numéricos 03/08/ / 33

24 étodos de Paso Simple Método de Euler Características principales Método de 1er orden, con error global de aproximación O(h). Si el paso de integración que se utiliza no es lo sucientemente pequeño, el método podría tornarse inestable. Se utiliza comúnmente como método iniciador. A. Cherniz Métodos numéricos 03/08/ / 33

25 étodos de Paso Simple Método de Runge-Kutta Ecuación ( ) K1 + 2K 2 + 2K 3 + K 4 y i+1 = y i + 6 K 1 = hf(t i, y i ) K 2 = hf(t i + h 2, y i + K 1 2 ) K 3 = hf(t i + h 2, y i + K 2 2 ) K 4 = hf(t i + h, y i + K 3 ) A. Cherniz Métodos numéricos 03/08/ / 33

26 étodos de Paso Simple Método de Runge-Kutta Características No es neceario evaluar derivadas. La desventaja es que es necesario evaluar la función f en varios puntos. Es un método de 4to órden, con un error de aproximación O(h 4 ). A. Cherniz Métodos numéricos 03/08/ / 33

27 étodos de Paso Múltiple Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

28 étodos de Paso Múltiple Métodos de Paso Múltiple Características Además de y i y/o f i, requieren evaluar y o f en otros valores de t, fuera del intervalo de integración considerado, [t i, t i+1 ]. La desventaja es que requieren más información de la que normalmente se dispone para arrancar el procedimiento. Debe utilizarse algún otro método para arrancar A. Cherniz Métodos numéricos 03/08/ / 33

29 étodos de Paso Múltiple Métodos de Paso Múltiple Midpoint y i+1 = y i 1 + 2hf(t i, y i ) La primera aproximación se realiza por Euler. El orden del método es O(h 2 ). A. Cherniz Métodos numéricos 03/08/ / 33

30 étodos de Predictor-Corrector Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

31 étodos de Predictor-Corrector Métodos de Predictor-Corrector Método de Milne Método de Adams Moulton A. Cherniz Métodos numéricos 03/08/ / 33

32 étodos de Predictor-Corrector Método de Milne p i+1 = y i 3 + 4h 3 (2f(t i, y i ) f(t i 1, y i 1 ) + 2f(t i 2, y i 2 )) c i+1 = y i 1 + h 3 (f(t i+1, p i+1 ) + 4f(t i, y i ) + f(t i 1, y i 1 )) y i+1 = c i+1 A. Cherniz Métodos numéricos 03/08/ / 33

33 étodos de Predictor-Corrector Método de Adams Moulton p i+1 = y i + h 24 (55f(t i, y i ) 59f(t i 1, y i 1 ) + 37f(t i 2, y i 2 ) 9f(t i 3, y i 3 )) c i+1 = y i + h 24 (9f(t i+1, p i+1 ) + 19f(t i, y i ) f(t i 1, y i 1 ) + f(t i 2, y i 2 )) y i+1 = c i+1 A. Cherniz Métodos numéricos 03/08/ / 33

34 Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

35 onclusiones Conclusiones Los métodos numéricos: permiten resolver el modelo alcanzando una solución aproximada del mismo. tienen errores asociados a su órden y al paso utilizado. A. Cherniz Métodos numéricos 03/08/ / 33

36 Organización 1 Introducción Ecuaciones diferenciales ordinarias (EDOs) Errores 2 Aproximación mediante Expansión en Series de Taylor 3 Fórmulas de Integración Abiertas o Cerradas Métodos de Paso Simple Métodos de Paso Múltiple Métodos de Predictor-Corrector 4 Conclusiones 5 Bibliografía A. Cherniz Métodos numéricos 03/08/ / 33

37 ibliografía Bibliografía Nicolás J. Scenna y Alejandro S. M. Santa Cruz. Capítulo XIII. Métodos Numéricos Aproximación para la Solución de Ecuaciones Diferenciales Ordinarias. ISBN: José Díaz Medina. Capítulo 8. Ecuaciones diferenciales ordinarias. Departament de Física Atómica, Molecular i Nuclear Facultat de Física, Universitat de Valéncia. Francisco M. Gonzalez-Longatt. Comparación de Métodos Numéricos para la Solución Ecuación Diferencial de 1er Orden. A. Cherniz Métodos numéricos 03/08/ / 33

38 ibliografía Métodos numéricos: Aproximación para la solución de ecuaciones diferenciales ordinarias Modelización de Sistemas Biológicos por Computadora A. Cherniz Métodos numéricos 03/08/ / 33

MATEMÁTICA TICA SUPERIOR APLICADA

MATEMÁTICA TICA SUPERIOR APLICADA MATEMÁTICA TICA SUPERIOR APLICADA Solución n Numérica de Ecuaciones Diferenciales Ordinarias en Ingeniería a Química Universidad Tecnológica Nacional Facultad Regional Rosario Dr. Alejandro S. M. Santa

Más detalles

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias

Métodos numéricos para Ecuaciones Diferenciales Ordinarias Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es

Más detalles

Solución numérica de ecuaciones diferenciales con condiciones iniciales

Solución numérica de ecuaciones diferenciales con condiciones iniciales Solución numérica de ecuaciones diferenciales con condiciones iniciales Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán * 011 Resumen Introducción.

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Marzo 2008, versión

Más detalles

6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES

6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES 6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES Muchos problemas de ingeniería se pueden formular en términos problemas de valores iniciales para ecuaciones diferenciales ordinarias. Por ejemplo,

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Preliminares Métodos de Derivación Numérica DERIVACIÓN NUMÉRICA DERIVACIÓN NUMÉRICA

Preliminares Métodos de Derivación Numérica DERIVACIÓN NUMÉRICA DERIVACIÓN NUMÉRICA Contenido 1 Preliminares Introducción 2 Introducción Contenido 1 Preliminares Introducción 2 Introducción Introducción Las fórmulas de derivación numérica son importantes en el desarrollo de algoritmos

Más detalles

Introducción al Cálculo Numérico

Introducción al Cálculo Numérico Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

CÀLCUL - Cálculo

CÀLCUL - Cálculo Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 250 - ETSECCPB - Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Barcelona 751 - ECA - Departamento

Más detalles

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales. Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Métodos Numéricos. DOMINIO DEL PERFIL DE EGRESO RELACIONADO CON LA ASIGNATURA: Modelamiento de Procesos Decisionales

Métodos Numéricos. DOMINIO DEL PERFIL DE EGRESO RELACIONADO CON LA ASIGNATURA: Modelamiento de Procesos Decisionales Nombre del (la) Docente Responsable: Ing. Elton F. Morales Blancas, M.Sc. Nombre del (la) Docente Colaborador:---------------------------------------- Métodos Numéricos Carrera / Programa Ingeniería Civil

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

CONTENIDO PRÓLOGO LAS FUNCIONES... 5

CONTENIDO PRÓLOGO LAS FUNCIONES... 5 CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes

Más detalles

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Ampliación de Matemáticas Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Índice General 1 Ecuaciones diferenciales ordinarias.

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO

Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO Expediente Nº 6075/240 y agreg. Rosario, 25 de Marzo de 2010 VISTO el presente expediente, mediante el cual la Dirección Académica del Departamento Matemática y Estadística, eleva el programa analítico

Más detalles

LICENCIATURA EN FÍSICA

LICENCIATURA EN FÍSICA PRÁCTICAS DE CÁLCULO NUMÉRICO AVANZADO LICENCIATURA EN FÍSICA CURSO ACADÉMICO 2005-06 PRÁCTICA 5: Método de disparo para problemas de contorno. En esta práctica nos ocuparemos de la resolución de problemas

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Lecture 4: Simulación

Lecture 4: Simulación Arnau Dòria-Cerezo Institut d Organització i Control de Sistemes Industrials Universitat Politècnica de Catalunya Posgrado en Automatización Modelado y Simulación de Sistemas de Control Junio 2006. Universidad

Más detalles

CAPÍTULO 6 APLICACIONES AL CÁLCULO

CAPÍTULO 6 APLICACIONES AL CÁLCULO CAPÍTULO 6 APLICACIONES AL CÁLCULO 1.- CÁLCULO DE LÍMITES.- CÁLCULO DIFERENCIAL 3.- CÁLCULO INTEGRAL 4.- SERIES NUMÉRICAS 5.- FÓRMULA DE TAYLOR 6.- TRANSFORMADA DE LAPLACE CAPÍTULO 6 13 14 1.- CÁLCULO

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Presentación del curso

Presentación del curso Análisis Numérico Presentación del curso CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2010. Reproducción permitida bajo los términos

Más detalles

Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO

Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO Expediente Nº 6075/240 y agreg. Rosario, 25 de Marzo de 2010 VISTO el presente expediente, mediante el cual la Dirección Académica del Departamento Matemática y Estadística, eleva el programa analítico

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA Universidad Nacional de Rio Cuarto Facultad de Ciencias Exactas, Físico-Químicas y Naturales UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE

Más detalles

MMM - Métodos Matemáticos en Minería

MMM - Métodos Matemáticos en Minería Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2016 MÁSTER UNIVERSITARIO EN INGENIERÍA

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA 100401 METODOS NUMERICOS Elaborado Carlos Iván Bucheli Chaves Corregido por Ricardo Gómez Narváez Revisado

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS FACULTAD: INGENIERIA CARRERA: SISTEMAS Asignatura/Módulo: ECUACIONES DIFERENCIALES Código: Plan de estudios: 1137 Nivel: III Prerrequisitos: Correquisitos: Período académico: N Créditos:

Más detalles

2.3 Ecuaciones diferenciales lineales

2.3 Ecuaciones diferenciales lineales .3 Ecuaciones diferenciales lineales 45.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos la atención

Más detalles

ÍNDICE CALCULO DIFERENCIAL CAPITULO I. Resumen de fórmulas

ÍNDICE CALCULO DIFERENCIAL CAPITULO I. Resumen de fórmulas ÍNDICE CALCULO DIFERENCIAL CAPITULO I Resumen de fórmulas Fórmulas de Algebra y de Geometría elementales, 3. Fórmulas de Trigonometría plana, 4. Fórmulas de Geometría analítica plana, 6. Fórmulas de Geometría

Más detalles

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de: MATERIA: Ecuaciones Diferenciales CÓDIGO: 08278 REQUISITOS: Cálculo en Varias Variables (08275) PROGRAMAS: Ingeniería Industrial, Ingeniería Telemática, Química PERIODO ACADÉMICO: 2016-2 INTENSIDAD SEMANAL:

Más detalles

SILABO MATEMÁTICA III

SILABO MATEMÁTICA III 1. DATOS INFORMATIVOS U N I V E R S I D A D A L A S P E R U A N A S SILABO MATEMÁTICA III 1.1. Asignatura : MATEMÁTICA III 1.2. Código : 1801-18203 1.3. Área : Formativa-Humanística 1.4. Facultad : Ciencias

Más detalles

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES

Más detalles

CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA

CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CÁLCULO DIFERENCIAL AÑO 2016 I. FUNDAMENTACIÓN El curso de Cálculo Diferencial proporciona las herramientas fundamentales para entender la

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Universidad de Guanajuato Tronco Común de Ingnierías

Universidad de Guanajuato Tronco Común de Ingnierías Objetivo del Area. Programa. Universidad de Guanajuato Tronco Común de Ingnierías Diseñar modelos matemáticos y proponer alternativas de solución a problemas. AREA: Matemáticas MATERIA: Cálculo II CLAVE:

Más detalles

Cálculo de Derivadas

Cálculo de Derivadas Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada

Más detalles

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

13. Técnicas de simulación mediante el método de Montecarlo

13. Técnicas de simulación mediante el método de Montecarlo 13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

MATEMÁTICAS PARA LA ECONOMÍA II

MATEMÁTICAS PARA LA ECONOMÍA II MATEMÁTICAS PARA LA ECONOMÍA II CÁLCULO EN UNA VARIABLE. Tema 1. - Números Reales. Nociones de topología en R. 1.1 - Números reales racionales e irracionales. El cuerpo de los números reales. 1.2 - Valor

Más detalles

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0102 UNIVERSIDAD AUTÓNOMA DE Cuatrimestre: 1 CHIHUAHUA Área en plan de estudios: Ciencias

Más detalles

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0.

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0. E.T.S. Minas: Métodos Matemáticos Ejercicios resueltos Tema 8 EDOs de orden superior Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física BIBLIOGRAFÍA: M.Spivak, Cálculo Infinitesimal N. Piskunov, Cálculo Diferencial e Integral 4 1/2 hs de Teórico por semana (67 1/2

Más detalles

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:

Más detalles

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #1 ECUACIONES DIFERENCIALES 1. Definición. Solución de una Ecuación Diferencial. Clasificación UNIDAD # ECUACIONES DIFERENCIALES DE

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

Soluciones de la ecuación diferencial lineal homogénea

Soluciones de la ecuación diferencial lineal homogénea Ecuaciones diferenciales lineales de orden superior Ampliación de matemáticas urso 2008-2009 Ecuación diferencial lineal de orden n (x dn y n + P (x dn y n + + P n (x dy + P n(xy = G(x ( donde, P,...,

Más detalles

Métodos numéricos para las ecuaciones diferenciales Aplicaciones a la Química. Jose S. Cánovas Peña

Métodos numéricos para las ecuaciones diferenciales Aplicaciones a la Química. Jose S. Cánovas Peña Métodos numéricos para las ecuaciones diferenciales Aplicaciones a la Química Jose S. Cánovas Peña 5 de febrero de 2010 Índice General Advertencia: Esta es la primera versión de los apuntes de métodos

Más detalles

Syllabus Asignatura : Matemáticas Empresariales

Syllabus Asignatura : Matemáticas Empresariales Syllabus Asignatura : Grado oficial en Marketing (GRMK) Curso 2012/2013 Profesor/es: Periodo de impartición: José Manuel Casteleiro Villalba Ramón Arilla Llorente 1 er cuatrimestre, 1º de carrera Tipo:

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Obligatoria asignatura MISA. Elizabeth Magaña Villegas Fecha de elaboración: 30 de Julio de 2003 Fecha de última actualización: 28 de Mayo de 2010

Obligatoria asignatura MISA. Elizabeth Magaña Villegas Fecha de elaboración: 30 de Julio de 2003 Fecha de última actualización: 28 de Mayo de 2010 Programa elaborado por: PROGRAMA DE ESTUDIO METODOS NUMERICOS Programa Educativo: Licenciatura en Ingeniería Ambiental Área de Formación : Sustantiva Profesional Horas teóricas: 2 Horas prácticas: 4 Total

Más detalles

126 Ecuaciones diferenciales

126 Ecuaciones diferenciales 26 Ecuaciones diferenciales 3.. Aplicaciones de ecuaciones diferenciales de primer orden La actividad científica busca principalmente proporcionar explicaciones racionales y sistemáticas de los procesos

Más detalles

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente:

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente: Tasa de variación media DERIVADAS La tasa de variación media TVM de una unción ( en un intervalo (x, x se deine como: TVM (a, b ( x ( x x x Si consideramos x x + h, podemos expresar la TVM como: Interpretación

Más detalles

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS ASIGNATURA : ELECTIVA I - PROGRAMACION CÓDIGO : 8104661 SEMESTRE : IV CRÉDITOS : 4 FECHA DE

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

Página 1 de 5 Departamento: Dpto Matematica Nombre del curso: CÁLCULO I Clave: 003768 Academia a la que pertenece: Calculo I Plan 2009 Requisitos: Requisito de Calculo I: Fundamentos de Matematicas Horas

Más detalles

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Control I Dinámica de los Sistemas Físicos 1. Introducción Los sitemas continuos habitualmente se representan mediante

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales 1.- Resolver la siguiente ecuación diferencial: (x + y -4) dx + (5y -1) dy=0.- Obtener la solución general de la ecuación diferencial (x-1) y dx + x (y+1) dy = 0. Hallar la solución particular que pasa

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Titulación(es) Titulación Centro Curso Periodo Grado de Economía FACULTAT D'ECONOMIA 4 Primer cuatrimestre

Titulación(es) Titulación Centro Curso Periodo Grado de Economía FACULTAT D'ECONOMIA 4 Primer cuatrimestre FICHA IDENTIFICATIVA Datos de la Asignatura Código 36136 Nombre Matemáticas para los Modelos Dinámicos Ciclo Grado Créditos ECTS 6.0 Curso académico 2015-2016 Titulación(es) Titulación Centro Curso Periodo

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales Programa de Ing. Mecánica Universidad de Ibagué Aplicaciones computacionales de la Mecánica de Materiales Agosto 2007 Cuál es la definición de Mecánica? Cuál es la definición de Mecánica? La mecánica es

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

Habilidades Digitales Matemáticas para secundaria

Habilidades Digitales Matemáticas para secundaria Habilidades Digitales Matemáticas para secundaria Qué es el producto?: 6 CD ROM para secundaria diseñados para apoyar el desarrollo de habilidades digitales en las asignaturas relacionadas con las matemáticas.

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador Métodos Numéricos: Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Version

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas II Licenciatura en Informática IFM - 0424 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Series de Fourier Trigonométricas

Series de Fourier Trigonométricas Capítulo 4 Series de Fourier Trigonométricas En el capítulo anterior hemos visto que toda función f L ([, ];R) se puede desarrollar en serie trigonométrica de senos y cosenos del tipo a + X (a n cos nx

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

El problema de valor inicial

El problema de valor inicial Capítulo 1 El problema de valor inicial 1.1. El problema de valor inicial Al modelizar problemas de la ciencia, la ingeniería y la economía aparecen con frecuencia ecuaciones diferenciales ordinarias.

Más detalles

PLAN DE ESTUDIOS DE MS

PLAN DE ESTUDIOS DE MS PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los

Más detalles

Transferencia de Calor Cap. 5. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 5. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 5 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Métodos numéricos en la conducción de calor Muchos problemas que se encuentran en la practica comprenden configuraciones geométricas

Más detalles