Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0"

Transcripción

1 Fórmula de Euler El objetivo de los métodos numéricos es proporcionar fórmulas generales y algoritmos que no dependan de los datos de un problema particular. Las siguientes fórmulas y algoritmos se pueden especificar independientemente de la forma de una EDO y de su condición inicial, las cuales se pueden definir desde fuera del algoritmo. Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0 La fórmula de Euler usa los dos primeros términos de la serie de Taylor: y i+1 = y i + y i +! y (z) = y i + f(x i, y i ) +! y (z), x i z x i+1 Definición: Fórmula de Euler y i+1 = y i + f(x i,y i ) x i+1 = x i +, i = 0, 1,,... E =! y (z) = O( ), x i z x i+1 (Error de truncamiento en cada paso) Algoritmo para calcular puntos de la solución de una EDO de primer orden con la fórmula de Euler 1) Defina f(x,y) y la condición incial (x 0, y 0 ) ) Defina y la cantidad de puntos a calcular m 3) Para i =1,,..., m 4) y i+1 = y i + f(x i,y i ). 5) x i+1 = x i + 6) fin Ejemplo. Obtenga dos puntos de la solución de la siguiente ecuación diferencial con la fórmula de Euler. Use = 0.1 y - y - x + x - 1 = 0, y(0) = 1 Ecuación diferencial y = f(x, y) = y - x + x + 1, x 0 = 0, y 0 = 1, = 0.1 Cálculo de los puntos i=0: y 1 = y 0 + f(x 0, y 0 ) = f(0, 1) = [ ] = 1.000; x 1 = x 0 + = = 0.1 i=1: y = y 1 + f(x 1, y 1 ) = f(0.1, 1.) = [ ] = x = x 1 + = = 0. Para comprobar comparamos con la solución exacta: y(x) = x + x + e x y(0.1) = 1.15 y(0.) = El error es muy significativo. Para reducirlo se pudiera reducir. Esto aría que el error de truncamiento se reduzca pero si la cantidad de cálculos es muy grande, pudiera acumular error de redondeo. Una mejor estrategia es usar métodos más precisos que no requieran acer que sea muy pequeño.

2 Error de truncamiento y error de redondeo En cada paso el error de truncamiento es proporcional a y los resultados no tendrán muca precisión: E =! y (z) = O( ), Para reducir E se debe reducir : 0 E 0. Sin embargo, este eco matemáticamente cierto, al ser aplicado tiene una consecuencia importante que es interesante analizar: Suponer que se desea calcular la solución y(x) en un intervalo fijo x 0 x x f mediante m puntos x i = x 0, x 1, x,..., x m espaciados en una distancia. Enonces la distancia es: x f x o = m Sea E i el error de truncamiento en el paso i, entonces y 1 = y 0 + f(x 0, y 0 ) + E 1 y = y 1 + f(x 1, y 1 ) + E = y 0 + f(x 0, y 0 ) + E 1 + f(x 1, y 1 ) + E = y 0 + f(x 0, y 0 ) + f(x 1, y 1 ) + E 1 + E y 3 = y + f(x, y ) + E 3 = y 0 + f(x 0, y 0 ) + f(x 1, y 1 ) + f(x, y ) + E 1 + E + E 3... y m = y 0 + f(x 0, y 0 ) + f(x 1, y 1 ) + f(x, y ) f(x m-1, y m-1 ) + E 1 + E + E E m El error de truncamiento acumulado es: E = E 1 + E + E E m E = O( ) + O( ) + O( ) O( ) = m O( x f x 0 ) = O( ) = O() Lo cual demuestra que el error de truncamiento acumulado es de orden O(), por lo tanto debe ser un valor mas pequeño que el previsto para asegurar que la solución calculada sea suficientemente precisa asta el final del intervalo. Por otra parte, cada vez que se evalúa f(x i, y i ) se puede introducir el error de redondeo R i debido a los errores en la aritmética computacional y al dispositivo de almacenamiento. Entonces, el error de redondeo se acumulará en cada paso y al final del intervalo se tendrá: R = R 1 + R + R R m = m ( R ), siendo R algún valor promedio. Si m es grande, este error será significativo y puede anular la precisión que se obtuvo reduciendo el error de truncamiento E usando un valor muy pequeño de. Como conclusión de lo anterior, es preferible usar fórmulas cuyo error de truncamiento E sea de mayor orden para que el valor de no requiera ser muy pequeño si se buscan resultados con alta precisión. Esto retardará también el efecto del error de redondeo acumulado R.

3 Instrumentación computacional de la fórmula de Euler Se define una función que recibe un punto de la solución y entrega el siguiente: function [x,y] = euler(f, x, y, ) y=y + *f(x,y); x=x+; Ejemplo. Escribir un programa en MATLAB para calcular m=0 puntos espaciados en una distancia= 0.1 del ejercicio anterior con la fórmula de Euler f=inline('y - x^ + x + 1'); x=0; y=1; m=0; =0.1; for i=1:m [x,y]=euler(f,x,y,); u(i)=x; v(i)=y; end Si el programa se almacenó con el nombre ed. Los siguientes comandos permiten visualizar la solución y compararla con la solución analítica exacta >> ed >> plot(u, v, 'o'), grid on, old on u, v contienen los puntos calculados >> g=dsolve('dy-y-x+x^-1=0','y(0)=1','x') Obtención de la solución analítica. g = x+x^+exp(x) >> old on; >> ezplot(g,0,); Solución analítica Solución analítica y solución numérica para el ejemplo anterior Se observa la acumulación del error de truncamiento

4 Fórmula mejorada de Euler o fórmula de Heun Sea la EDO de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0 La fórmula de Heun o fórmula mejorada de Euler usa los tres primeros términos de la serie de Taylor y un artificio para sustituir la primera derivada de f(x, y) 3 3 y i+1 = y i + y i +! y i + 3! y (z) = y i + f(x i, y i ) +! f (x i, y i ) + 3! y (z), x i z x i+1 y i+1 = y i + f(x i, y i ) + f (x i, y i ) + O( 3 ) f Para evaluar f (x i, y i ) usamos una aproximación simple: f i = i + f 1 i + O() y i+1 = y i + f i + [ f i + 1 fi + O()] + O( 3 ) = y i + f i + f i+1 - f i + O( 3 ) y i+1 = y i + (f i + f i+1 ) + O( 3 ) Para evaluar f i+1 = f(x i+1, y i+1 ) se usa y i+1 calculado con la fórmula de Euler como aproximación inicial: y i+1 = y i + f(x i, y i ) y i+1 = y i + (f(x i, y i ) + f(x i+1, y i+1 )) x i+1 = x i +, i = 0, 1,,... Valor usado como una aproximación Valor mejorado con la fórmula de Heun Esta fórmula se puede re-escribir como se muestra en la definición: Definición: Fórmula de Heun K 1 = f(x i, y i ) K = f(x i +, y i + K 1 ) y i+1 = y i + 1 (K 1 + K ) x i+1 = x i +, i = 0, 1,,... 3 E = 3! y (z) = O(3 ), x i z x i+1 (Error de truncamiento en cada paso) Algoritmo para calcular puntos de la solución de una EDO de primer orden con la fórmula de Heun 1) Defina f(x,y) y la condición incial (x 0, y 0 ) ) Defina y la cantidad de puntos a calcular m 3) Para i =1,,..., m 4) K 1 = f(x i, y i ) 5) K = f(x i +, y i + K 1 )) 6) y i+1 = y i + 1 (K 1 + K ). 7) x i+1 = x i + 8) fin Ejemplo. Obtener dos puntos de la solución de la siguiente ecuación diferencial con la fórmula de Heun. Use = 0.1 y - y - x + x - 1 = 0, y(0) = 1

5 191 Ecuación diferencial y = f(x, y) = x - x + y + 1, x 0 = 0, y 0 = 1, = 0.1 Cálculos i=0: K 1 = f(x 0, y 0 ) = 0.1 f(0, 1) = 0.1 ( ) = 0.000; K = f(x 0 +, y 0 + K 1 ) = 0.1 f(0.1, 1.) = 0.1 [ ] = 0.90 y 1 = y (K 1 + K ) = ( ) = x 1 = x 0 + = = 0.1 i=1: K 1 = f(x 1, y 1 ) = 0.1 f(0.1, 1.145) = 0.1 ( ) =0.305; K = f(x 1 +, y 1 + K 1 ) = 0.1 f(0., ) = 0.1 [ ] = y = y (K 1 + K ) = ( ) = x = x 1 + = = 0. Para comprobar comparamos con la solución exacta: y(x) = x + x + e x y(0.1) = 1.15 y(0.) = El error de truncamiento en cada paso está en el orden de los milésimos, coincidiendo aproximadamente con E=O( 3 ) Instrumentación computacional de la fórmula de Heun Se define una función que recibe un punto de la solución y entrega el siguiente: function [x,y] = eun(f, x, y, ) k1=*f(x,y); k=*f(x+, y+k1); y=y+0.5*(k1+k); x=x+; Ejemplo. Escriba un programa en MATLAB para calcular m=0 puntos espaciados en una distancia =0.1 del ejercicio anterior usando la fórmula de Heun f=inline('y - x^ + x + 1'); x=0; y=1; m=0; =0.1; for i=1:0 [x,y]=eun(f,x,y,); u(i)=x; v(i)=y; end % La solución es almacenada % en los vectores u, v Si el programa se almacenó con el nombre ed3. Los siguientes comandos permiten visualizar la solución y compararla con la solución analítica exacta >> ed3 >> plot(u, v, 'o'), grid on, old on % u, v contienen los puntos calculados >> g=dsolve('dy-y-x+x^-1=0','y(0)=1','x') % Obtención de la solución analítica. g = x+x^+exp(x) % Solución analítica de MATLAB >> ezplot(g,0,);

6 19 Solución analítica y solución numérica para el ejemplo anterior Se observa una reducción significativa del error de truncamiento Fórmulas de Runge-Kutta Estas fórmulas utilizan artificios matemáticos para incorporar más términos de la serie de Taylor. Describimos la más popular, denominada fórmula de Runge-Kutta de cuarto orden, la cual incluye los cinco primeros términos de la Serie de Taylor. Sea la ED de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0 Definición: Fórmula de Runge-Kutta de cuarto orden K 1 = f(x i, y i ) K = f(x i + /, y i + K 1 /) K 3 = f(x i + /, y i + K /) K 4 = f(x i +, y i + K 3 ) y i+1 = y i (K 1 + K + K 3 + K 4 ) x i+1 = x i +, i = 0, 1,,... 5 E = 5! y(5) (z) = O( 5 ), x i z x i+1 (Error de truncamiento en cada paso) Algoritmo para calcular puntos de la solución de una EDO de primer orden con la fórmula de Runge-Kutta 1) Defina f(x,y) y la condición incial (x 0, y 0 ) ) Defina y la cantidad de puntos a calcular m 3) Para i =1,,..., m 4) K 1 = f(x i, y i ) 5) K = f(x i + /, y i + K 1 /) 6) K 3 = f(x i + /, y i + K /) 7) K 4 = f(x i +, y i + K 3 ) 8) y i+1 = y i (K 1 + K + K 3 + K 4 ). 9) x i+1 = x i + 10) fin

7 193 Ejemplo. Obtenga un punto de la solución de la siguiente ecuación diferencial con la fórmula de Runge-Kutta de cuarto orden. Use = 0.1 y - y - x + x - 1 = 0, y(0) = 1 Ecuación diferencial y = f(x, y) = x - x + y + 1, x 0 = 0, y 0 = 1, = 0.1 Cálculo de los puntos i=0: K 1 = f(x 0, y 0 ) = 0.1 f(0, 1) = 0.1 ( ) = 0.000; K = f(x 0 + /, y 0 + K 1 /) = 0.1 f(0.05, 1.1) = 0.1 ( ) = K 3 = f(x 0 + /, y 0 + K /) = 0.1 f(0.05, ) = 0.1 ( ) = K 4 = f(x 0 +, y 0 + K 3 ) = 0.1 f(0.1, 1.155) = 0.1 ( ) = y 1 = y (K 1 + K + K 3 + K 4 ) = [0. + (0.148)+(0.155)+0.305] = x 1 = x 0 + = = 0.1 Para comprobar comparamos con la solución exacta: y(x) = x + x + e x y(0.1) = 1.15 El error de truncamiento en cada paso está en el orden de los cienmilésimos, coincidiendo aproximadamente con E=O( 5 ). Los resultados tienen una precisión aceptable para la solución de problemas prácticos, por lo cual esta fórmula es muy utilizada Instrumentación computacional de la fórmula de Runge-Kutta Se define una función que recibe un punto de la solución y entrega el siguiente: function [x,y]=rk4(f, x, y, ) k1=*f(x,y); k=*f(x+/, y+k1/); k3=*f(x+/, y+k/); k4=*f(x+, y+k3); y=y+1/6*(k1+*k+*k3+k4); x=x+; Ejemplo. Un programa en MATLAB para calcular m=0 puntos espaciados en una distancia =0.1 del ejercicio anterior usando la fórmula de Runge-Kutta de cuarto orden f=inline('y - x^ + x + 1'); x=0; y=1; m=0; =0.1; for i=1:m [x,y]=rk4(f,x,y,); u(i)=x; v(i)=y; end Si el programa se almacenó con el nombre ed4. Los siguientes comandos permiten visualizar la solución y compararla con la solución analítica exacta >> ed4 >> plot(u, v, 'o'), grid on, old on u, v contienen los puntos calculados >> g=dsolve('dy-y-x+x^-1=0','y(0)=1','x') Obtención de la solución analítica. g = x+x^+exp(x) Solución analítica >> ezplot(g,0,);

8 194 x x exp(x) Solución analítica 6 4 Solución numérica x Solución analítica y solución numérica para el ejemplo anterior Encontrar la diferencia entre la solución numérica y analítica cuando x=1 >> yn=v(10) Solución numérica en el vector v yn = >> x=1; >> ya=eval(g) Solución analítica ya = >> e=yn-ya e = e-006

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos

Más detalles

6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES

6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES 6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES Muchos problemas de ingeniería se pueden formular en términos problemas de valores iniciales para ecuaciones diferenciales ordinarias. Por ejemplo,

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias

Métodos numéricos para Ecuaciones Diferenciales Ordinarias Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es

Más detalles

Número, algoritmo y errores

Número, algoritmo y errores Número, algoritmo y errores Índice 1.! Introducción 2.! Errores absolutos y relativos 3.! Almacenamiento de números en un ordenador! Números enteros! Números reales 4.! Concepto de algoritmo 5.! Clasificación

Más detalles

LICENCIATURA EN FÍSICA

LICENCIATURA EN FÍSICA PRÁCTICAS DE CÁLCULO NUMÉRICO AVANZADO LICENCIATURA EN FÍSICA CURSO ACADÉMICO 2005-06 PRÁCTICA 5: Método de disparo para problemas de contorno. En esta práctica nos ocuparemos de la resolución de problemas

Más detalles

Obligatoria asignatura MISA. Elizabeth Magaña Villegas Fecha de elaboración: 30 de Julio de 2003 Fecha de última actualización: 28 de Mayo de 2010

Obligatoria asignatura MISA. Elizabeth Magaña Villegas Fecha de elaboración: 30 de Julio de 2003 Fecha de última actualización: 28 de Mayo de 2010 Programa elaborado por: PROGRAMA DE ESTUDIO METODOS NUMERICOS Programa Educativo: Licenciatura en Ingeniería Ambiental Área de Formación : Sustantiva Profesional Horas teóricas: 2 Horas prácticas: 4 Total

Más detalles

Sistemas de Ecuaciones. Lineales I

Sistemas de Ecuaciones. Lineales I Sistemas de Ecuaciones Lineales I Preliminares: Expresión matricial. Dificultades numéricas. 521230-1 - DIM Universidad de Concepción Expresión matricial Todo sistema de ecuaciones lineales puede escribirse

Más detalles

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se

Más detalles

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES

Más detalles

5 Métodos iterativos para resolver sistemas de ecuaciones lineales

5 Métodos iterativos para resolver sistemas de ecuaciones lineales 94 5 Métodos iterativos para resolver sistemas de ecuaciones lineales La resolución de sistemas de ecuaciones lineales también puede hacerse con fórmulas iterativas que permiten acercarse a la respuesta

Más detalles

Presentación del curso

Presentación del curso Análisis Numérico Presentación del curso CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2010. Reproducción permitida bajo los términos

Más detalles

Simulación de Sistemas Continuos y a Tramos. Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich.

Simulación de Sistemas Continuos y a Tramos. Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich. Simulación de Sistemas Continuos y a Tramos Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich 5 de junio 007 Introducción Análisis del Error por Truncamiento Queremos hacer un

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Marzo 2008, versión

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

ANÁLISIS NUMÉRICO BÁSICO

ANÁLISIS NUMÉRICO BÁSICO ANÁLISIS NUMÉRICO BÁSICO Un enfoque algorítmico con el soporte de MATLAB Instituto de Ciencias Matemáticas Escuela Superior Politécnica del Litoral, ESPOL Guayaquil, Ecuador 0 Luis Rodríguez Ojeda, MSc.

Más detalles

Introducción al Cálculo Numérico

Introducción al Cálculo Numérico Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Órdenes y funciones básicas (segunda parte) Práctica 2.

Órdenes y funciones básicas (segunda parte) Práctica 2. Práctica 2. Órdenes y funciones básicas (segunda parte) Operaremos con matrices, resolveremos ecuaciones y Objetivos: sistemas y calcularemos límites, derivadas e integrales 2 3 7 Una matriz es una lista

Más detalles

MÉTODOS NUMÉRICOS PARA INGENIERÍA ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS

MÉTODOS NUMÉRICOS PARA INGENIERÍA ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS REPASO de conceptos de dígito significativo y de orden, para números en notación decimal. Para señalar la diferencia entre el concepto de dígito significativo

Más detalles

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales. Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Control I Dinámica de los Sistemas Físicos 1. Introducción Los sitemas continuos habitualmente se representan mediante

Más detalles

Solución numérica de ecuaciones diferenciales con condiciones iniciales

Solución numérica de ecuaciones diferenciales con condiciones iniciales Solución numérica de ecuaciones diferenciales con condiciones iniciales Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán * 011 Resumen Introducción.

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden

Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden CAPÍTULO 5 TEMAS 5.1 Aritmética 5.1.1 Variables y Operaciones Básicas Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden realizar en este programa. Si asignamos valores a

Más detalles

Integración Numérica. Regla de Simpson.

Integración Numérica. Regla de Simpson. Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Lo que ya se vió

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA 100401 METODOS NUMERICOS Elaborado Carlos Iván Bucheli Chaves Corregido por Ricardo Gómez Narváez Revisado

Más detalles

4. Sucesiones y funciones

4. Sucesiones y funciones 1 4. Sucesiones y funciones Mathematica dispone de herramientas para hacer sumas de series numéricas, derivadas de funciones de una y varias variables, cálculo de primitivas de funciones de una variable,

Más detalles

Métodos Numéricos. DOMINIO DEL PERFIL DE EGRESO RELACIONADO CON LA ASIGNATURA: Modelamiento de Procesos Decisionales

Métodos Numéricos. DOMINIO DEL PERFIL DE EGRESO RELACIONADO CON LA ASIGNATURA: Modelamiento de Procesos Decisionales Nombre del (la) Docente Responsable: Ing. Elton F. Morales Blancas, M.Sc. Nombre del (la) Docente Colaborador:---------------------------------------- Métodos Numéricos Carrera / Programa Ingeniería Civil

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

Ampliación de Matemáticas. Integrales de línea

Ampliación de Matemáticas. Integrales de línea Ampliación de Matemáticas Integrales de línea En Física la idea intuitiva de trabajo queda recogida en la fórmula Trabajo = Fuerza x Espacio Si f(x) es la fuerza aplicada, a lo largo del eje x, a un objeto

Más detalles

Sistemas polinomiales

Sistemas polinomiales Sistemas polinomiales (Elementos básicos) ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Introducción 2 2. Generalidades sobre polinomios 5 2.1. Orden monomial.........................

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

Curso de Inducción de Matemáticas

Curso de Inducción de Matemáticas Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.

Más detalles

Algunos comandos para tener en cuenta en las operaciones son: who enumera todas las variables usadas hasta el momento.

Algunos comandos para tener en cuenta en las operaciones son: who enumera todas las variables usadas hasta el momento. MATLAB El software MatLab se desarrolló como un Laboratorio de matrices, pues su elemento básico es una matriz. Es un sistema interactivo y un lenguaje de programación de cómputos científico y técnico

Más detalles

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Ampliación de Matemáticas Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Índice General 1 Ecuaciones diferenciales ordinarias.

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO TEXTO: METODOS NUMERICOS PARA ECUACIONES DIFERENCIALES ORDINARIAS CON MATLAB

UNIVERSIDAD NACIONAL DEL CALLAO TEXTO: METODOS NUMERICOS PARA ECUACIONES DIFERENCIALES ORDINARIAS CON MATLAB UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA MECANICA ENERGIA INSTITUTO DE INVESTIGACION INFORME FINAL DEL PROYECTO DE INVESTIGACION TEXTO: METODOS NUMERICOS PARA ECUACIONES DIFERENCIALES ORDINARIAS

Más detalles

Preliminares Métodos de Derivación Numérica DERIVACIÓN NUMÉRICA DERIVACIÓN NUMÉRICA

Preliminares Métodos de Derivación Numérica DERIVACIÓN NUMÉRICA DERIVACIÓN NUMÉRICA Contenido 1 Preliminares Introducción 2 Introducción Contenido 1 Preliminares Introducción 2 Introducción Introducción Las fórmulas de derivación numérica son importantes en el desarrollo de algoritmos

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Herramientas computacionales para la matemática MATLAB: Álgebra Simbólica

Herramientas computacionales para la matemática MATLAB: Álgebra Simbólica Herramientas computacionales para la matemática MATLAB: Álgebra Simbólica Verónica Borja Macías Junio 2012 1 Sustitución de variables simbólicas Es posible sustituir un variables simbólicas dentro de otra

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA. Ejemplos de Ecuaciones No Lineales en

MATEMÁTICA TICA SUPERIOR APLICADA. Ejemplos de Ecuaciones No Lineales en MATEMÁTICA TICA SUPERIOR APLICADA Ejemplos de Ecuaciones No Lineales en Ingeniería a Química Universidad Tecnológica Nacional Facultad Regional Rosario Ejemplos de Aplicación A continuación n se presentan

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA

MATEMÁTICA TICA SUPERIOR APLICADA MATEMÁTICA TICA SUPERIOR APLICADA Solución n Numérica de Ecuaciones Diferenciales Ordinarias en Ingeniería a Química Universidad Tecnológica Nacional Facultad Regional Rosario Dr. Alejandro S. M. Santa

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario MATEMÁTICA TICA SUPERIOR APLICADA Utilización n de Resolvedores de MATLAB para Ecuaciones Diferenciales Ordinarias Universidad Tecnológica Nacional Facultad Regional Rosario Dr. Alejandro S. M. Santa Cruz

Más detalles

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS ASIGNATURA : ELECTIVA I - PROGRAMACION CÓDIGO : 8104661 SEMESTRE : IV CRÉDITOS : 4 FECHA DE

Más detalles

INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR

INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR Ing. Yamil Armando Cerquera Rojas - yacerque@hotmail.com INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR Ing. Esp. Yamil Armando Cerquera Facultad de Ingeniería

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

ANÁLISIS CUANTITATIVO POR WDFRX

ANÁLISIS CUANTITATIVO POR WDFRX ANÁLISIS CUANTITATIVO POR WDFRX El análisis cuantitativo se obtiene mediante la medida de las intensidades de las energías emitidas por la muestra. Siendo la intensidad de la emisión (número de fotones)

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales

Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales Solución de ecuaciones no lineales c M. Valenzuela 007 008 (5 de mayo de 008) 1. Definición del problema: raíces de ecuaciones no lineales Dada una ecuación de una variable independiente x, f(x) =0, (1)

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador Métodos Numéricos: Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Version

Más detalles

Funciones de dos variables: Límites. Continuidad. Derivadas parciales. Derivadas de orden superior.

Funciones de dos variables: Límites. Continuidad. Derivadas parciales. Derivadas de orden superior. de orden superior Funciones de dos variables:. Continuidad.. Derivadas de orden superior. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. de orden superior Contenidos 1 Introducción

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Una introducción a MATLAB

Una introducción a MATLAB Universidad de Castilla-La Mancha ETSI Industriales Una introducción a MATLAB Curso 04/05 1. Introducción. MATLAB es un programa de cálculo científico de gran versatilidad y facilidad de uso con un gran

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3

UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3 UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3 En esta segunda práctica tratamos los siguientes temas: Representación de

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Página 1 de 5 Programa de: Análisis Matemático I UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Biomédica

Más detalles

Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011

Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011 Módulo 2. Fundamentos de Programación Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011 1 CONTENIDO Tema 1. Conceptos generales de algorítmica Tema 2. Sentencias

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0102 UNIVERSIDAD AUTÓNOMA DE Cuatrimestre: 1 CHIHUAHUA Área en plan de estudios: Ciencias

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

ECUACIONES DIFERENCIALES EN MATLAB

ECUACIONES DIFERENCIALES EN MATLAB ECUACIONES DIFERENCIALES EN MATLAB Daniel Parcero Sánchez Rocío Salgueiro Fernández Ecuaciones Diferenciales en Matlab Matlab ofrece varios algoritmos numéricos para resolver una extensa variedad de ecuaciones

Más detalles

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de: MATERIA: Ecuaciones Diferenciales CÓDIGO: 08278 REQUISITOS: Cálculo en Varias Variables (08275) PROGRAMAS: Ingeniería Industrial, Ingeniería Telemática, Química PERIODO ACADÉMICO: 2016-2 INTENSIDAD SEMANAL:

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Francisco Palacios Escuela Politécnica Superior de Ingeniería

Más detalles

Interpolación. f(x) = 0,3x 2 + 1 π ln [ (π x) 2] + 1 (4.1)

Interpolación. f(x) = 0,3x 2 + 1 π ln [ (π x) 2] + 1 (4.1) Capítulo 4 Interpolación En ciertos casos el usuario conoce el valor de una función f(x) en una serie de puntos x 1, x 2,, x N, pero no se conoce una expresión analítica de f(x) que permita calcular el

Más detalles

MÓDULO SE: SISTEMAS DE ECUACIONES

MÓDULO SE: SISTEMAS DE ECUACIONES LABORATORIO DE COMPUTACIÓN CIENTÍFICA (Prácticas) Curso 2009-10 1 MÓDULO SE: SISTEMAS DE ECUACIONES Alumno: Lee detenidamente los enunciados. Copia las funciones y scripts que crees a lo largo de la practica,

Más detalles

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión CAPÍTULO EJERCICIOS RESUELTOS: ARITMÉTICA DE ORDENADORES Y ANÁLISIS DE ERRORES Ejercicios resueltos Ejercicios.1 Calcula la suma y la resta de los números a = 0.453 10 4, y b = 0.115 10 3, con una aritmética

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

UNIDAD 2. Lenguaje algebraico

UNIDAD 2. Lenguaje algebraico Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Programa de la asignatura: MAT-151 ALGEBRA LINEAL Total de Créditos: 4 Teórico:

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Tema 1. Conceptos básicos

Tema 1. Conceptos básicos Tema 1. Conceptos básicos 1. Introducción... 1 2. Conceptos básicos... 2 2.1. Circuito eléctrico... 2 2.2. Teoría de Circuitos... 2 3. Magnitudes de un circuito: Tensión e intensidad... 3 3.1. Carga y

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Nombre de la asignatura: METODOS NUMERICOS. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACB- 9311 Clave local:

Nombre de la asignatura: METODOS NUMERICOS. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACB- 9311 Clave local: Nombre de la asignatura: METODOS NUMERICOS Carrera : Ingeniería Mecánica Clave de la asignatura: ACB- 9 Clave local: Horas teoría horas practicas créditos: -0-8.- UBICACIÓN DE LA ASIGNATURA A) RELACIÓN

Más detalles

Introducción a la programación

Introducción a la programación Introducción a la programación Resolución de Problemas El objetivo principal para que las personas aprendan a programar en algún lenguaje de programación en particular es utilizar el computador como una

Más detalles

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 36 TEMA: Logaritmos. Propiedades CONTENIDOS: 1. Propiedades de los logaritmos

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 36 TEMA: Logaritmos. Propiedades CONTENIDOS: 1. Propiedades de los logaritmos ENCUENTRO # 36 TEMA: Logaritmos. Propiedades CONTENIDOS:. Propiedades de los logaritmos Ejercicio Reto + x x. El dominio de f(x) = es: x A)[, ] {0} B)(, ) {0} C)(, ) D)[, ] E)R {0}. Examen UNI 05 Si x

Más detalles

5 Sistemas de ecuaciones

5 Sistemas de ecuaciones Sistemas de ecuaciones INTRODUCCIÓN La resolución de problemas es uno de los fundamentos de las Matemáticas. A la hora de resolver muchos problemas reales se hace patente la necesidad de los sistemas de

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad PROGRAMACIÓN DIDÁCTICA Materia IV Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Geometría plana y figuras geométricas Créditos 3 (30 horas) Bloque II Créditos Ecuaciones y sistemas 2 (20

Más detalles

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011 Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

MATEMÁTICAS. PRIMERO DE E.S.O.

MATEMÁTICAS. PRIMERO DE E.S.O. MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales Programa de Ing. Mecánica Universidad de Ibagué Aplicaciones computacionales de la Mecánica de Materiales Agosto 2007 Cuál es la definición de Mecánica? Cuál es la definición de Mecánica? La mecánica es

Más detalles

2015, Año del Generalísimo José María Morelos y Pavón

2015, Año del Generalísimo José María Morelos y Pavón Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48

Más detalles

Introducción a Ecuaciones Diferenciales

Introducción a Ecuaciones Diferenciales Introducción a Ecuaciones Diferenciales Temas Ecuaciones diferenciales que se resuelven directamente aplicando integración. Problemas con condiciones iniciales y soluciones particulares. Problemas aplicados.

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

3.8. Tutorial Carretilla

3.8. Tutorial Carretilla 3.8. Tutorial Carretilla 3.8.1. Introducción En este tutorial se va a simular el funcionamiento de una carretilla convencional. Se simularán sus dos movimientos principales, esto es, el movimiento de desplazamiento

Más detalles

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ecuaciones Diferenciales Ordinarias de Primer Orden Tema 2 Ecuaciones Diferenciales Ordinarias de Primer Orden Introducción Estudiaremos en este tema varios tipos de E.D.O. de primer orden que es posible resolver de forma exacta. 2.1 Ecuaciones en variables

Más detalles

4º E.S.O. Matemáticas A

4º E.S.O. Matemáticas A 4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con

Más detalles

Panorama del curso Métodos Numéricos I

Panorama del curso Métodos Numéricos I Panorama del curso Métodos Numéricos I Egor Maximenko ESFM del IPN 2014 Egor Maximenko (ESFM del IPN) Métodos Numéricos I 2014 1 / 35 Contenido 1 Propósito y programa del curso, software y literatura 2

Más detalles