VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL"

Transcripción

1 VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay y v(x, y) bx + cy. Aplicando el siguiente teorema: Sean u, v : G : R funciones de clase, es decir, que las derivadas parciales de primer orden de estas funciones con respecto a x e y existen en todos los puntos de G y son continuas. f(z) u(x, y) + iv(x, y) es holomorfa en G u y v cumplen las ecuaciones de Cauchy-Riemann. Para ver en qué recinto de C es f holomorfa, comprobemos bajo qué condiciones se cumplen las ecuaciones de Cauchy-Riemann: u x (x, y) v y (x, y) c u y (x, y) a v x (x, y) b } c b a Luego, si c y b a es decir, si f(x + iy) (x + ay) + i( ax + y) f(z) ( ia)z, entonces, f es holomorfa en C ( a R). En otro caso, f(x + iy) (x + ay) + i(bx + cy) no es holomorfa en ningún abierto G C. } Ejercicio. Halla, en cada uno de los siguientes casos, una función holomorfa, f u + iv, cuya parte real o imaginaria sea la dada: Definición de función armónica: Sea h una función real de dos variables reales x, y sea h C (es decir, de clase ) se dice que h es ARMÓNICA en

2 un dominio dado del plano xy si sobre ese dominio se satisface la ecuación: h xx (x, y) + h yy (x, y) 0 Esta ecuación es conocida como ecuación de Laplace. Definición de función armónica conjugada: Sea u : G R armónica, si existe v : G R armónica tal que la función u + iv es holomorfa en G entonces se dice que v es la función ARMÓNICA CONJUGADA de u. TEOREMA Una función f(z) u(x, y) + iv(x, y) es holomorfa en un dominio G si y sólo si u Re(f) y v Im(f) son armónicas y verifican las ecuaciones de Cauchy-Riemann. De este teorema se deduce que para que una función de clase sea parte real o imaginaria de una función holomorfa necesariamente tiene que ser armónica. a) u(x, y) y 3 3x y Se ve fácilmente que la función u(x, y) y 3 3x y es armónica en todo el plano xy ya que: u x (x, y) 6xy u xx (x, y) 6y u y (x, y) 3y 3x u yy (x, y) 6y Efectivamente, u xx (x, y) + u yy (x, y) 0 Para calcular una armónica conjugada de u se tiene que cumplir que u y v verifican las ecuaciones de Cauchy-Riemann: { ux (x, y) v y (x, y) u y (x, y) v x (x, y) u x (x, y) 6xy v y (x, y) 6xy Manteniendo la x fija e integrando la expresión anterior respecto de y, se obtiene:

3 v(x, y) 3xy + k(x) donde k es una función arbitraria que sólo depende de x. Como ha de cumplirse también que u y (x, y) v x (x, y), entonces: u y (x, y) 3y + 3x 3y + k (x). Luego, k (x) 3x k(x) x 3 + c, c R arbitrario. Se obtiene entonces que: v(x, y) x 3 3xy + c es una armónica conjugada de u(x,y). La función holomorfa correspondiente es: f(x + iy) (y 3 3x y) + i(x 3 3xy + c) Se comprueba que f(z) i(z 3 + c) b) u(x, y) x x + y + x La función u es de clase en todo el plano menos en el origen. Se comprueba que u(x, y) x + x es una función armónica: x +y u x (x, y) x +y x (x +y ) + y x (x +y ) + u xx (x, y) x(x 3y ) (x +y ) 3 u y (x, y) yx (x +y ) u yy (x, y) x(3y x ) (x +y ) 3 3

4 En efecto, v xx (x, y) + v yy (x, y) 0 Para calcular una armónica conjugada de u ha de cumplirse: { ux (x, y) v y (x, y) u y (x, y) v x (x, y) Así, u x (x, y) y x (x + y ) + v y(x, y) y x (x + y ) + Integrando la expresión anterior respecto de y se obtiene: v(x, y) y (x + y ) + y + k(x) donde k es una función arbitraria que sólo depende de x. Como ha de verificarse que: u y (x, y) v x (x, y) entonces: Así, k (x) 0 k(x) c, Luego: xy (x + y ) xy (x + y ) + k (x) v(x, y) c R arbitrario. y (x + y ) + y + c es una función armónica conjugada de u(x, y). La función holomorfa correspondiente es: ( f(x + iy) x ) x + y + x ( y ) + i x + y + y + c es decir, f(z) z + z + ic definida para todo z C {0}. 4

5 c) v(x, y) 3 + x y y (x + y ) La función v es de clase en todo el plano menos el origen. Se comprueba que la función v(x, y) es armónica: v x (x, y) x + xy (x +y ) v xx (x, y) + y(y 3x ) (x +y ) 3 v y (x, y) y + y x (x +y ) v yy (x, y) + y(3x y ) (x +y ) 3 En efecto, v xx (x, y) + v yy (x, y) 0 Para calcular una armónica conjugada de v ha de cumplirse: { ux (x, y) v y (x, y) u y (x, y) v x (x, y) Así, u x (x, y) y + y x (x + y ) v y(x, y) Integrando la expresión anterior respecto x: u(x, y) yx + x (x + y ) + k(y) donde k es una función arbitraria que sólo depende de y. Como ha de verificarse que: u y (x, y) v x (x, y) entonces: x xy (x + y ) + xy k (y) x (x + y ) 5

6 Luego, k (y) 0 k(y) c, Luego: u(x, y) xy + es una armónica conjugada de v(x,y). La función holomorfa correspondiente es: ( f(x + iy) xy + c R arbitrario. x (x + y ) + c x ) ( (x + y ) + c + i 3 + x y y ) (x + y ) Se comprueba que f(z) (c + 3i) + iz + z holomorfa en C {0}. Ejercicio 3. Resuelve las siguientes ecuaciones: a) senz i Tenemos: e iz e iz i i Multiplicando a ambos lados de la ecuación por i: e iz e iz Multiplicando a ambos lados de la ecuación anterior por e iz : e iz e iz Sea a e iz, se obtiene la siguiente ecuación de segundo grado: a + a 0 6

7 Se resuelve la ecuación: a ± ± ± Así, a e iz ± Si a e iz + : log(e iz ) iz log ( + ) ln ( + ) + kπi, k Z z i ln ( + ) + kπ, k Z Si a e iz : iz ln + (k )πi, k Z z i ln ( + ) + (k )π, k Z ( + i ) b) log z Dividimos por : z ( + i ) log ( + i ) [ln + i(arg + kπ)] Como ln() 0 y arg( +i ) π 4 se tiene que: z i (π 4 + kπ), k Z z i( π 8 + kπ), k Z 7

8 Ejercicio 4. Estudia la convergencia de la serie: ( + i) n n cos(in) Como cos(in) e n +e n entonces ( + i) n n cos(in) ( + i) n n (e n + e n ) ( + i)n n cos(in) ( + i) n (e n + e n ) n + i n n (e n + e n ) n n (e n + e n ) n n (e n + e n ) e n + e n Aplicando el Criterio de Comparación: Se tiene que:. Basta ver que, de razón <. e e n e n + e n e n (+i) n n cos(in) con- Se deduce que la serie converge. e n +e n Como (+i) n n cos(in) e n +e n verge, de hecho converge absolutamente. <. Esto es cierto porque es una serie geométrica entonces la serie Ejercicio 5. Encuentra el conjunto donde la siguiente serie converge: n z n + 8

9 y estudia dónde converge uniformemente. Se estudian los siguientes casos: Si z > : Como z n + z n, se tiene que: z n + ( z ) n Como además ( z ) n (( z ) n ), concluimos que: para todo n. Usando lo anterior se llega a que: Como z converge. z n + ( z ) n ( z ), n n z n + ( z )n. < (ya que z > ) entonces la serie geométrica n z n Aplicando el Criterio de Weierstrass se tiene que, para todo ε > 0, la serie n converge uniformemente en {z C / z + ε}, y converge z n + fuera de la bola cerrada de centro 0 y radio. Si z : - Si z < :(que es lo mismo que z < ) lím n ya que z n < z n + n. n z n + Por tanto, en este caso la serie diverge, porque el término general no converge a 0. 9

10 - Si z : Como porque n z n + n n ( z ) n + n ( z ) n + ( z ) n ( z ) n + ( z ) n + ( z ) n Entonces, n z n + n ( z ) n + ( ) n z, porque z. Luego, como el término general de la serie no converge a 0, se obtiene que en este caso la serie no converge. Ejercicio 6. Estudia la convergencia uniforme de la serie: e nz n + 3 n La serie del enunciado se puede escribir como: e nz n + 3 (e z ) n n n + 3 n Para estudiar la convergencia uniforme de esta serie vemos que el término general de la serie está acotado por: (e z ) n (e z ) n (e z ) n ( e Re(z) n + 3 n 3 n 3 3 ) n 0

11 La serie geométrica ( e Re(z) ) n converge cuando (e Re(z) ) r <, es 3 3 decir cuando: e Re(z) R < 3 Re(z) log(r) < log(3) Re(z) log(r) > log(3) Se deduce entonces que la serie enunciada converge uniformemente en {z C / Re(z) log( ) + ε}, sea cual sea ε > 0. 3 ( ) Obsérvese que si Re(z) log la parte real de la serie diverge. ε Ejercicio 7. potencias: Determina el radio de convergencia de la siguiente serie de cos(in)z n Para determinar el radio de convergencia de esta serie de potencias, R, voy a aplicar el Criterio de D Alembert: cos(in) e n + e n R lím lím lím n cos(i(n + )) n e (n+) + e n+ n + e e lím n n e + e e e e n +en e n +e (n+) e n+ Ejercicio 8. Suma la siguiente serie : 3n (n + )! zn

12 Primero calculamos el radio de convergencia de esta serie: (3n )(n + )! 3n 3 + 6n n R lím lím n (n + )!(3n + 6n + ) n 3n + 6n + R Se tiene que: 3n (n + )! zn 3 (n + ) (n + )! zn n 3 (n + )! zn 3 (n + ) z n n! (n + ) n 4 3 z n (n + )! n n! zn + n! zn Por otra parte: z (n )! zn + n! zn+ + n! zn + n! zn n! zn n! zn ( ) z + e z Además: (n + )! zn z n (n + )! zn (n + )! zn+ z n + (n + )! zn n! zn z (ez ) (n + )! zn

13 Luego: n! zn z (n + )! zn+ e z z (ez ) 3n [( ) (n + )! zn 3 z+ e z e z + z (ez ) 4 3 ] z (ez ) [ 3 e z (z ) + (e z ) ] 3z para todo z C (ya que el radio de convergencia es R + ). ( 3 [e z z+ + z 4 ) 3z z + 4 ] 3z 3

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

Series. Diremos que una serie de números complejos

Series. Diremos que una serie de números complejos Series Una sucesión de números complejos a, a 2, a 3,..., a n,... en C converge al número complejo a (a n a) si para cada ɛ > 0, existe un N tal que a n a < ɛ siempre que n N. Diremos que una serie de

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias Variable Compleja I (04-5) Ejercicios resueltos Convergencia de series. Series de potencias Ejercicio Calcule el radio de convergencia de la serie de potencias ( ) n z n3. Solución. Observemos primero

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas.

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas. MATEMATICAS ESPECIALES I - 17 PRACTICA 1 Aplicaciones de la Teoría de funciones analíticas. Aplicaciones del Teorema de los residuos para calcular integrales reales. 1. Integrales del tipo π R(cos t, sin

Más detalles

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 2

Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Ejercicio 1 Demostrar que la función u(x, y cosh y sen x es armónica en el plano y construir otra función armónica v(x, y tal que u(x, y + iv(x,

Más detalles

Trabajo Práctico Nro. 3. Teorema de Cauchy. Fórmula integral de Cauchy. Funciones Armónicas.

Trabajo Práctico Nro. 3. Teorema de Cauchy. Fórmula integral de Cauchy. Funciones Armónicas. Análisis III B - Turno mañana - Trabajo Práctico Nro. 3 Trabajo Práctico Nro. 3 Teorema de auchy. Fórmula integral de auchy. Funciones Armónicas.. alcular las siguientes integrales de línea: a) Re(z) a

Más detalles

Series numéricas y de potencias. 24 de Noviembre de 2014

Series numéricas y de potencias. 24 de Noviembre de 2014 Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 200-2002 HOJA 4 Ejercicio. Halla el orden del cero z 0 = 0 para la siguiente función: (e z e z2 log( z; Definción Sea f : G C holomorfa. Se dice que f(z tiene

Más detalles

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i.

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i. Índice Tema 5 Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Definición 5. Sea {z n }, n N, una sucesión de números complejos. Se dice

Más detalles

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación 27 de Enero de 29 1. Enunciados 1.1. Ejercicio 1 1.1.1. Problema 1. (3 puntos) (1) Calcule C(i,2) (cos z + sin z)/(z 1)n dz, donde C(i, 2) denota

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009 Índice Universidad de Oviedo 6 de octubre de 2009 1 2 3 4 email: mlserrano@uniovi.es Conjuntos abiertos y conjuntos cerrados B(a, ɛ) = {z C : z a < ɛ} = D(a, ɛ). Dado A C se dice que un punto a C es interior

Más detalles

z 2 z 2 = i. Log z = Log z. 3. Sin utilizar la regla de L'Hospital hállese el valor del límite:

z 2 z 2 = i. Log z = Log z. 3. Sin utilizar la regla de L'Hospital hállese el valor del límite: Análisis Matemático VI Curso 005-006 Examen Final de Junio a convocatoria. Descríbase geométricamente el conjunto de puntos z C que satisfacen la ecuación: z z = i.. Sea Log z la rama principal del logaritmo.

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA25 Clase 5: Series de potencias. Operaciones con series de potencias. Series de potencias Elaborado por los profesores Edgar Cabello y Marcos González Cuando estudiamos las series geométricas, demostramos

Más detalles

Función exponencial compleja

Función exponencial compleja Función exponencial compleja Genaro Luna Carreto * Los números reales y los complejos satisfacen los axiomas de campo, pero los segundos, no satisfacen los axiomas de orden. Sin embargo, a raíz de que

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Clase 3: Ecuaciones de Cauchy-Riemann

Clase 3: Ecuaciones de Cauchy-Riemann Clase 3: Ecuaciones de Cauchy-Riemann 16 de agosto de 2016 1. Introducción Consideramos una función f : U C (donde U es un abierto de C) que queremos estudiar cerca de un punto z 0 U. Para esto podemos

Más detalles

4i ± (1 + 1) = w = (2 ± 2)

4i ± (1 + 1) = w = (2 ± 2) POBLEMA esolver la siguiente ecuación en variable compleja Se utilian las siguientes identidades Se realia el cambio de variable Se multiplica ambos lados por w w cos + sen 2 cos ei + e i 2 sen ei e i

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

Análisis Complejo Primer Cuatrimestre 2009

Análisis Complejo Primer Cuatrimestre 2009 Análisis Complejo Primer Cuatrimestre 2009 Práctica 3: Series Series.. Estudie la convergencia de la serie cuyo término general es el siguiente: (a) a n = 2n+ n+ (b) a n = n 2n 2 +3 (c) a n = n+5 (d) a

Más detalles

3.5 Continuidad y Derivabilidad (Teoremas)

3.5 Continuidad y Derivabilidad (Teoremas) 3.5. CONTINUIDAD Y DERIVABILIDAD TEOREMAS) 167 3. Sea fx) = 3x x 1 en el dominio D =1, 1), calcular f 1 x) fx) = 3x x 1 x 1)fx) =3x xfx) fx) =3x xfx) 3x = fx) xfx) 3) = fx) x = fx) fx) 3 En conclusión

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1 MATEMATICAS ESPECIALES I - 207 PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos Teorema. Sean r y R números reales tales que 0 < r < R

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0 1. DERIVACIÓN COMPLEJA Límites Sea f definida en todos los puntos z de algún entorno z 0 f(z) ω 0 es decir, el punto ω f(z) puede quedar próximo a ω 0 si elegimos z suficientemente próximo a z 0, pero

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 23

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 23 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 23 P. Vásquez (UPRM) Conferencia 2/ 23 Series de potencias MATE 4009 Introducción Recuerde que una serie de potencias en x a es una serie infinita

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

9. Diferenciación de funciones reales de varias variables reales

9. Diferenciación de funciones reales de varias variables reales 9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

5. Funciones analíticas y teoría del índice.

5. Funciones analíticas y teoría del índice. Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 2006. 47 5. Funciones analíticas y teoría del índice. 5.1. Definición y derivabilidad infinita de las funciones analíticas. Sea Ω un abierto

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de Primera parte Ejercicio. Se considera el recinto plano R := ½(x, y) R : x 3, y x3 3 Otener los volúmenes de los sólidos

Más detalles

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes.

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes. Análisis III B - Turno mañana - Trabajo Práctico Nro. 1 Trabajo Práctico Nro. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes. 1. Expresar cada una de las siguientes

Más detalles

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1 PRÁCTICA 8 - CLASE Sucesiones y series de funciones.. Considere la sucesión de funciones reales ϕ n (x) = x n, si 0 x, si x, n. (a) Demostrar que converge puntualmente a ϕ(x) = 0, si 0 x

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

6. Teoría de Cauchy local.

6. Teoría de Cauchy local. Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que

Más detalles

7. Teoría de Cauchy global.

7. Teoría de Cauchy global. 68 Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 26. 7. Teoría de Cauchy global. 7.. Teorema de Cauchy global. Sea un abierto no vacío Ω C. Teorema 7... Teorema de Cauchy global. Sea f

Más detalles

El teorema de los residuos

El teorema de los residuos Tema 2 El teorema de los residuos 2. Singularidades aisladas de una función Definición 2. Sea f: A C. Se dice que f tiene una singularidad aislada en el punto α A, si existe un E(α, r tal que la función

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLUCIÓN DE LOS PROBLEMAS PROPUESTOS PROBLEMA 14 (16115) Probar que, 3, 5 no pueden ser términos de una misma progresión aritmética. Sean a m, a n 3, a p 5, siendo

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

17. Síntesis de la tercera parte.

17. Síntesis de la tercera parte. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 185 17. Síntesis de la tercera parte. 17.1. Ceros y singularidades aisladas. Los detalles y demostraciones de esta parte se encuentran

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

******* Enunciados de Problemas *******

******* Enunciados de Problemas ******* ******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional

Más detalles

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i Centro de Matemática Facultad de Ciencias Universidad de la República Práctico Análisis complejo - Curso 009. Expresar los siguientes números complejos de la forma x + iy, con x, y R: a)( + 3i) b)( + i)(i

Más detalles

Funciones holomorfas Sesión 3

Funciones holomorfas Sesión 3 Funciones holomorfas Sesión 3 E. Cuesta 1 1 Departamento de Matemática Aplicada E.T.S.I. de Telecomunicaciones Universidad de Valladolid (España) Ampliación de Matemáticas Outline Derivabilidad de funciones

Más detalles

8 Soluciones en serie de ecuaciones lineales I

8 Soluciones en serie de ecuaciones lineales I 8 Soluciones en serie de ecuaciones lineales I Algunas ecuaciones diferenciales ordinarias lineales con coecientes variables no tienen soluciones elementales. Se puede encontrar, en algunos casos, soluciones

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Series de potencias. a k (x). k=1

Series de potencias. a k (x). k=1 1. Introducción Series de potencias La idea de series se puede ampliar al permitir que sus términos sean función de alguna variable (una o varias), esto es a n = a n (x). Esta extensión del concepto se

Más detalles

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,

Más detalles

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0 Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Diciembre 2 de Diciembre de 25 Nombre y Apellidos: DNI: (2.5 p.) ) Se considera la función f : R R definida

Más detalles

CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1

CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1 Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 5/117 CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1 Introducción (Curso 017 018 1. Demostrar que la solución general de la ecuación α + β

Más detalles

FUNCIONES HOLOMORFAS

FUNCIONES HOLOMORFAS Capítulo 2 FUNCIONES HOLOMORFAS Problema 2.. Estudia en qué puntos son derivables en sentido complejo las siguientes funciones (z = x + iy): (a) f(z) = z α, con α > 0, (b) f(z) = xy, (c) f(z) = h(x), con

Más detalles

Series de funciones. a k (x). k=1

Series de funciones. a k (x). k=1 Series de funciones La idea de series se puede ampliar al permitir que sus términos sean función de alguna variable (una o varias), esto es a n = a n (x). Esta extensión del concepto se serie, trae como

Más detalles

Capítulo 8 Transformada de Laplace.

Capítulo 8 Transformada de Laplace. Capítulo 8 Transformada de Laplace. La transformada de Laplace es informalmente una rotación en 90 de la transformada de Fourier y este capítulo está dedicado a ella. Su principal aplicación es a la resolución

Más detalles

Métodos matemáticos: Análisis funcional

Métodos matemáticos: Análisis funcional Métodos matemáticos: Análisis funcional Conceptos y resultados fundamentales Curso 2011/2012 Aquí encontrarás los Teoremas hay que saber para el primer parcial ( 1) así como las definiciones, problemas

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2,

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2, Capítulo 5 Series de Laurent Problema 5. Hallar las series de Laurent centradas en z = de la función fz = z /z. La función f es holomorfa salvo en z =. Por tanto, si centramos las series en z =, tendremos

Más detalles

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión.

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. DERIVADAS LECCIÓN 21 Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. Problemas. 1.- Criterio de la variación

Más detalles

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números Capítulo 4 Sucesiones y series numéricas 4.1. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s 1,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 23

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 23 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 23 Series de potencias MATE 4009 IntroducciÛn Recuerde que una serie de potencias en x! a es una serie inönita de la forma: c n (x! a) n = (1) n=0

Más detalles

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 24 de Junio de 26 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 Si intentamos sumar los términos de una sucesión infinita {a n } obtenemos

Más detalles

Olimpiada Iberoamericana de Matemática Universitaria 2012 Problemas, soluciones y criterios

Olimpiada Iberoamericana de Matemática Universitaria 2012 Problemas, soluciones y criterios Olimpiada Iberoamericana de Matemática Universitaria 202 Problemas, soluciones y criterios. Problemas. (3 puntos) Sea Z el anillo de los enteros. Los conjuntos Z, 2Z y 3Z son semigrupos con respecto a

Más detalles

TEMA III: FUNCIONES DE VARIABLE COMPLEJA

TEMA III: FUNCIONES DE VARIABLE COMPLEJA TEMA III: FUNIONES DE VARIABLE OMPLEJA Números complejos Se define el conjunto de los números complejos como = { z = (a, b) = a + ib : a, b R, i = }. Al número real a se le denomina parte real de z y se

Más detalles

Variable Compleja I Tema 5: Funciones elementales

Variable Compleja I Tema 5: Funciones elementales Variable Compleja I Tema 5: Funciones elementales 1 La exponencial 2 Logaritmos El conjunto de los logaritmos El problema del logaritmo holomorfo Ejemplos de logaritmos holomorfos Desarrollos en serie

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Sea y=f(x) Contínua en [a,b] Derivable en (a,b) Cumpliendo f(a) = f(b) Se cumple que: Demostración Por el teorema de Weirstrasse, f(x)

Más detalles

Capítulo 3 Integración en el Campo Complejo.

Capítulo 3 Integración en el Campo Complejo. Capítulo 3 Integración en el Campo Complejo. La teoría de la integración en el campo complejo es una de las más bellas y profundas de la matemática pura. Pero sus aplicaciones también son importantes e

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2 Matemáticas II Grado en Ingeniería Eléctrica/Grado en Ingeniería Electrónica y Automática Convocatoria febrero 06. Resuelva en C la ecuación siguiente: 3+cos() 0 Solución: Usamos la definición de cos en

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent.

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. El desarrollo en serie de potencias, que comúnmente se restringe a potencias positivas en el campo real toma forma definitiva en el campo complejo

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

U de Talca. Funciones y series de potencias Introducción. Temas Métodos para determinar series de potencias de nuevas funciones.

U de Talca. Funciones y series de potencias Introducción. Temas Métodos para determinar series de potencias de nuevas funciones. Sesión 28 Funciones y series de potencias Temas Métodos para determinar series de potencias de nuevas funciones. 28. Introducción Colin Maclaurin Escocés. (698-6. Capacidades Conocer y aplicar el método

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles