RESOLVIENDO PROBLEMAS DE MATEMÁTICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESOLVIENDO PROBLEMAS DE MATEMÁTICA"

Transcripción

1 RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLUCIÓN DE LOS PROBLEMAS PROPUESTOS PROBLEMA 14 (16115) Probar que, 3, 5 no pueden ser términos de una misma progresión aritmética. Sean a m, a n 3, a p 5, siendo m< n < p. Se tiene: Es decir: a n a m + (n m).d a p a n + (p n).d n m ( 3 )( 5 3) p n (n m).d (p n).d n m p n pero tal igualdad es imposible, pues siendo m, n, p N, ha de ser n m Q, y sin embargo, p n es irracional.

2 PROBLEMA 13 (181115) Sea el conjunto X a, b,c, d,e T X X,φ, { a}, { a, b}, { a, c, d}, { a, b, c, d}, a, b,e Dado el subconjunto A a, b,c { } y una topología T X definida en X por { { }} { } de X, se pide: a) Encontrar los puntos interiores de A. b) Encontrar los puntos exteriores de A. c) Encontrar los puntos fronteras de A. a) El interior de A es la unión de todos los abiertos contenidos en A, o bien el mayor de tales abiertos. Del enunciado, los únicos abiertos contenidos en A son: luego: { } y { a, b} φ, a int(a) φ { a} { a, b} { a,b} b) El exterior de A es el interior de su complementario CA respecto al espacio X, soporte de la topología CA d, e { } el único abierto contenido en CA es φ, luego int(ca) φ. Ext(A) int(ca) φ b) La frontera de A podemos calcularla de un par de maneras: - Como es la intersección de las clausuras de A y de su complementario: Front(A) A CA Para determinar ambas clausuras, veamos la familia de cerrados: F X,φ, { b, c, d, e}, { c, d,e}, { b, e}, { e}, c, d el único cerrado que contiene a A a, b,c contienen a CA d, e { { }} { } es X. Los cerrados que { } son X y { c, d,e}, por lo que - Como Front(A) A int(a), será: A X y CA X { c, d,e} { c, d,e} Front(A) A CA X { c, d,e} { c, d,e} Front(A) A int(a) { a, b, c, d, e} { a, b} { c, d,e}

3 PROBLEMA 1 (11015) Demostrar que la integral general de la ecuación diferencial puede expresarse por llamando dy dx p: d y dx log x. dy dx y(x) d y dx log x. dy dx dp dx log dp dx x.p 0 p 0 dx x 1 log x ( )+ C 0 d dy dy log x. dx dx dx 0 log x d 1 log x dx p 1 x(log x 1) + C p Integral general: dy p x(1 log x)+ C dx 1 y(x) x( 1 log x)+ C ( ) 1 y(x) dx x 1 log x ( )+ C

4 PROBLEMA 11 (30915) En una batalla en la que participan entre y soldados, han resultado muertos 3/165 del total. Y han resultado heridos 35/143 del total. Cuántos soldados resultaron ilesos en esta batalla?. Puesto que tanto el número de muertos total, (M), como el número total de heridos (H), han de ser números naturales, el número total de soldados en la batalla (T) ha de ser múltiplo de 165 y también múltiplo de 143. Veamos cuál de estos múltiplos está comprendido entre y Hallamos en primer lugar el MCM(143,165): M(143,165) MCM (11.13,3.5.11) El múltiplo que buscamos es un múltiplo de 145 que sea menor que y mayor que Como es el único múltiplo de 145 comprendido entre y es 145x51075, ya que 145x48580 es menor que por tanto el total de soldados en la batalla es T 1075 Muertos: M Heridos: H Ilesos: I T (M + H ) 6605

5 PROBLEMA 10 (60815) En una reunión hay varias personas. Se incorpora Alicia y la media de la edad aumenta en 4 años. Posteriormente se incorpora Beatriz, que es gemela de Alicia, y la media de edad vuelve a aumentar, pero en este caso solo en 3 años. Cuántas personas había en la reunión antes de entrar Alicia? Si es n el número de personas de la reunión antes de que entre Alicia, y las edades de todas ellas son e 1,...,e n, se tiene que la edad media es M 1 n n e i i1 Y una vez entre Alicia, de edad e n+1, la edad media será M n+1 Y al entrar posteriormente Beatriz, de edad e n+1 : n+1 e i i1 M n+ n+ e i i1 O sea, se tiene que Es decir: o bien: e e n n.m e e n + e n+1 (n+1).(m + 4) e e n + e n+1 + e n+1 (n+ ).(M + 7) nm + e n+1 (n+1).(m + 4) (n+1).(m + 4)+ e n+1 (n+ ).(M + 7) (n+1).(m + 4) n.m (n+ ).(M + 7) Mn+ M +8n+8 Mn+ M + 7n+14 8n+8 7n+14 n 6 Habían 6 personas cuando entró Alicia.

6 PROBLEMA 119 (90715) a) Qué es una diferencial exacta?. b) Es diferencial exacta la ecuación P(x,y).dx+Q(x,y).dy, si son P(x,y)3y+10x y Q(x,y)3x+y?. Si es así, integrarla. a) La ecuación diferencial P(x,y).dx+Q(x,y).dy es diferencial exacta sii existe una función U(x,y) tal que o sea, tal que U P(x, y) x U Q(x, y) y U y x U y x U x y U x y P(x, y) y Q(x, y) x Por tanto, la condición necesaria y suficiente para que tal ecuación sea diferencial exacta es que: b) Como es: La integración: De ser entonces: P(x, y) y Q(x, y) x 3 3 P(x, y) y P(x, y) y P(x, y) U x U 3y+10x U x (3y+10x)dx Q(x, y) x Q(x, y) x dif. exacta 3xy+ 5x +ϕ(y) Q(x, y) U 3x+ y 3x+ y 3x+ϕ '(y) ϕ '(y) y ϕ(y) y y En definitiva: U(x, y) 3xy + 5x + y ± C, Ccte arbitraria

7 PROBLEMA 118 (010715) ( ) 3 a) Hallar un vector normal a la superficie z+ x + y + x + y genérico (x, y, z) (0,0,0). en un punto b) Hallar el coseno del ángulo θ formado por el vector normal anterior y el eje z, y. determinar lim cosθ ( x,y)(0,0) a) Hacemos: S z x + y ( x + y ) 3, con lo que obtenemos: S x x+ 3x(x + y ), x + y de lo cual, el vector normal es: b) cosθ S. k, y como es S S y y+ 3y(x + y ), x + y S x+ 3x(x + y ) x + y, S y 1 y+ 3y(x + y ), 1 x + y S x + 6x (x + y )+ 9x (x + y ) + y + 6y (x + y )+ 9y (x + y ) + (x + y ) x + y se tiene: Finalmente: + 6(x + y )+ 9(x + y ) cosθ S. k S 1 + 6(x + y )+ 9(x + y ) lim cosθ 1 ( x,y)(0,0) PROBLEMA 117 (030615) Hallar las dos dimensiones de un rectángulo sabiendo que se expresan en decímetros por dos números enteros, y en metros por dos números decimales no enteros. Se sabe

8 también que el perímetro se expresa en metros y la superficie en metros cuadrados por el mismo número decimal. Sean x,y las dos dimensiones expresadas en decímetros. Si las queremos expresar en metros serán: x/10 y y/10. Como las medidas en metros son números decimales no enteros, se deduce que ni x ni y son múltiplos de 10: x 10, y 10 Como la superficie y el perímetro se expresan, en metros, por el mismo número, se cumplirá que: x 10. y 10 x 10 + y 10 de donde resulta x y 0 para que x sea entero y distinto de múltiplo de 10 ha de ser distinto de múltiplo de 10 el sumando de la expresión anterior 400 y 0 10 y también y Como es , se deduce que para que y 0 igual a 4 o bien a 5 : 400 Si y 0 4 y 0 5 y 45 x 36 Si 400 y 0 5 y 0 4 y 36 x 45 Dimensiones del rectángulo: 36 decímetros de ancho por 45 decímetros de alto (o al revés) Comprobamos: Superficie en metros: 3 6x m, Perímetro en metros:.( )16 0 m sea entero con la condición antedicha, ha de ser

9 PROBLEMA 116 (060515) Resolver la ecuación z 3 (8+ i).z + (4+ 4i).z (4 6i) 0, sabiendo que el afijo de una de las raíces está en la bisectriz del primer cuadrante. Sea z 1 la raiz que tiene su afijo en la bisectriz del primer cuadrante. Será, entonces, z 1 x+ xi x(1+ i). Vamos a sustituir en la ecuación dada: z 1 x (1+i) x i, z 3 1 x ix(1+ i) x 3 + x 3 i x 3 ( 1+ i) al sustituir, se tiene: x 3 ( 1+i) (8 + i)x i + (4 + 4i)x(1+ i) (4 6i) 0 ordenamos partes reales e imaginarias: ( x 3 + x + 0x 4)+ (x 3 16x + 8x+ 6)i 0 O sea: x 3 + x + 0x 4 0 x 3 16x + 8x+ 6 0 Sumamos para reducir a una ecuación de º: 7x 4x+ 9 0 Al resolver, se tiene: x 4 ± ( 4) ±18 14 Si x 3, z 1 3(1+ i) 3+ 3i, y si x 37,z 1 (3+ 3i) 7 Veamos la primera solución, z i. Dividamos el polinomio de tercer grado para obtener una ecuación de º en la variable z, usando la Regla de Ruffini: 1 (8+i) 4+ 4i (4 6i) 3+ 3i 1 9i 4 6i 3+ 3i 1 5+ i 3 5i Se obtiene como cociente z + ( 5+ i)z+ (3 5i). Resolvemos la ecuación de º: z + ( 5+ i)z+ (3 5i) 0 z ( 5+ i)± ( 5+ i) 4(3 5i) Las tres raíces pedidas son z i, z 4 i, z 3 1 i 4 i 1 i La segunda solución posible, z 1 (3+ 3i) 7, no es válida, ya que al dividir el polinomio de tercer grado para obtener la ecuación de º en z, usando, como antes, la Regla de Ruffini, no se obtiene resto cero. z i, z 4 i, z 3 1 i

10 PROBLEMA 115 (080415) Determinar el lugar geométrico de los puntos de contacto de las tangentes trazadas por (-6,0) a las elipses que tienen por semiejes b3 y a (es decir, de ecuación reducida dada por x / a + y /91). Representar gráficamente dicho lugar geométrico. a) Ecuación de las tangentes en un punto (x 0, y 0 ):.x De ser 0 + y y ' 0 0 ' 0 y a a Se tiene: ' y y 0 y 0 (x x 0 ) y y 0 3 a x 0 y 0 y.y x.x 0 x 0 a a + y y.y x.x 0 1 a b) Determinando el semieje a: Puesto que las tangentes pasan por el punto (-6,0): 0.y ( 6).x 0 a 1 a 6x 0 c) Lugar geométrico de los puntos de contacto: x 0 (x x 0 ) a yy 0 a y 0 9x.x 0 + 9x 0 y 0 x 0 /( 6x 0 )+ y 0 /91 x 0 3 y 0 6 d) Representación:

11 PROBLEMA 114 (110315) Al quitar un número de una lista de diez enteros consecutivos resulta que la suma de los nueve restantes es 014. Qué número hemos quitado? (Olimpiada Matemática Española 014) RESOLUCION (de Jerónimo Basa, 13 marzo 015): Pinche en este link: RESOLUCIÓN (de casanchi): Sean los números enteros x, x + 1, x +, x + 3, x + 4, x + 5, x + 6, x + 7, x + 8, x + 9. Quitemos el entero x + k, 0 k 9 : Se tiene: o sea: x + ( x + 1) + ( x + ) ( x + 9) ( x + k) 014 9x + 45 k x k 1969 Probamos valores de k, de 0 a 9: Si k0: 9 x x 1969 / 9 Z Si k1: 9 x x 1970 / 9 Z Si k: 9 x 1969 x 1971/ 9 19 Z Los numeros enteros sucesivos son 19, 0, 1,, 3, 4, 5, 6, 7, 8. El número que hay que quitar es el x + k La suma de los 9 restantes numeros enteros es 014. Comprobamos:

12 PROBLEMA 113 (11015) Dada la cónica de ecuación general dada por 4x y +8xy x+ 5 0, se pide: a) Clasificarla. b) Obtener su ecuación reducida. Para una ecuación general de la forma a 11 x + a y + a 1 + a 01 x+ a 0 y+ a 00 0, la matriz de la cónica es y sus invariantes métricos son en nuestro caso: A A 5 1/ 0 1/ A a 00 a 01 a 0 a 10 a 11 a 1 a 00 a 01 a 0 a 10 a 11 a 1 a 0 a 1 a a 0 a 1 a, A 00 A 5 1/ 0 1/ a) Clasificación: - Por ser A 0 : es cónica irreducible. - Por ser A 00 0 : es cónica irreducible con centro. - Por ser A 00 < 0 : es hipérbola. - Por ser a 11 + a 0: hipérbola no equilátera. b) Ecuación reducida: La ecuación reducida es a 11 " x + a " y " " + a 00 0, siendo a 00 soluciones de la ecuación de º z (a 11 + a )z+ A 00 0 : " a / 4 a 11 a 1 a 1 a, a 11 + a -39/, A , a 11 + a 4 + ( ) A / A 00, y a " " 11, a son las dos 39 48, a 11 " 6, a " 4. Por tanto, la ecuación reducida es 3x y 39 / 96

13 PROBLEMA 11 (140115) a) Demostrar el Teorema de Milne-Thomsom para funciones de una variable compleja: f (z) u(x, y)+iv(x, y) f '(z) u x (z,0) iu y (z,0), x, y R x b) Dada la función u(x, y), hallar otra función v(x, y) tal que la función x + y w(x+ iy) u(x, y)+ iv(x, y) sea función holomorfa de la variable z x+ iy. c) Calcular w(z) en el ejemplo anterior ulilizando el Teorema de Milne-Thomson. a) Si en z x+ iy hacemos zx, entonces y0. Con lo que: f (z) u(z,0)+ iv(z,0), y al diferenciar: f '(z) u x (z,0)+ iv x (z,0). Aplicamos las ecuaciones de Cauchy-Riemann ( u x v y, u y v x ), con lo que resulta la expresión buscada: f '(z) u x (z,0) iu y (z,0). b) De ser u(x, y) Cauchy-Riemann: v y y x x x + y, se tienen sus derivadas: u x y x x + y, u y xy x + y, y aplicando x + y, v x dv v x dx + v y dy v x dx + v y dy y la función holomorfa pedida es: x x 0 w(z) xy x. Por tanto es: + y y y 0 x y xy x + y dx y x + x + y dy y x + y x 0 x x + y iy x + y x iy x + y c) f '(z) u x (z,0)+ iu y (z,0) 0 x i.0 (x z + 0) z 1 f (z) 1/z 4 z Si hacemos w(z) f (z): w(z) f (z) 1 z 1 x+ iy x iy x + y y 0

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

, 5m2 + n 1 son expresiones algebraicas. Hay diversidad de situaciones que se pueden expresar mediante expresiones algebraicas.

, 5m2 + n 1 son expresiones algebraicas. Hay diversidad de situaciones que se pueden expresar mediante expresiones algebraicas. 1.- POLINOMIOS Y OPERACIONES Expresiones algebraicas Una expresión algebraica está formada por números y letras relacionados por operaciones aritméticas. Por ejemplo, 3x 3x1 x +, a 3 b, y 3, 5m + n 1 son

Más detalles

Enunciados de problemas de números.

Enunciados de problemas de números. Nº. Enunciados de problemas de números. Hallar un número de 4 cifras que sea igual al cubo de la suma de las cifras. 2 Demostrar que si a, b y c son números racionales arbitrarios, los polinomios: n -2

Más detalles

Hallar las raíces enteras de los siguientes polinomios:

Hallar las raíces enteras de los siguientes polinomios: Hallar las raíces enteras de los siguientes polinomios: 1) x 3 + 2x 2 - x - 2 Las raíces enteras se encuentran entre los divisores del término independiente del polinomio: ±1 y ±2. P(1) = 1 3 + 2 1 2-1

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

( ) ( ) = 961 como las sumas indicadas corresponden a sumas de progresiones geométricas de razones respectivas 2 y 5, se tiene: 2 x y.

( ) ( ) = 961 como las sumas indicadas corresponden a sumas de progresiones geométricas de razones respectivas 2 y 5, se tiene: 2 x y. Matemática, Física, Astronomía, casanchi.com 6 RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLUCIÓN DE LOS PROBLEMAS PROPUESTOS PROBLEMA 7 (46) Hallar el número N x.5 y, sabiendo que la suma de sus divisores

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos.- Comprueba que las rectas r x + y y s x y + 4 son secantes y halla el punto de intersección de las mismas., es decir, los coeficientes de las incógnitas no son proporcionales, por

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

Lugares geométricos y cónicas

Lugares geométricos y cónicas Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página

Más detalles

Ejercicios resueltos

Ejercicios resueltos ECUACIÓN DE LA RECTA.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. Ejercicios resueltos.- Comprueba que las rectas r x + y y s x y + 4 son secantes y halla el punto de intersección de las mismas.,

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula: Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES AMPLIACIÓN 5.74 Halla los valores que han de tomar m y n, para que el polinomio P(x) 2x 5 x 4 x 3 mx 2 nx 2 sea divisible por x 2 1. 2x 5 x 4 3x 3 (m 1mx 2 (3 )nx 2(m x 2 1 2x 5 x 3 2x 3 6x 1 2x 3 x 2

Más detalles

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

Unidad 2 Polinomios PÁGINA 28 SOLUCIONES. Sacar factor común. a) b) Evaluar un polinomio en un punto.

Unidad 2 Polinomios PÁGINA 28 SOLUCIONES. Sacar factor común. a) b) Evaluar un polinomio en un punto. Unidad Polinomios PÁGINA 8 SOLUCIONES Sacar factor común. a) b) 3x 6 3 ( x ) 3 5x 10x 5x 5 x( x x1) Evaluar un polinomio en un punto. Dado el polinomio P(x) = x 4 x 3 x + 1, podemos asegurar que: a) P(1)

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I Martes, 5 de enero de 01 1 hora y 15 minutos. NOMBRE APELLIDOS CALIFICACIÓN 1. Considere el desarrollo de ( x x )10, (a) Escriba el número de términos y el

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto

( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto Pág. de Dados los vectores u, y v0,, calcula: a u b u + v c u v u, v0, 5 a u = = = + b u + v =, + 0, =, + 0, 6 =, c u v = u v = 0 + = Determina el valor de k para que los vectores a, y b6, k sean ortogonales.

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES

EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 14 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

SEGUNDO TURNO TEMA 1

SEGUNDO TURNO TEMA 1 TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto

Más detalles

Tema 3 División entera. Factorización 1

Tema 3 División entera. Factorización 1 Tema División entera. Factorización Factoriza los siguientes números: a) 70 b) c) 000 d) 999 70 luego 70 luego 9 000 luego 000 60 9 9 000 80 000 90 00 0 999 luego 999 7. 7 7 Halla los divisores comunes

Más detalles

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5 utoevaluación Página Dados los vectores uc c, m v (0, ), calcula: a) u b) u + v c) u : ( v) uc c, m v (0, ) a) u c m + ( ) b) u + v c c, m + (0, ) (, ) + (0, 6) (, ) c) u : ( v) () (u v ) c 0 +( m ) (

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL DESCOMPOSICIÓN FACTORIAL 1 RAÍCES DE UN POLINOMIO. TEOREMA DEL FACTOR Se dice que el valor x = a es una raíz de un polinomio P(x) si el valor numérico de P(x) para x = a es 0, es decir: x = a es raíz de

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º. MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

Curso Curso

Curso Curso Problema 77. Se considera un triángulo equilátero de lado 1 y centro O, y vértices A, B y C. Un rayo luminoso parte de O, se refleja una vez en cada uno de los tres lados, AB, AC y BC (en el orden dado)

Más detalles

LUGARES GEOMÉTRICOS.

LUGARES GEOMÉTRICOS. 9 LUGARES GEOMÉTRICOS. Página. Halla las ecuaciones de los siguientes lugares geométricos: a) Mediatriz del segmento de extremos A(, ), B(7, ). Comprueba que es una recta perpendicular al segmento en su

Más detalles

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general.

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. 1) x 2 3x + 2 = 0 2) x 2 x 12 = 0 3) 3y 2 + 2y 1 = 0 4) 6z

Más detalles

5 REPASO Y APOYO OBJETIVO 1

5 REPASO Y APOYO OBJETIVO 1 5 REPASO Y APOYO OBJETIVO 1 RECONOCER EL GRADO, LOS TÉRMINOS Y EL TÉRMINO INDEPENDIENTE DE UN POLINOMIO Nombre: Curso: echa: Un monomio es una expresión algebraica formada por el producto de un número,

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL TEMA 0 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN E.T.S.I. Industriales y Telecomunicación Curso 00-0 A continuación se presentan 5 preguntas con 4 respuestas posibles. En cada pregunta hay una única respuesta correcta. Cada pregunta acertada y bien justificada

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

LUGARES GEOMÉTRICOS. CÓNICAS

LUGARES GEOMÉTRICOS. CÓNICAS 9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a Ciencia Matemática El mayor portal de recursos educativos a tu servicio! Capítulo 5 Cónicas 5.1 Definiciones y ecuaciones reducidas Nota En

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores:

EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores: EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º 1) Simplifica todo lo posible racionalizando los denominadores: + 2) Simplifica todo lo posible la siguiente operación con fracciones algebraicas:

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

TEMA 2.- ECUACIONES E INECUACIONES

TEMA 2.- ECUACIONES E INECUACIONES TEMA.- ECUACIONES E INECUACIONES 1.- INECUACIONES 1.1.- Repaso De Ecuaciones De Primer Y Segundo Grado Ecuaciones de primer grado x 3 4x 4x 3 x 6 4x 4x 1 x 4 x 5x 7 x 7 3x 14 35x 7 x 7 6 3x 14 3 15x 1

Más detalles

Tema 3.3. Aplicaciones afines. Cónicas y cuádricas

Tema 3.3. Aplicaciones afines. Cónicas y cuádricas Tema 3.3. Aplicaciones afines. Cónicas y cuádricas Definición 1. Sean A = (P, V, f) y A = (P, V, f ) dos espacios afines tales que V y V son espacios vectoriales sobre un mismo cuerpo. Una función θ :

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

Memorial Peter O Hallaran 2004 Problema 1 ( ) ( ) = y.

Memorial Peter O Hallaran 2004 Problema 1 ( ) ( ) = y. Memorial Peter O Hallaran 004 Problema 1 Hallar todos los números naturales m tales que ( + 1) m m 1!!5! ( m 1! ) =! Solución de Daniel Lasaosa Medarde, Pamplona, Navarra, España Denotaremos por x m al

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

Ejercicios... Julio Yarasca

Ejercicios... Julio Yarasca Ejercicios... Julio Yarasca 4 de junio de 2015 Capítulo 1 Productos Notables 1.1. Teoría Tenemos los siguientes productos notables 1. Binomio al cuadrado 2. Identidades de Lagrange 3. Diferencia de Cuadrados

Más detalles

Algunos problemas propuestos en las Oposiciones a Profesor de Enseñanza Secundaria en la asignatura de Matemáticas. Junio 2014

Algunos problemas propuestos en las Oposiciones a Profesor de Enseñanza Secundaria en la asignatura de Matemáticas. Junio 2014 DEIMOS Oposiciones a Profesores de Secundaria Oposiciones a Diplomados en Estadística del Estado C/ Fernández de los Ríos 75 85 MADRID 669 3 64 6 www.academiadeimos.es http://academiadeimos.blogspot.com.es

Más detalles