Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 5

Documentos relacionados
Series temporales. 1. Introducción. 2. Análisis de la serie. 3. Modelos ARMA y ARIMA. 4. Predicción. Est.Ind. 08/09 - fjnm 1

SERIE TEMPORAL TASA PASIVA REFERENCIAL ECUADOR MAT. GEOVANNY TOALOMBO Agosto 2006

Series temporales. Series temporales

Pronósticos Automáticos

INTRODUCCION AL ECONOMETRIC VIEWS. Aquí se introduce la frecuencia y las fechas de comienzo y final de los datos.

Econometría II Grado en finanzas y contabilidad

Estadística II Curso 2010/11. Guión de la Práctica 2 El modelo de regresión lineal y su tratamiento en Statgraphics

Departamento de Estadística e Investigación Operativa Aplicadas y Calidad. Licenciado en Administración y Dirección de Empresas A.D.E. - U.P.V.

Índice General de Ventas en Grandes Almacenes y su logaritmo

Octava Entrega. 1 Modelos de función de transferencia o de regresión dinámica

Series Temporales. Teresa Villagarcía

Departamento de Estadística e Investigación Operativa Aplicadas y Calidad. Licenciado en Administración y Dirección de Empresas A.D.E. - U.P.V.

Curso 2006/07. Tema 4: Tratamiento de la estacionalidad. Modelos SARIMA. 2. Estudio teórico de los modelos estacionales

Intervalos de confianza con STATGRAPHICS

Econometría 2. Modelos no estacionarios y contrastes de raíz unitaria = 0 8. (0 4) 1 +, (0 2 ), y valores críticos

Quinta Entrega. 3. Diagnosis: se comprueba que los residuos verifican la hipótesis de ruido blanco.

Departamento de Estadística e Investigación Operativa Aplicadas y Calidad. Licenciado en Administración y Dirección de Empresas A.D.E. - U.P.V.

Guía breve de análisis de series temporales unidimensionales con Gretl

Ejemplos de estudios de series de tiempo

Tema 5: Planteamiento de los modelos de series temporales. Coro Chasco Yrigoyen Universidad Autónoma de Madrid (UAM) Asignatura: Econometría II

Procesos autorregresivos

Séptima Entrega. New Workfile Daily (5 days week) 1:1:1991 a 2:16:1998. File Import Read Text Lotus Excel

CAPITULO 4 4. SOFTWARE UTILIZADO PARA EL ANÁLISIS DE SERIES DE TIEMPO. En el presente capitulo se realizara una descripción del tipo de software

El ejemplo que utilizaremos en este artículo ha empleado los siguientes precios:

ANÁLISIS EN EL DOMINIO DEL TIEMPO

Part III. Modelos Box-Jenkins. Series de Tiempo. Germán Aneiros Pérez. Introducción. Procesos ARMA: Procesos ARIMA:

EXAMEN DE ECONOMETRÍA 08/07/99-1

Herramientas para el Estudio de Mercado. Técnicas de Predicción.

TODO ECONOMETRÍA. A continuación voy a realizar un primer gráfico para observar el comportamiento de mi serie.

Introducción a series de tiempo

Introducción a series de tiempo

Análisis de Series de Tiempo. Universidad Nacional Autónoma de México. M. en C. César Almenara Martínez. 10 de Noviembre de 2010.

Modelos Arma y método Box & Jenkins

Métodos de Suavizamiento (con Eviews y Stata)

Procesos Integrados. Si (Y t ) no es estacionario pero la serie (Z t ) de las primeras diferencias. Z t = Y t = Y t Y t 1,

METODOLOGÍA DE PROYECCIONES A CORTO PLAZO DE LLEGADA DE TURISTAS PARA EL AÑO 2017 Box and Jenkins

PRACTICAS SOBRE LA MODELIZACIÓN DE SERIES TEMPORALES MENSUALES CON LA METODOLOGÍA DE BOX-JENKINS

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

Control Estadístico de Procesos con Statgraphics Plus Gráficos de Control con Memoria

Curso de Predicción Económica y Empresarial Edición 2004

Práctica 4 EJERCICIOS 1.- REGRESIÓN LINEAL SIMPLE 5.1 Regresión de Peso sobre Altura Datos en Encuesta.sgd a) Estudio descriptivo de ambas variables

PRÁCTICA 5: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS

SOLUCIONES PRÁCTICA 6: SERIES TEMPORALES DIPLOMADO EN ESTADÍSTICA

Modelos Lineales. Regresión Lineal Múltiple. Práctica 5

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 3

peso edad grasas Regresión lineal simple Los datos

Introducción al Análisis de Series Temporales

Tercera práctica de REGRESIÓN.

Motivación. Motivación PRONOSTICOS DE DEMANDA

Curso de nivelación Estadística y Matemática

Primera práctica de REGRESIÓN.

Curso de Predicción Económica y Empresarial Edición 2004

Modelos de Calibración

Econometría II Práctica 1. Procesos ARMA Estacionarios Univariantes

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN ECONOMÍA PROGRAMA DE ASIGNATURA HORAS SEMESTRE

MODELOS DE SERIES TEMPORALES EN FINANZAS (I): MODELOS ARIMA

Prácticas de Fiabilidad

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS

Econometría dinámica y financiera

INDICE. XV 1. Introducción a los pronósticos Actividad

Curso de Predicción Económica y Empresarial Edición 2004

MODELADO DE DOS INTERVENCIONES EN ALGUNAS SERIES DE PARADOS DE CASTILLA Y LEÓN (*)

Universidad Mariano Gálvez Ingeniería Electrónica Estadística inferencial. Presenta Dra. En Ing. Rita Victoria de León Ardón

Econometría Aplicada

Pronóstico. Pronósticos. Factores Controlables. Porqué? Objetivo. Factores Incontrolables

Análisis Univariante mediante la metodología Box-Jenkins Análisis de la incertidumbre asociada a los modelos ARMA

Determinantes de la Demanda de Especies Monetarias* US dólares en El Salvador

Aplicación del Análisis de la Varianza para estudiar el tiempo de acceso en las aulas informáticas

Regresión con errores autocorrelacionados

Estadística II Ejercicios Tema 5

Bioestadística. Curso Práctica: La recta de regresión

Segunda práctica de REGRESIÓN.

PROYECCIONES DEL TURISMO INTERNACIONAL

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)

T R A B A J O D E I N V E S T I G A C I O N D E O P E R A C I O N E S I

MODELOS DE SERIES TEMPORALES EN FINANZAS (II): MODELOS ARCH-GARCH Modelización Económica II

CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE

Ajuste de Regresión Lineal Simple

7. REGRESIÓN POR MÍNIMOS CUADRADOS: REGRESIÓN POLINOMIAL. Jorge Eduardo Ortiz Triviño

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López

Más Allá del Modelo de Regresión Lineal. Dante A. Urbina

Práctica de Control Estadístico de Procesos Control por Variables

EJC 22: METODOLOGÍA BOX JENKINS

Se aplicaron de forma paralela diferentes modelos de pronósticos cuantitativos a la

Introducción al programa EViews

TEMA 3 M O D E L O S U N I V A R I A N T E S L I N E A L E S

SERIES TEMPORALES. Isabel Molina Peralta. Departamento de Estadística Universidad Carlos III de Madrid. Roland Fried

ANEXO 3-A LA LECTURA DE UNA ESPECIE DE COMPUTADORA

Identificación Paramétrica

Objetivo: Proponer modelos para analizar la influencia

EXTRACCIÓN DE SEÑALES EN MODELOS ARIMA

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

INDICE. 81 Operadores lógicos Funciones exponenciales y logarítmicas Funciones trigonométricas

EJERCICIO T2 NOMBRE: Correctas Incorrectas En Blanco Puntos

Transcripción:

Estadística Industrial Universidad Carlos III de Madrid Series temporales Práctica 5 Objetivo: Análisis descriptivo, estudio de funciones de autocorrelación simple y parcial de series temporales estacionales. Formulación, predicción y estimación de modelos ARIMA estacionales. Diagnosis y validación. Fichero de datos: Practica5Series.sf Series temporales estacionales: En la práctica vimos series temporales que presentaban pautas que se repetían en forma de ciclos. Es habitual que muchas series tengan patrones estacionales cada s periodos. En series mensuales, en general, el orden de la estacionalidad es s=2; en series trimestrales s=4, cuatrimestral s=3, etc La metodología ARIMA también nos permite estudiar estas series estacionales. En este caso la formulación ARIMA es: Ejemplo: IPI Inglaterra ARIMA ( pdq,, ) ( PDQ,, ) s parte regular parte estacional Importar datos: FILE -> OPEN -> OPEN DATA FILE Representación de la serie temporal: SPECIAL -> TIME-SERIES ANALYSIS -> DESCRIPTIVE METHODS Al introducir la serie a analizar: debemos especificar que la periodicidad de la serie: SAMPLING INTERVAL -> MONTH -> STARTING AT -> SEASONALITY Si la serie es mensual s=2

Figura. Gráfico temporal de la serie original IPI Inglaterra 32 22 2 02 92 82 /50 /53 /56 /59 /62 /65 La Figura, presenta el gráfico de la serie IPI Inglaterra. Se observa la falta de estacionariedad, ya que la serie tiene tendencia y ciclo. La variabilidad no presenta problemas y podemos concluir que la serie es homocedástica. Se puede estudiar algo más detalladamente las características del ciclo estacional mediante el gráfico de descomposición estacional visto en la práctica. La FAS y FAP de la serie original se muestra en la siguiente figura: FAS IPI Inglaterra FAP IPI Inglaterra - 0 5 0 5 20 25-0 5 0 5 20 25 Como puede observarse hay mucha estructura en ambas funciones. Esto es debido a la falta de estacionariedad de la serie. Como se estudió en prácticas anteriores es preciso tomar una diferencia para quitar la tendencia (parte regular, Non-seasonal order), para eliminar la estacionalidad tomaremos diferencias estacionales (Seasonal order). Para ello, en el botón derecho en ANALYSIS OPTIONS, podemos comenzar tomando una diferencia regular () y posteriormente una diferencia estacional (). NOTA: como al especificar la serie con periodicidad mensual (s=2), la diferencia estacional que tomemos la tomaremos como. 2

Figura 2. Serie IPI Inglaterra con una diferencia regular ( IPI ) 25 5 5-5 -5 /50 /53 /56 /59 /62 /65 La figura 2 muestra la serie IPI Inglaterra una vez eliminada la tendencia con una diferencia regular, sin embargo observamos que aún existe estacionalidad. El ciclo se aprecia en el gráfico de la serie, y en la FAS en la que las autocorrelaciones separadas por 2 retardos son significativas y decrecen lentamente, esto se refleja en su FAS y FAP (Figura 3), Figura 3. FAS (izquierda) y FAP (derecha) de la serie IPI - 0 5 0 5 20 25-0 5 0 5 20 25 Para eliminar los ciclos aplicaremos una diferencia estacional, es decir ANALYSIS OPTIONS-> DIFFERENCING -> SEASONAL ORDER (). 2 IPI El resultado de se presenta en la Figura 4, donde ya tenemos una serie estacionaria (sin tendencia ni ciclos), además podemos asegurar que es homocedástica., en 3

Figura 4. Serie IPI Inglaterra sin tendencia ni ciclo, 2 IPI 8 4 0-4 -8 /50 /53 /56 /59 /62 /65 Figura 5. FAS y FAP de la serie 2 IPI FAS FAP - 0 5 0 5 20 25-0 5 0 5 20 25 Estudiaremos los primeros retardos para analizar la parte regular: se observa en la FAS que existen en decaimiento lento hasta el quinto retardo. En la FAP hay dos retardos significativos. Podemos por tanto, estar ante un AR(2) en la parte regular. Si analizamos los retardos estacionales: en la FAS vemos que el retardo 2 es significativo, pero no los son ni el 24 ni el 36. Por otro lado, en la FAP se aprecian que los retardos 2 y 24 son significativos. Es posible por tanto que estemos ante un MA() 2 en la parte estacional. Alternativamente, podríamos haber eliminado primeramente la estacionalidad, tomando la diferencia estacional 2 IPI. 4

Figura 6. Gráfico de la serie IPI Inglaterra con una diferencia estacional 0 7 4-2 -5-8 /50 /53 /56 /59 /62 /65 Figura 7. FAS y FAP de la serie IPI Inglaterra con una diferencia estacional FAS FAP - 0 5 0 5 20 25-0 5 0 5 20 25 Aunque hemos eliminado los ciclos, la serie no es estacionaria, puesto que aún se observa tendencia (Figura 6). La FAS presenta un decaimiento lineal, pero no hay retardos estacionales significativos. Estimación de un modelo ARIMA(p,d,q)x(P,D,Q) s Un vez que la serie 2 IPI es estacionaria, podemos estimar un modelo ARIMA(2,,0)x(0,,) 2. En SPECIAL-> TIMES-SERIES ANALYSIS -> FORECASTING, introducimos la serie IPI Inglaterra. Por defecto, el número de periodos a predecir (Number of forecasts) es 2. Para estimar el modelo ARIMA, procedemos de la misma forma que hicimos en la práctica anterior. Ahora, como hemos especificado la serie como mensual. El modelo ARIMA permite ajustar diferencias y parámetros AR y MA estacionales. 5

Figura 8. Especificación de un modelo ARIMA(2,,0)x(0,,) 2 En ARIMA Model, podemos ahora especificar (Figura 8): o Nonseasonal order: Número de diferencias regulares d o Seasonal order: Numero de diferencias estacionales D o AR: Orden del autorregresivo regular p o MA: Orden de la media móvil regular q o SAR: Orden del autorregresivo estacional P o SMA: Orden de la media móvil estacional Q Los parámetros estimados los podemos obtener en el ANALYSIS SUMMARY, ARIMA Model Summary Parameter Estimate Stnd. Error t P-value ---------------------------------------------------------------------------- AR() -0,563995 0,0894862-6,3026 0,000000 AR(2) 794 0,0897455-3,0282 0,003092 SMA() 0,89669 0,0305606 29,77 0,000000 Mean -0,099986 0,0259359-0,77075 0,442230 Constant -0,03670 ---------------------------------------------------------------------------- En la tabla observamos que los parámetros son significativos, ya que el valor de la t- student es mayor que 2 en valor absoluto y los p-valores menores a 0.05. El modelo se puede escribir como: donde y t es la serie estacionaria de la t-student. y = c 0.5639y 0.272y + a 0.897a (-6.30) (-3.02) (29,77) t t t 2 t t 2 2 IPI y entre paréntesis se indica el valor crítico Alternativamente, en término del operador de retardos B. ( φ B φ B ) y = ( Θ B ) a 2 2 2 t 2 t 6

Reemplazando los valores estimados: 2 2 ( + 0.5639B + 0.272 B ) yt = ( 0.897 B ) at La FAS y FAP de los residuos del modelo ajustado se muestran en la figura 9. Figura 9. FAS y FAP de los residuos del modelo ARIMA(2,,0)x(0,,) 2 FAS ARIMA(2,,0)x(0,,)2 with constant FAP ARIMA(2,,0)x(0,,)2 with constant - 0 5 0 5 20 25-0 5 0 5 20 25 En la Figura 9, observamos que aparentemente no existen retardos significativos ni en FAS ni FAP de los residuos del modelo ajustado, por lo que tenemos evidencia de que pueden ser ruido blanco. Para ver si hay evidencia suficiente de que son ruido blanco, analizamos el test de Box-Pierce. En TABULAR OPTIONS, marcamos las opciones de RESIDUAL TEST OF RANDOMNESS y de MODEL COMPARISONS si queremos comparar el modelo con otros alternativos. El resultado del test de Box-Pierce es de 0.82907 y por tanto tenemos evidencias de que los residuos sí son ruido blanco. Predicción y validación: Una vez ajustado un modelo paramétrico a la serie original podemos utilizarlo para realizar predicciones futuras. En TABULAR OPTIONS, la opción FORECAST TABLE, nos permite obtener la predicción del modelo para los periodos siguientes. Lower 95,0% Upper 95,0% Period Forecast Limit Limit ------------------------------------------------------------------------------ 2/6 2,243 7,797 24,689 3/6 23,095 9,335 26,854 4/6,843 07,732 5,954 5/6 0,098 05,482 4,74 6/6 2,787 07,828 7,745 7/6 05,346 00,05 4 8/6 0,928 96,3004 07,556 9/6 5,466 09,536 2,395 0/6 8,947 2,728 25,66 /6 23, 6,64 29,609 2/6,0 04,248 7,774 /62,576 04,557 8,594 ------------------------------------------------------------------------------ 7

Por defecto la predicción se realizar para 2 periodos. En la primera columna tenemos los periodos que predecimos, en la segunda columna, la predicción de nuestro modelo y por último los límites superior e inferior de los intervalos de predicción. La Figura siguiente muestra las predicciones y sus intervalos. 32 22 2 02 92 82 ARIMA(2,,0)x(0,,)2 with constant /50 /53 /56 /59 /62 /65 actual forecast 95,0% limits El modelo ARIMA propuesto, presenta los valores más bajos para el Error Cuadrático Medio (MSE), y para el Error Medio Absoluto (MAE). ------------------------------------------------------------------------ Models ------ (A) ARIMA(2,,0)x(0,,)2 with constant (B) Constant mean = 06,045 (C) Linear trend = 96,3582 + 0,4458 t (D) Simple moving average of 5 terms (E) Simple exponential smoothing with alpha = 0,52 Estimation Period Model MSE MAE MAPE ME MPE ------------------------------------------------------------------------ (A) 2,704,30257,2257-0,39977-0,5492 (B) 88,9745 7,69823 7,476 3,00244E-4-0,8525 (C) 58,37 6,30245 5,9920 3,25888E-4-0,52385 (D) 60,705 6,8859 6,45562 0,432344-0,06634 (E) 52,2074 6,2229 5,87358 0,86373 0,3654 Model RMSE RUNS RUNM AUTO MEAN VAR ----------------------------------------------- (A),64352 OK OK OK OK OK (B) 9,43263 *** *** *** *** OK (C) 7,640 *** *** *** OK OK (D) 7,75696 *** *** *** OK OK (E) 7,22547 *** ** *** OK OK ------------------------------------------------------------------------ 8

Otro posible análisis que permite validar el modelo ARIMA propuesto, consiste en realizar predicciones sobre la muestra. Este procedimiento consiste en coger del total de n observaciones de la serie temporal, las n-k primeras. Y una vez elegido el modelo validar su capacidad predictiva sobre la submuestra formada por las k últimas observaciones. En la opción de INPUT DIALOG,, introducimos en la casilla de WITHHOLD FOR VALIDATION el tamaño de submuestra que deseamos, en el caso de series mensuales para que este análisis sea válido cogeremos un ciclo completo de k=2 observaciones. Con este análisis la tabla de predicciones (FORECAST TABLE), incluye el residuo de la predicción sobre esta submuestra. ------------------------------------------------------------------------------ Period Data Forecast Residual 2/60 7,3 6,65 V48852 3/60 9,5 8,988 V0,5876 4/60 07,7 07,844 V-0,4426 5/60 08,9 05,94 V2,9865 6/60 09, 0,035 V-0,93536 7/60 03,3 02,039 V,26059 8/60 00,0 99,5207 V0,479278 9/60 2,6 2,938 V-0,33797 0/60 7,7 6,379 V,3245 /60 23,2 20,996 V2,20382 2/60 0,3 09,785 V0,54985 /6 0,94 V-0,33729 ------------------------------------------------------------------------------ La tabla de comparación de modelos (MODELS COMPARISON), incluye una tabla adicional para los valores del MSE y MAE o de la raíz cuadrada del MSE (RMSE). Models ------ (A) ARIMA(2,,0)x(0,,)2 with constant (B) Constant mean = 05,486 (C) Linear trend = 95,6334 + 57 t (D) Simple moving average of 5 terms (E) Simple exponential smoothing with alpha = 0,573 Estimation Period Model MSE MAE MAPE ME MPE ------------------------------------------------------------------------ (A) 2,86055,33577,26573 5086 6454 (B) 90,904 7,73979 7,47792 3,25323E-4-0,830492 (C) 58,5864 6,2433 5,9662 3,55859E-4-0,528323 (D) 60,3762 6,84534 6,5942 0,37293-0,0730557 (E) 52,3767 6,26727 5,9575 0,7585 68722 Model RMSE RUNS RUNM AUTO MEAN VAR ----------------------------------------------- (A),6932 OK * OK OK OK (B) 9,49686 *** *** *** *** OK (C) 7,6548 *** *** *** OK OK (D) 7,7702 *** *** *** OK OK (E) 7,2377 *** ** *** OK OK Validation Period Model MSE MAE MAPE ME MPE ------------------------------------------------------------------------ (A),6646 0,9754 0,86474 8308 02253 (B) 8806 7,47603 6,4979 6,9738 5,2308 (C) 62,784 6,78328 6,2743-4,54348-4,494 (D) 58,88 6,56 5,83885,00667 0,528996 (E) 50,5692 5,9888 5,29789,56345,04989 9

Este procedimiento nos permitirá de una manera más precisa discriminar entre modelos ARIMA alternativos, en el caso de tener modelos que cumplan todas las hipótesis de manera satisfactoria (significatividad de los parámetros, test de Boxpierce), nos intereserá más tener un modelo cuya capacidad predictiva sea mejor (menores valores del RMSE, MSE y/o MAE). Cuestiones: Analiza el resto de las series del fichero Practica5Series.sf3. Propón uno o varios modelos ARIMA. Formula la ecuación del modelo y su representación en términos del operador de retardos. Realiza una validación del modelo ARIMA en función de la capacidad predictiva de cada uno de ellos. 0