Blvd Enrique Reyna H 140, Saltillo, Coah. México CP Departamento de Riego y Drenaje UAAAN, Av, Antonio Narro 1925, Saltillo, Coahuila.

Documentos relacionados
Integrantes de la academia de Ingeniería en Innovación Agrícola Sustentable, Asignatura Temas Asignatura Temas

Evaluación agronómica de nuevos sustratos a base de fibra de madera en cultivo hidropónico de tomate

PRIMER CURSO NACIONAL DE SUSTRATOS Colegio de Postgraduados Texcoco, Estado de México de Julio, 2010

TÉCNICO SUPERIOR UNIVERSITARIO EN AGRICULTURA SUSTENTABLE Y PROTEGIDA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FERTIRRIGACIÓN

FERTIRRIGACION Cultivos hortícolas y ornamentales

Desafíos de los sistemas de producción agrícola de la Región de Valparaíso-Chile, frente a la sustentabilidad territorial

Fertilización Adaptada a las Necesidades del Cultivo: Curvas de Absorción de Nutrientes

SISTEMAS DE CULTIVO SIN SUELO: HIDROPÓNICOS. María Luisa Tapia Figueras Fecha: 19 junio 2009

Semilleros de Poliestireno Expandido

Programa de la asignatura Curso: 2006 / 2007 INVERNADEROS Y CULTIVOS FORZADOS (2846)

Horticultura y Jardinería Circular: La gestión del agua, los nutrientes y los lixiviados

DEFINICIÓN DE ESTRATEGIAS DE FERTIRRIEGO PARA CULTIVO DE TOMATE PROTEGIDO, BASADAS EN CRITERIOS DE EFICIENCIA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA DEPARTAMENTO DE PLANEACIÒN EDUCATIVA

FERTIRRIGACION Cultivos hortícolas, frutales y ornamentales

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA DEPARTAMENTO DE PLANEACIÒN EDUCATIVA CIENCIAS AGROPECUARIAS AREA:

SISTEMAS DE CULTIVO SIN SUELO Y FERTIRRIEGO. Ingeniero Agrónomo Especialista en Suelos. Sistemas de Cultivo sin Suelo y Fertirriego

EFECTOS DE LA REDUCCIÓN DE LA FERTILIZACIÓN NITROGENADA EN UN CULTIVO DE TOMATE EN INVERNADERO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN CARRERA DE INGENIERÍA AGRÍCOLA

Propiedades de los sustratos que afectan la relación aire/agua

RESUMEN DE INVESTIGACIÓN EVALUACIÓN DE DISTINTOS TIPOS DE SUSTRATOS EN CULTIVO SIN SUELO DE TOMATE INJERTADO

Gestión de Clima. Carlos H. Méndez, M.Sc. Programa de Hortalizas, E.E. Fabio Baudrit M. Universidad de Costa Rica

TÉCNICO SUPERIOR UNIVERSITARIO EN AGRICULTURA SUSTENTABLE Y PROTEGIDA EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN AGRICULTURA SUSTENTABLE Y PROTEGIDA EN COMPETENCIAS PROFESIONALES ASIGNATURA HORTICULTURA Y FLORICULTURA PROTEGIDA

UNIVERSIDAD DE GUADALAJARA

Año Nombre del artículo Publicado en Pag# desde Pag# hasta Volumen MEMORIAS DEL QUINTO SIMPSIO INTENACIONAL DE INVERNADEROS

Programa de estudio. Datos generales 0. Área Académica BIOLÓGICO - AGROPECUARIA. 1. Programa educativo INGENIERO AGRÓNOMO

COMPETENCIA INTRAESPECÍFICA

5.3 Plántulas, perennes, plantas ornamentales, arbustos y árboles.

Cultivos agroenergéticos, hortícolas, ornamentales y frutales

MF1130_3 Organización y Control de las Operaciones de Cultivo. Certificados de profesionalidad

Medrano García, P. a, Chipana Rivera, R. b, Moreno-Pérez, M. F. c, Roldán Cañas, J. d RESUMEN INTRODUCCIÓN

CARACTERÍSTICAS. Gracias a su porosidad homogénea, hace que el control de retención de aire y agua sea exacto.

PRODUCCION DE PIMIENTO MORRON CON SUSTRATOS ORGANICOS EN INVERNADERO

M a n u a l d e p r o d u c t o s

ANILLADO Y ÁCIDO GIBERÉLICO

Facultad De Ingeniería En Ciencias Agropecuarias Y Ambientales.

EVALUACIÓN DE LA ADAPTABILIDAD DE VARIEDADES DE LECHUGA PRODUCIDAS EN CULTIVO HIDROPÓNICO A LAS DISTINTAS ÉPOCAS DEL AÑO

Efectos del secado parcial de raíces en el rendimiento y productividad del agua en el cultivo de camote. Daniel Carey Machco

Apoyo a la docencia. Guzmán Palomino, José Miguel

Evaluación de fertilización integrada para maracuyá en etapa de vivero

Producción de plántulas de Tomate en

Cuantificación y reducción del impacto ambiental de la producción bajo invernadero

FACTORES QUE HAN CONTRIBUIDO A AUMENTAR LA EFICIENCIA EN EL USO DEL AGUA DE RIEGO EN LOS CULTIVOS HORTÍCOLAS EN INVERNADERO EN ALMERÍA

ÍNDICE. Capítulo I.INTRODUCCIÓN 1. Capítulo II.REVISIÓN BIBLIOGRÁFICA Historia del muro vegetal Muros verdes ornamentales 7

RESULTADOS EN VENEZUELA

Producción y Manejo de Plántulas en Invernadero

Producción forzada Plásticos usados en producción de hortalizas

Evaluación de nuevas alternativas productivas para el cultivo de lechuga

PERLOME Perlita Agrícola. PERLOME Perlita Agrícola

Fertilización en Lechuga. Carlos Sierra B. Ing. Agr. M. Sc. Víctor Pizarro B. Ing. Ejec. Agrícola.

Proyecto: APLICACIÓN DE LA INGENIERÍA EN LA PRODUCCIÓN HORTÍCOLA PROTEGIDA EN PUEBLOS POBRES. Anexo A

Importancia del Riego

Miguel Urrestarazu Gavilán Universidad de Almería. España

características ECOGEL

Evaluación del comportamiento del camote (Ipomoea batatas) en forma hidropónica

Fertirrigación. Carrera: ASM

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA DEPARTAMENTO DE PLANEACIÒN EDUCATIVA

FERTIRRIEGO, HIDROPÓNIA E INVERNADEROS (TyP)

PROYECTO THE GROWING CONNECTION I. Evaluación de Sustratos

PRODUCCION BAJO SITUACIONES CONTROLADAS. Mauricio Vargas Muñoz Ing. Agrónomo

ENSAYO DE CULTIVO DE TOMATE SIN SUELO. CULTIVO TEMPRANO EN INVERNADERO 1995

UNIDAD ACADÉMICA DE AGRONOMÍA

Productividad del agua en cultivos bajo invernadero en la costa mediterránea

Programa de la Jornada:

ESCENARIO DE APRENDIZAJE Aula, laboratorio, vivero, trabajo de campo, eventos como congresos, conferencias y otros inherentes a la asignatura.

1. INTERÉS Y OBJETIVOS

ENSAYO ADVENTTA

Especialista en el arte de las mezclas para cultivos. Mezclas para germinación. América Latina

Red Hidroponía, Boletín No Lima-Perú

vida y color para su jardín sustratos

Producción de plántulas de Lechuga en

artículo Fertirrigación nitrogenada del cultivo de tomate bajo invernadero revista Los elevados aportes de fertilizantes

FORRAJES HIDROPONICOS

INFLUENCIA DE LAS CONDICIONES AGROCLIMÁTICAS EN EL DESARROLLO Y CALIDAD DEL CULTIVO EN CANARIAS. JUAN ALBERTO CABRERA GARCÍA Ingeniero Agrónomo ICIA

Cándido Mendoza Pérez

Guía del Curso MF1130_3 Organización y Control de las Operaciones de Cultivo

FERTILIZACIÓN FOLIAR DE Agave tequilana WEBER VARIEDAD AZUL EN EL ESTADO DE SINALOA

PRINCIPIOS Y TÉCNICAS DE RIEGO

Producción de plántulas de Pepino en

Figura 1. Cultivo de pimiento a 4 ejes. Comienzo del ciclo.

Estrategias para mejorar la productividad del cultivo de tomate

Programa de estudio Disciplinar (X) 6. Área de conocimiento. 7. Academia(s) DESARROLLO DE SISTEMAS AGRÍCOLAS

2. Con la ayuda del mapa (página 102) (y el mapamundi del libro), indica 20 países

Dirección General de Educación Superior Tecnológica

FORRAJES HIDROPÓNICOS

FRECUENCIAS DE RIEGO Y PREPARACIONES DE TERRENO EN TOMATE INDUSTRIAL (LYCOPERSICON ESCULENTUM MILL.), AZUA. Simón Bolívar Alcántara Salomón Sosa Natta

RUIZ- Pérez Vladimir * ; SIFUENTES-Ibarra Ernesto; OJEDA-Bustamante Waldo; MACIAS-Cervantes Jaime

BIOPROSPECCIÓN Y SUSTENTABILIDAD AGRÍCOLA EN EL TRÓPICO CURSO: TECNOLOGÍAS PARA UNA AGRICULTURA SUSTENTABLE PROFESOR TITULAR: [ ] [ ] [ ] [ ]

UNIVERSIDAD AUTÓNOMA DE NAYARIT Área de Ciencias Biológico Agropecuarias y Pesqueras

Manuel Edgardo Quiñónez Montejo

INSTITUTO AGRONOMICO Y TECNICO SALESIANO

Incidencia del fertilizante Smarter sobre el desarrollo de la planta y rendimiento del cultivo del Tomate (Lycopersicon esculentum)

UTILIZACIÓN DE REDES DE SENSORES INALÁMBRICAS Y TÉCNICAS DE APRENDIZAJE AUTOMÁTICO PARA LA OBTENCIÓN DE CONOCIMIENTO ÚTIL EN ENTORNOS VITIVINÍCOLAS

Estudio de manejo de un cultivo de escarola bajo distintos sistemas de semiprotección

Evaluación de 5 sustratos locales para la producción de plántulas de tomate bajo bioespacios. Responsable: Karem Velásquez

REVISIÓN BIBLIOGRÁFICA

ELA PROFESIONAL DE INGENIERIA CIVIL EMANDA DE AGUA ARA UN PROYECTO

INFLUENCIA DEL TAMAÑO DEL TACO DE SEMILLERO SOBRE LA PRODUCCIÓN DE TOMATE EN INVERNADERO 1999

Tecnologías de Riego bajo Severa Escasez de Agua

CULTIVO EN INVERNADERO ECOLÓGICO DE 8 CULTIVARES DE TIRABEQUE (Pisum sativum L. spp. macrocarpon)

Transcripción:

EVALUACIÓN DEL CONSUMO DE AGUA DEL CULTIVO DE TOMATE (Lycopersicon esculentum Mill) CON EL MÉTODO DEL BALANCE HÍDRICO Y SU RELACIÓN CON EL RENDIMIENTO, EN UN SISTEMA SEMI-HIDROPÓNICO. J P Munguía- Lopez 1, A Zermeño-Gonzalez 2 R Quezada-Martin 1 1 Departamento de Plásticos en la Agricultura, Centro de Investigación en Química Aplicada. Blvd Enrique Reyna H 140, Saltillo, Coah. México CP 25253 2 Departamento de Riego y Drenaje UAAAN, Av, Antonio Narro 1925, Saltillo, Coahuila. México Presentado en: XIII Congreso Iberoamericano de Desarrollo y Aplicación de los Plásticos en la Agricultura 28 al 30 de Noviembre de 2011 Campins, SP. Brasil RESUMEN Cultivar en invernaderos permite controlar parámetros climáticos, con lo cual se puede influir artificialmente en el control del balance hídrico, permitiendo así establecer las necesidades de riego incrementando el uso eficiente del agua, con el auxilio del sistema de riego localizado y de alta frecuencia. Se evaluaron tres niveles de drenaje con la finalidad de hacer un uso eficiente del agua de riego en el cultivo de tomate bajo condiciones de invernadero y semi hidroponia. Con base a los resultados obtenidos en el presente trabajo de investigación se puede concluir lo siguiente. La cantidad de agua aplicada al cultivo influye directamente en el rendimiento del cultivo, ya que el mayor porcentaje de drenaje presenta el mayor rendimiento de producción de tomate, así como en la altura de las plantas. Para el uso eficiente del agua se tiene que aplicar la cantidad de agua al cultivo que se manejó en el tratamiento T2 con 27.29% de drenaje, debido que no presenta diferencia significativa al comparar con el T1 con 30.31 % de drenaje, considerando que el desarrollo de la planta no se vea afectado en su altura, en área foliar y diámetro del tallo. Palabras Claves: Hidroponía, Invernadero, Requerimientos Hidrico. INTRODUCCIÓN.-Cultivar en invernaderos permite controlar parámetros climáticos, con lo cual se puede influir artificialmente en el control del balance hídrico, permitiendo así establecer las necesidades de riego incrementando el uso eficiente del agua, con el auxilio del sistema de riego localizado y de alta frecuencia. La hidroponía, que a nivel mundial ha tomado gran auge, sobre todo en países como Estados Unidos de Norteamérica, Canadá, Holanda, Japón e Israel (FIRA.2007, 2001), es uno de los métodos alternativos para el mejor aprovechamiento del agua. La hidroponía se define como la ciencia del crecimiento de las plantas sin utilizar suelo, aunque usando un medio inerte, tal como la grava, arena, perlita, turba, vermiculita, pumita o aserrín, a los cuales se añade una solución de nutrientes que contiene todos los elementos esenciales necesitados (CADAHIA, 2001). Un aspecto de la irrigación que ha tomado gran importancia en la actualidad, es la programación de riegos, una herramienta valiosa para solucionar una parte del problema del mal manejo del agua en la agricultura. Los requerimientos hídricos de los cultivos bajo condiciones de invernadero son diferentes de los de a campo abierto. Por eso el manejo 1

adecuado del riego en el invernadero es muy importante para conseguir altos rendimientos y alta calidad del producto; esta actividad adquiere mayor relevancia con el uso de sustratos, ya que la cantidad de agua que estos pueden almacenar es muy reducida. En tales condiciones es necesario suministrar con mucha precisión, láminas de riego muy pequeñas y frecuentes. Además, la dinámica del consumo de agua por las plantas en el interior del invernadero está sujeta a cambios de corto plazo en el clima. En los sistemas de producción semi-hidropónico, es necesario establecer un balance hídrico muy preciso para determinar el consumo de agua de las plantas y los volúmenes de agua diario que se deben suministrar. mejorando su productividad con el mínimo consumo de agua. REQUEJO, R. 2008, afirma que los porcentajes de drenaje no se ven influidos por las distintas dotaciones de riego, o lo que es lo mismo, por los distintos porcentajes de agotamiento de la reserva, lo cual desvanece la falsa creencia de que tiempos de riego largos producen mayores porcentajes de MAZARIEGOS, S. 2006, considera que la aplicación de riego a un nivel de drenaje entre el 10 y 20% es la más adecuada por ser más eficiente en el uso del agua, que el nivel entre el 20 30%. La frecuencia de riego y la dotación de cada Fertirriego dependen, en primer lugar, de la capacidad de retención de agua disponible del sustrato (agua fácilmente disponible más agua de reserva) y, en segundo lugar, de la demanda del cultivo que a su vez depende del ambiente. En general, se debe regar cuando el sustrato ha perdido entre un 5 a un 10% del agua total disponible (MARTÍNEZ, C. 2007). Siguiendo ese criterio, el volumen suministrado aumentará a medida que las plantas crecen y que la transpiración aumenta según demanda por factores climáticos. El objetivo de este trabajo de investigación fue aplicar el balance hídrico, para determinar el volumen de agua diario que se debe suministrar al cultivo de tomate (Lycopersicon esculentum Mill), MATERIALES Y MÉTODOS El estudio se desarrolló dentro de las instalaciones del Campo Agrícola Experimental del Centro de Investigación en Química Aplicada (CIQA), localizado al noreste de la ciudad de Saltillo-Coahuila; con las coordenadas de 25 27 Latitud Norte, 101 02 Longitud Oeste y una altitud de 1610 m. El experimento se realizó durante el ciclo primavera-verano-otoño, 2008. El experimento se realizó en un invernadero de tipo túnel, con una superficie de 105.36 m 2, de 14.20 m de de largo (este-oeste), y 7.42 m de ancho (norte-sur).,la frecuencia de riegos y el consumo de agua se estableció definiendo tres porcentajes de drenaje (tres tratamientos): 30, 20 y 10%. Esto considerando que se mantuvo flujo estable, de tal forma que el contenido de agua en el sustrato es constante y que no existe aporte por lluvia. De esta forma, la diferencia entre el agua aplicada por riego y el agua drenada corresponde al agua consumida por las plantas. El efecto de los tratamientos en el desarrollo y rendimiento del cultivo se evaluó con un diseño completamente al azar con tres repeticiones. La unidad experimental consistió de 3 sacos de 6 plantas cada uno. RESULTADOS Y DISCUSIÓN De acuerdo los tratamientos definidos desde el inicio de la investigación, se establecieron los siguientes porcentajes de drenaje; tratamiento uno (T1) con 30% de drenaje, tratamiento dos (T2) con 20% de drenaje y tratamiento tres (T3) con 10% de Pero finalmente, resultaron los siguientes porcentajes de drenaje promedio de cada uno de los tratamientos; T1 (30.31% de drenaje), T2 (27.29 % de drenaje) y T3 (17.04% de drenaje). En la Figura 1, se muestra que al inicio del ciclo de desarrollo del cultivo, el volumen drenado está muy cercano al volumen de riego, pero a medida que transcurre el tiempo, ocurre un ligero aumento en el volumen de riego y disminución del volumen drenado, hasta llegar a los 45 días después del transplante (DDT). A medida que la planta empieza a desarrollar área foliar y raíces, aumenta el requerimiento hídrico, tal como se observa después de los 45 DDT. Las variaciones bruscas se deben al efecto de nubes, descomposición de equipos de riego y el ajuste del programa de riego. 2

Figura 1 Riego, drenaje y consumo de agua por tratamiento del 7 al 143 días después del transplante (DDT), correspondiente al tratamiento uno con 30.31% de Para el tratamiento dos ( Figura 2), ocurre lo mismo que en el tratamiento uno, que al inicio del cultivo el volumen drenado es muy cercano al volumen de riego, ya que las plantas recién trasplantadas no consumen mucha agua, debido que no han desarrollado hojas y raices que permita la mayor cantidad del consumo de agua. Después de los 45 DDT, el volumen de agua aplicada al cultivo se incrementó, debido a que el desarrollo de la planta va en aumento a medida que transcurre el tiempo. Notese que para este porcentaje de drenaje, la diferencia entre la linea de drenaje y la de consumo es menor que para el drenaje del tratamiento uno. Figura 2 Riego, drenaje y consumo de agua por tratamiento del 7 a 143 día después del trasplante (DDT), correspondiente al tratamiento dos con 27.29 % de En el tratamiento tres (17.04% de drenaje) la linea de drenaje es mucho menor que las lineas de riego y de consumo (Figura 4.13). También se observa que la diferencia entre la línea de riego y de consumo es mucho menor que la que se observa en los tratamientos uno y dos. Esto indica que la mayor parte del agua aplicada en el riego se consume (trasnpiración ) por las plantas. 3

Figura 3 Riego, drenaje y consumo de agua por tratamiento del 7 al 143 días después del trasplante (DDT), correspondiente al tratamiento tres con 17.04% de Cuando se analiza la columna de productividad mostrado en el Cuadro 1, el tratamiento tres con 17.04% de drenaje presenta un total de 30.08 g de tomate por cada litro de agua aplicada al cultivo. Cuadro 1 Rendimiento de producción del tomate por superficie cosechado durante dos meses. Tratamiento Rendimiento Productividad kg/m 2 ton/ha g/l T1 (30.31%) 15.93 159.31 28.23 T2 (27.29%) 15.26 152.64 28.08 T3 (17.04%) 12.97 129.72 30.08 CONCLUSIONES Con base a los resultados obtenidos en el presente trabajo de investigación se puede concluir lo siguiente: La cantidad de agua aplicada al cultivo influye directamente en el rendimiento del cultivo, ya que el mayor porcentaje de drenaje presenta el mayor rendimiento de producción de tomate, así como en la altura de las plantas. Para el uso eficiente del agua se tiene que aplicar la cantidad de agua al cultivo que se manejó en el tratamiento T2 con 27.29% de drenaje, debido que no presenta diferencia significativa al comparar con el T1 con 30.31 % de drenaje, considerando que el desarrollo de la planta no se vea afectado en su altura, en área foliar y diámetro del tallo. BIBLIOGRAFIA CADAHIA, LÓPEZ C. 2005. FERTIRRIGACIÓN. CULTIVOS HORTÍCOLAS, FRUTALES Y ORNAMENTALES. 3 A ED. MUNDI-PRENSA. MADRID, ESPAÑA. 475 P. FIRA.2007. AGRICULTURA PROTEGIDA; CULTIVO DE TOMATE EN INVERNADERO. DIRECCIÓN DE CONSULTORÍA EN AGRONEGOCIOS. DIRECCIÓN REGIONAL DEL NORTE. 4

MARTÍNEZ, MARTÍNEZ C. 2007. ESTIMACIÓN DEL CONSUMO DE AGUA EN EL CULTIVO DE TOMATE (LYCOPERSICON ESCULENTUM MILL.) EN DOS SISTEMAS DE PRODUCCIÓN SUSTRATO Y SUELO, BAJO CONDICIONES DE INVERNADERO. TESIS DE LICENCIATURA. UAAAN. BUENAVISTA, SALTILLO, COAHUILA, MÉXICO.75 P. MAZARIEGOS, SUAREZ S. 2006. PROGRAMACIÓN DE RIEGO EN BASE A DIFERENCIAS TÉRMICAS ENTRE EL FOLLAJE Y EL AIRE EN EL CULTIVO DE TOMATE (LYCOPERSICON ESCULENTUM MILL.) BAJO INVERNADERO EN DOS MEDIOS DE PRODUCCIÓN (SUELO Y PERLITA). TESIS DE LICENCIATURA. UAAAN. BUENAVISTA, SALTILLO, COAHUILA, MÉXICO. 88 P. REQUEJO, LÓPEZ R. 2008. ACONDICIONAMIENTO NUTRICIONAL DE PLÁNTULAS Y OPTIMIZACIÓN DE SUSTRATOS EN TOMATE (LYCOPERSICON ESCULENTUM MILL) BAJO INVERNADERO. TESIS DE DOCTORADO, FACULTAD DE AGRONOMÍA DE LA UNIVERSIDAD DE NUEVO LEÓN, 148 P. URRESTARAZU, GAVILÁN M. 2004. TRATADO DE CULTIVO SIN SUELO. 3 A ED. MUNDI-PRENSA, MADRID, ESPAÑA. VÁZQUEZ, PÉREZ R. 2004. PRODUCCIÓN DE TOMATE BOLA (LYCOPERSICON ESCULENTUM, MILL) BAJO DIFERENTES SUSTRATOS HIDROPÓNICOS. TESIS DE LICENCIATURA. UAAAN. BUENAVISTA, SALTILLO, COAHUILA, MÉXICO. 65 P. 5