Ciclo de la Proteína G como transductor en el Sistema de Transducción de Señales

Documentos relacionados
Receptores de membrana y transduccion de la señal

Químicas: hormonas, factores de crecimiento,.. neurotransmisores, etc.

SÍNTESIS Y DEGRADACIÓN DE GLUCÓGENO

TRANSDUCCIÓN DE SEÑALES EN EUCARIOTAS TRANSDUCCIÓN DE LA SEÑAL INTRACELULAR PROTEÍNAS G

Transducción de Señales

SÍNTESIS Y DEGRADACIÓN DE GLUCÓGENO

Membrana (III parte) AMPc. Transferencia de información a través de la membrana. Introducción ATP. Prof. Iván Rebolledo

DESACTIVACIÓN Y REGULACIÓN DE LOS RECEPTORES DE MEMBRANA

Lehninger, cap. 15, ps ; Mathews.- cap. 13, ps y cap.16. ps ; Stryer.- cap. 21, ps ; Voet.-cap. 15, ps

SÍNTESIS Y DEGRADACIÓN DE GLUCÓGENO

En el estudio de los mecanismos de acción farmacológica hay que distinguir.

SÍNTESIS Y DEGRADACIÓN DE GLUCÓGENO

Metabolismo glucídico y control de la Glicemia Bioquímica Facultad de Enfermería Universidad de la República

Fisiología de los receptores y mecanismos de acción de membrana. Dr. Mario Acosta Mejía

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

INTRODUCCION A LA BIOLOGIA CELULAR Y MOLECULAR

De modo que alguna cosa tienen que tener desde el punto de vista bioquímico que les permita comportarse de esta forma.

MECANISMO DE ACCIÓN DE LOS RECEPTORES HORMONALES

Procesamiento de proteínas y modificaciones post-traduccionales

COMUNICACIÓN CELULAR

FOSFOLIPASAS. Las fosfolipasas son moléculas capaces de romper los fosfolípidos

DEGRADACIÓN del glucógeno o GLUCOGENOLISIS. Fosforólisis de los enlaces α 1,4-glucosídicos

Definiciones. Farmacodinamia es la parte de la farmacología que estudia el mecanismo de acción de los fármacos

Introducción. Expresión génica. Regulación de la expresión génica en procariotas

Señalización Celular. Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Biología Celular

Metabolismo del Glucógeno. Dra. Carmen Aída Martínez

Transporte a través de las membranas

Acidos Nucleicos. Adenina + Ribosa Adenosina

Tema 10. Regulación de la actividad enzimática

Comunicación y Mecanismos de Señalización Celular

MECANISMOS DE COMUNICACIÓN CELULAR. II- Algunos ejemplos de Transducción de la Señal

Enzimas Departamento de Bioquímica Noviembre de 2005

almacenamiento de carbohidratos en animales.

Compuestos ricos en energía. Dr. Juan Pablo Damián BMC Bioquímica, Facultad de Veterinaria

Metabolismo de carbohidratos 5 (Glucogenogénesis y glucogenólisis) Marijose Artolozaga Sustacha, MSc

Fisiología del evento ISQUEMIA / ANOXIA. Rodolfo A. Cabrales Vega MD Docente Programa de Medicina Universidad Tecnológica de Pereira

Universidad Nacional Autónoma de México

Universidad Autónoma de Baja California Facultad de Ciencias Marinas

Metabolismo de Hidratos de. Parte II

Ciclo del ácido cítrico (Krebs o Ciclo de los ácidos tricarboxílicos

CONTROL HORMONAL DEL METABOLISMO. Coordinación metabólica. Papel de distintos órganos y tejidos. Control del uso de combustibles celulares

GLUCO-NEO. NEO-GÉNESIS: NESIS: esquema general Ruta anabólica que se produce en hígado y riñón

Generalidades de ENZIMAS

CAPÍTULO 2 FLUJO DE LA INFORMACIÓN BIOLÓGICA FACULTAD DE AGRONOMÍA CURSO DE BIOQUÍMICA

Hay hasta 4 dominios, que se denominan SH, más 2 dominios diferentes pero que también tienen funciones semejantes.

Metabolismo del C O L E S T E R O L

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Biología. Glúcidos o hidratos de carbono.

1.- Lactato, producido fundamentalmente mediante la glucólisis en el músculo esquelético y los eritrocitos

EL CONTROL DE LAS ACTIVIDADES CELULARES

DE TRANSDUCCIÓN DE SEÑALES

PROTEINAS COMO CATALIZADORES ENZIMAS

ENZIMAS. Kuhne en el año de 1876 les llamó enzima a los catalizadores que producían

El catabolismo es la fase degradativa del metabolismo. El catabolismo es semejante en organismos autótrofos y heterótrofos.

CELULAR. En organismos multicelulares, las células intercambian información:

ESTUDIOS CINÉTICOS SE MIDE LA VELOCIDAD DE LA REACCIÓN CATALIZADA. La velocidad de reacciones químicas: Para una reacción:

Capítulo 12 REGULACIÓN DE LA EXPRESIÓN GÉNICA. Factores de Transcripción. Metilación. Procesamiento del ARN. Post-traduccional

Tema 7 LA BIOFASE: NATURALEZA QUIMICA Y REACTIVIDAD

Generalidades de HORMONAS

Experimentos: [Ca 2+ ] media de la tensión desarrollada y representarla frente al logaritmo de [Ca 2+ ]. Determinar la EC 50.

REGULACIÓN DE LA EXPRESIÓN GENÉTICA EN PROCARIOTES

Fosforilación a nivel de sustrato. Fosforilación Oxidativa (Fosforilación a nivel de Cadena Respiratoria).

TEMA 6 Introducción a la Bioenergética

METABOLISMO DEL GLUCOGENO, VIA DE LAS PENTOSAS clase 6

1.5. Señalización celular. Antonio Suárez García

Universidad Autónoma de Chiapas Ext. Ocozocoautla Facultad de Ciencias Químicas

GENERALIDADES DE LA RESPUESTA INMUNE

X. METABOLISMO DE LÍPIDOS. 1. Generalidades de la β-oxidación 2. Generalidades de la síntesis de ácidos grasos 3. Regulación

SÍNTESIS DE C O L E S T E R O L Dr. Mynor A. Leiva Enríquez Dr. M. Leiva

SÍNTESIS DE C O L E S T E R O L Dr. Mynor A. Leiva Enríquez

Biosíntesis de Ácidos nucleicos (ARN) y Proteínas

Receptores para medicamentos

RESPIRACIÓN CELULAR. C 6 H 12 O 6 + O 2 + 6H 2 O CO H 2 O + Energía

Promotor Basal: secuencia de nucleótidos necesaria para la fijación de la RNA polimerasa.

Comunicación celular 16

Metabolismo. Forma de obtención de carbono. Corresponde a la actividad. participan sistemas multienzimáticos (rutas metabólicas) RUTAS METABÓLICAS

Click para ir al sitio web:

METABOLISMO DE LIPIDOS

Proteínas y Ácidos Nucleicos

GLUCOSA: EXCELENTE COMBUSTIBLE Y PRECURSOR VERSÁTIL

Modificación de proteínas

Receptores celulares y vías de señalización

Fisiología del evento Isquemia / Anoxia. Rodolfo A. Cabrales Vega MD Profesor Asociado Programa de Medicina

Pregunta 1, continuación

Licenciatura Ingeniería Bioquímica Industrial MANUAL DE PRÁCTICAS DEL LABORATORIO DE INGENIERÍA ENZIMÁTICA

Sustratos Estructurales Energéticos

Biologia Celular CBI 111 Instituto de Ciencias Naturales. Estructura y función de la Membrana Citoplasmática. Clase 6

CADENA RESPIRATORIA O CADENA DE TRANSPORTE DE ELECTRONES

Tema I: Biomoléculas

RESULTADO DE APRENDIZAJE:

1- DESCARBOXILACIÓN OXIDATIVA DEL PIRUVATO. 2- CICLO DE KREBS. Dr. Mynor A. Leiva Enríquez

(III) El metabolismo del glucógeno. Síntesis. Glucogenosis

BIOLOGÍA GENERAL Ing.MSc. Sigfredo Ramos Cortez

CURSO BIOLOGÍA CELULAR TRANSPORTE A TRAVÉS DE MEMBRANAS. Profesor Dr. Marco Tulio Núñez

Célula Membrana plasmatica

TEMA 1. Mecanismos de Transducción de señales por receptores de membrana

METABOLISMO DE LIPIDOS

Tema 1, 1ºparte (corresponde con tema 2 del libro): LOS RECEPTORES Y ENZIMAS COMO OBJETIVOS DE LA ACCIÓN DE LOS FÁRMACOS

RESPIRACIÓN CELULAR (I): CICLO DE KREBS

Centro de Microscopía Electrónica LISOSOMAS - PEROXISOMAS

Transcripción:

Ciclo de la Proteína G como transductor en el Sistema de Transducción de Señales Diagrama por Prof. Tomás Diez, titular del Curso de Bioquímica Las hormonas hidrofílicas trabajan a través de los denominados Sistemas de Transducción. Transducción no significa retransmisión de una señal; es cambio de una señal, porque las hormonas hidrofílicas no penetran el interior de la célula, aquí no hay endocitosis. Un sistema de transducción están involucrados cinco componentes básicos, porque toda vez que falla uno puede ser hasta letal. El primer mensajero la hormona: el que trae el mensaje a la célula para que se adapte metabólicamente hablando. El receptor hormonal La proteína transductora transductor La proteína efectora efector El segundo mensajero o señal intracelular. Los transductores o familia de transductores son enorme. Esto corresponde a las proteínas G. Toda proteínas G son trímeros, es decir que están formados por tres subunidades polipeptídicas que se denominan en α (alfa), β (beta) y γ (gamma); y la proteína G se clasifican de acuerdo con la función de la subunidad α que es la que funciona como efector activador, y se le llama proteína G porque la subunidad α tiene la propiedad de ligar no covalentemente nucleótidos de Guanina y de allí su nombre. En la forma de trímero, la subunidad α tiene unido GDP, esa es su forma inactiva, no tiene actividad funcional y no transduce nada. Cuando tiene unido GTP y está solo es cuando cumple su función biológica.

Con base a la función de la subunidad α es que se clasifica: La subunidad G αs: estimulan o activa una enzima que se denomina Adenilato Ciclasa. La subunidad G αi: hace todo lo contrario, inactiva o inhibe la actividad de la Adenilato Ciclasa. La subunidad G αt: el mecanismo de la visión es un sistema de transducción en el cual la hormona son los fotones, radiación electromagnética que activa los receptores que se encuentran en los conos y bastones que se denomina Rodoxina y de allí se activa todo un sistema de transducción que llega hasta el nervio óptico y finalmente interpreta. Se le llama t porque su nombres es Transducina la que convierte las radiaciones electromagnéticas en imágenes. La subunidad G αq: aparentemente el gen que codifica para esa proteína está en la región Q del cromosoma que tiene la información. La subunidad G α13: tiene un peso molecular de 13 kd y tienen que ver con la estimulación de una bomba de sodio y protones. Lo primero que debe de suceder para que se genere una señal intracelular es la aparición de una respuesta física o química para que haya una liberación de una hormona. Ejemplo, alimentación, una situación de peligro, etc. Se libera la hormona en respuesta al estímulo y lo primero que hace la hormona es interactuar con aquellas células que tienen receptores a esa hormona. Lógicamente, la hormona interactúa con su receptor en su sitio de unión en forma no covalente, y se forma el complejo Hormona-Receptor el receptor cambia de conformación. Los cambios de conformación del receptor promueven la activación del siguiente componente del sistema de transducción, el transductor. Recordemos que todos los receptores son proteínas, todos los transductores son proteínas, todos los efectores son proteínas; los que no son proteínas son el primero y el último, la hormona y el segundo mensajero. En algunos casos algunos segundos mensajeros y hormonas tienen naturaleza polipeptídica. El siguiente que se activa es el transductor que en su forma inactiva, la proteína G tienen unido GDP. Cuando el receptor es activado y cambia de conformación, porque recluta al siguiente componente, suceden dos cosas: 1- Que haya un intercambio de GDP por GTP, es decir, que entra GTP y sale GDP en la subunidad α s. 2- Lo segundo que ocurre es que se disocia la subunidad α de la subunidad βγ. Una cosa importante, todo esto es un proceso mediado por membranas, es decir, todo esto está ocurriendo en la membrana plasmática. Una vez disociado la subunidad βγ, la subunidad α quedo libre para para que se ancle a siguiente componente (la Adenilato Ciclasa AC). La función de la AC como efector del sistema es generar el segundo mensajero AMPc - a partir de ATP liberándose PPi. Con la generación del segundo mensajero a nivel intracelular se termina la transducción del mensaje, recordando que transducción significa cambio de señal ya que las hormonas hidrofílicas no pueden entregar el mensaje directamente al interior de la célula como lo hacen las hormonas hidrofóbicas.

Cómo se da la adaptación metabólica?, resulta que el AMPc, una vez acabada la transducción del mensaje, activa a una proteína cinasa (PK-A). La PK-A tiene múltiples sustratos en términos de cambios metabólicos, enzimas que responden a un mecanismo de fosforilación/desfosforilación. Recordemos que la PK-A es una Serina-Trionina-Cinasa, es decir que reconoce y fosforila en forma exclusiva residuos de Serina y Trionina, uno usualmente varios; y esa fosforilación modulan la actividad de una enzima, algunas enzimas se activaran por fosforilación y otras se inactivaran por desfosforilación. Este proceso puede ser reversible por economía, ya que la misma proteína si se activa por fosforilación, se puede inactivar por desfosforilación. En el caso de la PK-A, es un heterotetrámero que está formado por dos subunidades catalíticas y dos subunidades reguladores. Cuando se elevan los niveles intracelulares de AMPc, y estas son como las llavecitas que sueltan el candado que son las subunidades reguladoras y se liberan las subunidades catalíticas, y ahora la PK-A es activa. Cuando la célula elimina el AMPc, de nuevo las subunidades reguladoras capturan las subunidades catalíticas y la PK-A vuelve a su estado inactivo. Por supuesto que el sistema hay que apagarlo, lo primero que hay que hacer es eliminar a la hormona. La célula tiene que volver al estado de reposo para que pueda responder a un evento posterior. El complejo H-R toda vez que actúa rápidamente, también es reconocido por ciertas cinasas y es fosforilado y una vez fosforilado, estos receptores son reciclados. Aun cuando el endosoma se fusiona con el lisosoma, ellos no tocan a los receptores y estos se devuelven a la membrana por economía, lo que la célula puede reciclarlos. Luego los receptores se endocitan y la hormona es degradada intracelularmente pero aún no se ha cerrado el sistema de transducción ya que el segundo mensajero está activo, la subunidad α s. Primero debemos apagar al transductor y esto se hace en segundos. Resulta que el transductor se apaga solo, es decir, que la subunidad α es una enzima y tiene actividad de GTPasa y tiene la propiedad de hidrolizar GTP y así es como se apaga el sistema, entra agua y sale fosfato. No solamente ocurre la hidrolisis de GTP a GDP, sino que las subunidades βγ se encuentran a la subunidad α, que tienen unido GDP y se forma el trímero inactivo; esto es lo que se conoce como el ciclo de la Proteína G. No habiendo la subunidad α s, no hay activación de la AC; pero aún no se ha apagado el sistema ya que aún hay que eliminar el segundo mensajero. El segundo mensajero se elimina con una enzima que simplemente responde a la concentración de su sustrato, en este caso nos referimos a las fosfodiesterasas (PDE). Las diesterasas son fosfatasas y las fosfatasas hidrolizan enlaces fosfatos, entra agua y se obtiene 5 AMP. Hay PDE para el AMPc y también del GMPc que es el que impera en el tejido muscular. Como ya no hay AMPc, no hay PK-A, no hay fosforilación y la contraparte que son las fosfatasas simplemente devuelve la Enz-OP a su estado original (Enz-OH), entra agua, sale Pi.

Aplicación Clínica Analicemos el tema del cólera y de la Bordetela Pertisus, las dos bacterias pueden matar si no hay tratamiento rápido. El toxina del cólera (ataca a nivel intestinal) está formada por dos subunidades proteicas (A y B), la subunidad B es la que penetra la célula; es una enzima que es una transferasa que cataliza la reacción de ADP ribocilasion, porque lo que se transfieres es un grupo de ADP ribosilo, un grupo de átomos que es donado por el NAD +. Esta enzima (subunidad B) transfiere ese grupo a un residuo de Arginina específico en la subunidad α s ADP-Ribosilada que trae como consecuencia la inhibición de la actividad GTPasa. Diagrama por Prof. Tomás Diez, catedrático del Curso de Bioquímica Por tanto no se produce α s -GDP, se acumula α s -GTP lo cual mantiene activa a la Adenilato Ciclasa. Los niveles intracelulares en el enterocito de AMPc aumentan, la Adenilato Ciclasa sigue activa convirtiendo ATP en AMPc de forma constante, de forma que se activa la PK-A y otras cinasa a nivel del intestino y estas proteínas comienzan a ser fosforiladas sobre todo proteínas trasportadoras de membrana; lo que caracteriza a los individuos intoxicados por cólera, diarrea líquida, que se traduce en términos de perdida de líquidos deshidratación y perdida de electrolitos. La Bordetela Pertusis se asemeja únicamente al cólera en la catalización de ADP ribocilasión. Las diferencias son: Ataca los pulmones La ADP ribosilación ocurre no sobre un residuo de Arginina, sino en un residuo de Cisteína. No ataca al α s, sino que ataca a la α i que tiene función de inhibir. No afecta la actividad GTPasa, lo que inhibe es el intercambio de GDP por GTP.

Diagrama por Prof. Tomás Diez, catedrático del Curso de Bioquímica Cómo serán los niveles de AMPc a nivel de los Alveolos?, la función de la subunidad α i para que inhiba tienen que tener unido GTP, la subunidad α i se mantiene inactiva en forma de trímero por lo cual no inhibe, ya que el sistema está siendo sobre estimulado por otro lado por lo cual las concentraciones de AMPc también son elevadas, pero por otras razones. Lo que se está afectando es el intercambio gaseoso. Por: Jack Ávila, Estudiante de la Facultad de Medicina de la Universidad de Panamá Basado en apuntes y audio tomados en la clase de Bioquímica, dictada por el profesor titular Tomas Diez, III Semestre.