1. Utilizar el método de Gauss para clasificar y resolver cuando sea posible los siguientes sistemas: x 3y + 7z = 10 5x y + z = 8 x + 4y 10z = 11

Documentos relacionados
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma:

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

Sistemas de Ecuaciones Lineales y Matrices

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.

Sistemas de Ecuaciones Lineales. Matrices y determinantes.

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Matrices, Determinantes y Sistemas Lineales.

SISTEMAS DE ECUACIONES

Sistemas de ecuaciones lineales

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

1 ÁLGEBRA DE MATRICES

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Sistema de ecuaciones Parte II

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

SISTEMAS DE ECUACIONES LINEALES

Sistemas de ecuaciones

Sistem as de ecuaciones lineales

1.1. CÁLCULO DEL RANGO POR EL MÉTODO DE GAUSS. son matrices escalonadas reducidas mientras que

Matrices y Sistemas de Ecuaciones lineales

Sistemas de ecuaciones lineales

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

Matrices, determinantes y sistemas de ecuaciones lineales

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Matriz sobre K = R o C de dimensión m n

Conjuntos y matrices. Sistemas de ecuaciones lineales

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de ecuaciones lineales

Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

Lo rojo sería la diagonal principal.

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones)

MATEMÁTICAS II: MATRICES Y DETERMINANTES

Francisco José Vera López

Tema 4: Sistemas de ecuaciones lineales.

Ejercicio 3 de la Opción A del modelo 1 de 2008.

Sistemas de ecuaciones lineales dependientes de un parámetro

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN

Tema 1: MATRICES. OPERACIONES CON MATRICES

Matrices y determinantes

Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales

Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss

Tema II. Sistemas de ecuaciones lineales

Matrices y Sistemas Lineales

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

Tema 3: Sistemas de ecuaciones lineales

1 Sistemas de ecuaciones lineales.

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Matrices y Sistemas Lineales

Método de eliminación de Gauss Utilidad del método. Transformaciones elementales. Teorema Rouché-Frobenius

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

MATRICES. TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en:

!MATRICES INVERTIBLES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices. Álgebra de matrices.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I

Prácticas de Matemáticas II: Álgebra lineal

Sistemas de ecuaciones lineales

MATRICES Y SISTEMAS DE ECUACIONES

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

2.- Sistemas lineales.

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Sistemas de Ecuaciones Lineales

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

2. Sistemas de ecuaciones lineales.

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

Tema 5: Sistemas de ecuaciones lineales.

ALGEBRA y ALGEBRA LINEAL

Tema 1: Matrices y Determinantes

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores.

TEMA 7: MATRICES. OPERACIONES.

ÁLGEBRA Algunas soluciones a la Práctica 4

Sistemas de ecuaciones lineales. El método de Gauss

Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2

Sistemas lineales con parámetros

Grado en Ingeniería Electrónica Industrial Universidad de Granada

MATRICES Y DETERMINANTES RANGO DE UNA MATRIZ

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

RESOLUCIÓN DE SISTEMAS LINEALES

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

UNIVERSIDAD NACIONAL DE ROSARIO

Sistemas de ecuaciones lineales

Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones lineales. es un sistema de 3 ecuaciones lineales con 3 incógnitas

Matrices y determinantes. Sistemas de ecuaciones lineales

TEMA 1. Álgebra matricial y programación lineal

Transcripción:

Teorema de Rouché Frobenius: Si A es la matriz de coeficientes de un sistema de ecuaciones lineales y AM la matriz ampliada de un sistema de ecuaciones lineales. Si r(a = r(am = número de incógnitas = S.C.D. (sistema compatible determinado: una única solución Si r(a = r(am < número de incógnitas = S.C.I. (sistema compatible indeterminado: infinitas soluciones Si r(a < r(am = S.I. (sistema incompatible: no tiene solución Operaciones elementales de fila: Si A M m n (R, se llaman operaciones elementales de fila a las siguientes operaciones: Intercambiar dos filas F i F j. Multiplicar una fila por un escalar no nulo λ F i, con λ 0. Sumar a una fila otra fila multiplicada por un escalar F i + lambda F j con λ R. Rango de una matriz: El rango de una matriz A M m n (R es el máximo número de filas linealmente independientes que hay en la matriz A. También es el máximo número de columnas linealmente independientes que hay en la matriz A. Método de Gauss: Para resolver un sistema de ecuaciones lineales el método más eficaz es en general el método de Gauss que nos permite clasificar, según el teorema de Rouché Frobenius, y resolver, cuando sea posible, un sistema de ecuaciones lineales. Mencionar también que otros métodos como el método de Cramer no son en absoluto recomendables y no deberían utilizarse. El método de Gauss utiliza también la técnica de operaciones elementales de fila. Para resolver un sistema de m ecuaciones lineales con n incógnitas conviene aplicar operaciones elementales de fila sobre la matriz ampliada del sistema hasta conseguir una matriz escalonada. El sistema cuya matriz ampliada es la escalonada es equivalente al sistema inicial. Este método es conocido como método de Gauss. Las entradas principales correspondientes a la matriz escalonada equivalente a la matriz de coeficientes del sistema nos proporcionan lo que en un sistema compatible indeterminado se denominan incógnitas principales. El resto de las incógnitas se suele denominar incógnitas libres.. Utilizar el método de Gauss para clasificar y resolver cuando sea posible los siguientes sistemas: 2x 5y + z = 4 x 2y + z = 5x + y + 7z = x y + 7z = 0 5x y + z = 8 x + 4y 0z = x y 2z = 7 2x y + 5z = x 8y 2z = Solución Escribimos la matriz ampliada del sistema y vamos realizando operaciones elementales de fila sobre la matriz ampliada hasta conseguir una matriz escalonada equivalente a la matriz ampliada del sistema. de este modo llegamos a un sistema escalonado equivalente al inicial y de clasificación y resolución (si es compatible inmediatas. AM = 2 5 2 5 7 2 0 0 2 4 2 4 F F2 F F 2 F 4 F 2 2 2 5 5 7 2 0 0 0 4 2 26 F 2 2F F 5F = BM

El sistema de ecuaciones cuya matriz ampliada es BM es equivalente al sistema que tenemos que clasificar y resolver si es posible. La clasificación de este sistema, según el teorema de Rouché Frobenius resulta trivial así como su resolución (pues se trata de un sistema compatible. En concreto, tenemos: r (A = r (AM = = número de incógnitas = S.C.D. x 2y + z = y + z = 2 z = 26 = x = 5, y = 0, z = 2 Para clasificar un sistema de ecuaciones lineales que dependa de uno o más parámetros, podemos:. Si una de las dos matrices A : matriz de coeficientes del sistema AM: matriz ampliada del sistema es cuadrada, comenzamos calculando el determinante de la matriz cuadrada. 2. Otro método que resulta en general más eficaz, pero que no siempre es conveniente utilizar 2, es el método de Gauss, que nos permite clasificar y resolver un sistema (si éste es compatible, aunque dependa de uno o más parámetros. 2. Clasificar y resolver cuando sea posible los siguientes sistemas, según los distintos valores de los respectivos parámetros: x + y + kz = kx + (k y + z = k x + y + z = k + x + y + 2z = x + 2y + z = 5 x + y + mz = 7 Solución Vamos a resolver el primer ejercicio utilizando el primer método mencionado. En nuestro ejercicio, A M (R y AM M 4 (R, luego empezamos calculando el determinante de la matriz de coeficientes A: k det A = k k = = k Si A es una matriz cuadrada, supongamos A M n n (R, entonces AM M n n+ (R. Se tiene que: Por lo tanto, r(a n r(am n r(a r(am r(a = n det A 0 det A 0 = r(a = r(am = n = nro. de incógnitas = S.C.D. Si la matriz que es cuadrada es AM, digamos AM M n n (R, entonces A M n n (R, entonces: Por lo tanto: r(a n r(am n r(a r(am r(am = n det AM 0 det AM 0 = r(a < r(am = n = S.I. 2 La razón por la que no es siempre conveniente utilizar el método de Gauss para clasificar un S.E.L. que dependa de parámetros, es que no siempre es conveniente aplicar operaciones elementales de fila a una matriz cuyos elementos dependen de parámetros. 2

A M (R = { r(a r(a AM M 4 (R = r(a = sii det A 0 A submatriz de AM = r(a r(am ( Como sabemos que det A = k y teniendo en cuenta (, comenzamos a clasificar el sistema. Nos surgen dos casos: Caso. k Caso 2. k = Conviene comenzar la clasificación por el caso. Tenemos: Caso. k = det A 0 = r (A = r (AM = = n.i. = S.C.D. Caso 2. k = = det A = 0 = r (A <, pero el rango de la matriz AM puede ser. Para calcular el rango de la matriz ampliada AM escribimos AM para k = y utilizamos operaciones elementales de fila para escalonar AM y calcular su rango. Por lo tanto: AM = 0 2 F 2 F F F 0 0 0 0 0 Caso 2. k = = det A = 0 = r (A < = r (AM = S.I. 0 = r (AM = Como tenemos que resolver el sistema para el caso k debemos utilizar el método de Gauss. Por lo tanto hubiera resultado conveniente clasificar el sistema utilizando también el método de Gauss. k F 2 kf k AM = k k F k F 0 k 2 0 k + 0 0 k k De aquí deducimos: k = r (A = r (AM = = n.i. = S.C.D. x + y + kz = y + ( k 2 z = 0 = z = k y = ( + kk x = k k 2 2k + k k ( kz = k k = = det A = 0 = r (A = 2 < = r (AM = S.I.. Clasifica y resuelve, cuando sea posible, los siguientes sistemas, utilizando el método de Gauss: x + y + z + t = x y + z t = 0 x + y z t = x + y + z t = 2 2x + y + z = 0 4x + 2y z = 0 6x + y + 2z = 0 x y + z 4t = 0 2x 2y + z + t = 0 x y + 5z + 6t = 0 4. Resuelve el sistema matricial siguiente: A + B = 2A 2B = ( 2 ( 6 0 2 2 2 2

Cálculo de determinantes: Para calcular un determinante de orden podemos utilizar la regla de Sarrus: a a 2 a det A = a 2 a 22 a 2 a a 2 a = a a 22 a + a 2 a 2 a + a 2 a 2 a a a 22 a a a 2 a 2 a 2 a 2 a En general es mejor utilizar propiedades de los determinantes para calcular determinantes de matrices cuadradas de orden. Algunas propiedades importantes son:. El intercambio de dos filas (o columnas de una matriz cuadrada cambia de signo su determinante. 2. Si una fila (o columna es multiplicada por un escalar, el determinante de la matriz cuadrada queda multiplicado por dicho escalar.. Si a una fila (o columna se le añade otra fila (o columna multiplicada por un escalar cualquiera, no cambia el valor del determinante. Además utilizaremos la definición recursiva de un determinante de orden n >. Si n >, fijada la fila i de una matriz cuadrada A de orden n, se tiene: n det A = ( i+k a ik det A ik k= donde A ik es la matriz cuadrada de orden n que resulta de suprimir en la matriz A la fila i y la columna k. También podemos desarrollar por columnas: Si n >, fijada la columna j de una matriz cuadrada A de orden n, se tiene: n det A = ( j+k a kj det A kj k= La idea es utilizar fundamentalmente la tercera propiedad antes mencionada para conseguir una fila o una columna donde todos los elementos menos uno sean igual a cero, para después desarrollar por dicha fila o columna. Calcular el valor del siguiente determinante: 2 5 2 5 Podemos utilizar directamente la regla de Sarrus, pero en general es más conveniente realizar previamente operaciones elementales de fila y/o columna. Es conveniente indicar que operaciones de fila y/o columna estamos realizando: 2 5 2 5 C 2C 2 C C 2 = 0 0 2 7 6 = desarrollo F 7 6 = De este modo nos hemos evitado la utilización de la regla de Sarrus y hemos simplificado las operaciones. 5. Calcula el valor de los siguientes determinantes: 2 5 7 4 7 0 4 0 0 0 5 4 6 2 5 5 7 8 0 0 7 0 8 7 0 6 0 2 0 4

Matriz regular: Una matriz cuadrada se dice regular o inversible si su determinante es no nulo. Matriz singular:una matriz cuadrada se dice singular o no inversible si su determinante es cero. La inversa A de una matriz A cuadrada regular de orden n es la única matriz que verifica: A A = A A = I n La técnica más eficaz para calcular la inversa de una matriz regular consiste en utilizar también operaciones elementales de fila. Escribimos la matriz A regular y la ampliamos con la matriz unidad I n del mismo orden que A. Realizamos operaciones elementales de fila sobre la matriz n 2n con el objetivo de transformar A en la matriz I n del modo siguiente:. Conseguimos ceros debajo de la diagonal principal de la matriz n n de la izquierda. 2. Conseguimos unos en la diagonal principal de la matriz n n de la izquierda.. Sin deshacer lo conseguido: conseguimos ceros encima de la diagonal principal de la matriz n n de la izquierda. (A I n = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F 2 F F F F+(F2+F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F2 = (I n A 6. Comprueba que las siguientes matrices son regulares y calcula la matriz inversa de cada una de ellas. 0 4 0 2 2 0 0 2 0 2 2 0 0 siendo 7. Calcula la matriz X tal que A = ( 2 0 5 B = A B + C X = D, 0 2 C = ( 2 4 D = ( 9 8 7 8. Sean A M 2 (R, B M (R y C M (R. Indicar cuáles de los siguientes productos son posibles, así como el orden de la matriz resultante: A (B C A C B B C A B T C T A (B C T A T 9. Dadas la matrices A = 0 2 0 4 2 B = Calcular A 2, A B, A + 8C y A + C (C A. 2 4 5 2 7 C = 2 0 0 0 0 2 5

0. Sean las matrices A = a b 0 a 0 0 a 0 0 b B = 0 a 0 b 0 0 0 0 0 0 0 2 0 5 Se sabe que las dos tienen su determinante igual a. Hay datos suficientes para calcular los valores de a y b? En caso afirmativo hallar dichos valores, en caso negativo razonar el motivo. 6