58 7. ESPACIOS COCIENTE

Documentos relacionados
Dualidad. 1. Dual de una transformación lineal

Transformaciones lineales y matrices

Matriz asociada a una transformación lineal respecto a un par de bases

Tema 2: Espacios Vectoriales

Espacios vectoriales

Espacios Vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Teoría de la Dimensión

6 Vectores. Dependencia e independencia lineal.

En varias ramas de las matemáticas y de las ciencias sociales, es común

Aplicaciones lineales

Aplicaciones lineales.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Transformaciones lineales

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

4. Espacios vectoriales

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Departamento de Ingeniería Matemática - Universidad de Chile

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

TEMA 4. APLICACIONES LINEALES

El espacio proyectivo. Sistemas de referencia. Dualidad.

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Teorema de Hahn-Banach

Estructuras algebraicas

Espacios vectoriales

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Álgebra Lineal Capítulo 11. Tópicos Especiales y Aplicaciones Producto tensorial de espacios vectoriales y matrices

Subespacios de espacios vectoriales

Ba s e, d i M e n s i ó n y Mat r i z

Semana04[1/17] Funciones. 21 de marzo de Funciones

Conjuntos, Aplicaciones y Relaciones

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

Estructuras Algebraicas

Introducción a los espacios vectoriales

CAPÍTULO 2 TRANSFORMACIONES LINEALES

TEMA 5: Aplicaciones Lineales. Diagonalización.

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Transformaciones Lineales (MAT023)

Descomposición en valores singulares de una matriz

Formas canónicas de Jordan

Dependencia e independencia lineal

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS

4. Aplicaciones: rango de una matriz y ecuaciones de un subespacio

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

520142: ALGEBRA y ALGEBRA LINEAL

7.1 Transformaciones lineales nilpotentes

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Capítulo 4: Conjuntos

5. Aplicaciones lineales

Transformaciones lineales autoadjuntas (hermíticas)

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESPACIOS VECTORIALES

Tema 1: ESPACIOS VECTORIALES

La estructura de un cuerpo finito.

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases.

Transformaciones lineales

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Práctica 2. Transformaciones lineales.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Podemos pues formular los dos problemas anteriores en términos de matrices.

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Aplicaciones Lineales

Tema 4: Estructura vectorial de R n.

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

1. Espacio vectorial. Subespacios vectoriales

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

Tema 3: Espacios vectoriales

Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX

2 Espacios vectoriales

Aplicaciones Lineales

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Espacios vectoriales. Capítulo Espacios vectoriales y subespacios Preliminares

Espacios Vectoriales

Cuestiones de Álgebra Lineal

TEMA 11.- VECTORES EN EL ESPACIO

Álgebra y estructuras finitas/discretas (Grupos A)

Algebra Lineal XIV: Espacio Nulo y Rango de una Transformación Lineal.

P(f) : P(B) P(A) (A.2)

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS

Apuntes de Análisis Matemático I

Clase de Álgebra Lineal

ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA.

Extensiones normales.

Mariano Suárez-Álvarez ÁLGEBRA LINEAL 21 de noviembre de 2016 F F 8 f f

Capítulo V. T 2 (e, e

Conjuntos, relaciones y funciones Susana Puddu

Transcripción:

CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente. Definición 7.1. Si es un espacio vectorial y W es un subespacio cualquiera, definimos en la siguiente relación de equivalencia: v W v si v v W. Observación 7.2. (1) El subespacio W en general se considera fijo y por ese motivo el símbolo W se escribe omitiendo el subíndice como. (2) Es claro que v v si y sólo si existe w W de modo que v = v + w. (3) Es claro que la relación es una relación de equivalencia y esto queda como ejercicio. (4) Si W = {}, v v si y sólo si v = v y si W = para todo par v, v, v v. (5) Recordar que si v su clase de equivalencia es un subconjunto de y consiste de {v : v v} = { v : v = v + w para algún w W }. En otras palabras la clase de equivalencia de v es el subconjunto v + W. Definición 7.3. En la situación anterior, la clase de equivalencia de v se denota como [v] o como v+w. El conjunto cociente /, se denota como /W = { [v] : v } y se denomina espacio cociente de por W. La proyección canónica : /W que existe para cualquier relación de equivalencia, en particular la considerada más arriba explícitamente se define como (v) = [v] = v + W. A priori /W es tan sólo un conjunto. Probaremos que de hecho es un espacio vectorial con operaciones que hacen que : /W sea una transformación lineal. Lema 7.4. En la situación anterior tenemos que: (1) Si v 1 v 1 y v 2 v 2 entonces v 1 + v 2 v 1 + v 2 para todo v 1, v 2, v 1, v 2. (2) Si v v entonces av av para todo v, v y a k. Demostración. (1) Si v 1 v 1 y v 2 v 2 entonces existe w 1, w 2 W tales que v 1 = v 1 + w 1 y v 2 = v 2 + w 2. Entonces v 1 + v 2 = v 1 + v 2 + w 1 + w 2 y como w 1 + w 2 W concluimos que v 1 + v 1 v 2 + v 2. (2) La demostración de esta propiedad es muy semejante a la anterior y queda como ejercicio. eorema 7.5. Se definen en /W las siguientes operaciones: [v] + [v ] = [v + v ] y a[v] = [av] si a k y v, v. Con respecto a estas operaciones /W es un espacio vectorial. Más aún, la proyección canónica : /W es una transformación lineal sobreyectiva, cuyo núcleo es W. 57

58 7. ESPACIOS COCIENE Demostración. El lema anterior nos garantiza que las definiciones de suma y producto por un escalar entre clases de equivalencia tienen sentido, o sea el resultado de sumar [v] y [v ] no dependen del par v, v sino tan sólo de su clase de equivalencia modulo W. Lo mismo para producto por un escalar. Necesitamos probar que se verifican para las operaciones definidas en /W todos los axiomas de un espacio vectorial. Por ejemplo para probar la propiedad asociativa queremos probar que ( [v]+[v ] ) +[v ] = [v]+ ( [v ]+[v ] ). El lado derecho de esta igualdad es ( [v] + [v ] ) + [v ] = [v + v ] + [v ] = [ (v + v ) + v ][ v + (v + v ) ] = [v] + [v + v ] = [v] + ( [v ] + [v ] ). Se ha usado en esta cadena de igualdades la propiedad asociativa de la suma en el espacio. El vector cero en /W es el vector O /W = [ ] = [w] para cualquier w W. Es claro que [v] + /W = [v + ] = [v] y luego ese vector es el neutro del espacio cociente. Si tomamos v, v y calculamos (v + v ) tenemos que (v + v ) = [v + v ] = [v] + [v ] = (v) + (v ). De forma parecida se prueba que (av) = a(v) y así es una transformación lineal. Que la proyección canónica es sobreyectiva es una propiedad general que se observó cuando se vieron los elementos iniciales de teoría de conjuntos. Por otro lado, N() = {v : (v) =. Pero (v) = si y sólo si [v] = [] o sea si y sólo si v W. Luego N() = W. La siguiente es una adaptación de la propiedad universal del cociente que vimos cuando estudiamos teoría de conjuntos, al caso del cociente de un espacio vectorial por un subespacio. eorema 7.6. Sea, U espacios vectoriales y W un subespacio de. Si : U es una transformación lineal tal que W N( ), entonces existe una única transformación lineal : /W U que hace el diagrama de abajo conmutativo. U /W b Demostración. Es claro que si v v y escribimos v = v +w, con w W entonces (v ) = (v +w) = (v)+ (w) = (v), ya que w W N( ). Aplicando la propiedad universal del cociente probada en el Capítulo 1 (ver página??), podemos asegurar la existencia y unicidad de una función : /W U que hace el diagrama conmutativo. Para concluir la prueba, falta probar la linealidad de. Como = tenemos que para todo v, entonces (v) = ( (v) ) = ( [v] ). Luego si v, v tenemos que ( [v]+[v ] ) = ( [v +v ] ) = (v +v ) = (v)+ (v ) = ( [v] ) + ( [v ] ) lo que prueba que es aditiva. En forma semejante se prueba que ( a[v] ) = a ( [v] ) para todo a k. Observación 7.7. (1) En la situación anterior tenemos que N( ) = ( N( ) ) y que Im( ) = ( ) = (/W ). La segunda afirmación se deduce inmediatamente del hecho de que la proyección canónica es sobreyectiva. Por otro lado ( [v] ) = si y sólo si = ( (v) ) = (v) y eso sucede si y sólo si v N( ), es decir [v] N( )/W.

7. ESPACIOS COCIENE 59 (2) La construcción del cociente nos permite demostrar que dado un espacio vectorial y un subespacio W arbitrario, existe una transformación lineal : U en algún espacio vectorial U de modo que N( ) = W. En otras palabras, todo subespacio es el núcleo de alguna transformación lineal. Para demostrar lo anterior basta tomar = : /W la proyección canónica. (3) Es evidente que dado un subespacio vectorial W existe una transformación lineal : U para algún subespacio U de modo que (U) = W. Para ello basta tomar U = W y la transformación lineal la inclusión canónica de W en. El siguiente resultado nos dice como están relacionados los subespacios de y los de /W. eorema 7.8. Existe una correspondencia biyectiva entre los subespacios de /W y los subespacios de que contienen a W. Esa correspondencia está dada de la siguiente forma: L /W 1 (L) ; W L L/W = (L) /W. Más aún, la correspondencia respecta inclusiones. Demostración. Es claro que las funciones definidas arriba envían subespacios en subespacios. Ambos mapas son inversos uno del otro. En efecto, si tomamos W L y calculamos 1 (L/W ), tenemos que 1 (L/W ) = { v : [v] (L) }. Si [v] L/W entonces, existe l L tal que v l W. Luego v = l + w con w W. Como W L eso implica que v L, o sea que 1 (L/W ) L. Claramente la inclusión inversa es también verdadera. El resto de la demostración es semejante. Finalmente, es claro que si W L L, entonces (L) (L ). La siguiente definición es de gran utilidad. Definición 7.9. Sea : una transformación lineal y sea W un subespacio. Se dice que W es invariante con respecto a (o un subespacio invariante de ) si (W ) W. Una aplicación muy útil del teorema anterior es la siguiente. eorema 7.1. Sea : una transformación lineal de y W un subespacio invariante de. Entonces, existe una única transformación lineal : /W /W que hace el diagrama de abajo conmutativo. /W e /W Demostración. Consideremos la transformación lineal : /W. Probaremos en primer lugar que W N( ). Si w W entonces ( (w) ) = porque (w) W. Usando la propiedad universal del cociente deducimos la existencia de un único : /W /W de modo que =. Esto termina la demostración del teorema.

6 7. ESPACIOS COCIENE Observación 7.11. El teorema anterior puede generalizarse de la siguiente forma: Sea : una transformación lineal, y W, W subespacios tales que (W ) W. Entonces, existe una única transformación lineal : /W /W tal que =. La prueba de este hecho es una fácil adaptación de la prueba del teorema 7.1 y queda como ejercicio. Corolario 7.12. Sea : U una transformación lineal, entonces la transformación lineal : / N( ) ( ) es un isomorfismo. Demostración. De acuerdo a los resultados anteriores, N( ) = N( )/ N( ) = {} / N( ), de donde es inyectiva. Además, ( / N( ) ) = ( ), por lo que la transformación lineal : / N( ) ( ) es sobreyectiva. A continuación veremos algunos resultados sobre dimensión que se deducen de la construcción anterior del cociente. eorema 7.13. Sea un espacio de dimensión finita y W un subespacio; entonces dim(/w ) = dim( ) dim(w ). Demostración. Consideremos una base C = {w 1,..., w t } de W y completémosla a una base B = {w 1,..., w t, v t+1,..., v n } de. Consideremos los vectores, [v t+1 ],..., [v n ] /W. Ese conjunto de vectores es la imagen de la base B por la proyección canónica, que es sobreyectiva. Como B genera concluímos que B = { [v t+1 ],..., [v n ] } /W es un generador de /W. Probaremos ahora que los vectores [v t+1 ],..., [v n ] /W son linealmente inedependientes. Si existen escalares a t+1,..., a n, tales que a t+1 [v t+1 ] + + a n [v n ] =, entonces a t+1 v t+1 + + a n v n W y como los vectores de C son una base de W tenemos que a t+1 v t+1 + + a n v n = a 1 w 1 + + a t w t. Como los vectores w 1,..., w t, v t+1,..., v n son una base de, concluímos que todos los coeficientes a 1 = a 2 = = a t = a t+1 = = a n =. Hemos probado que en la situación anterior overlineb es una base de /W. Observación 7.14. Es de destacar que en el teorema anterior no sólo probamos el resultado sobre la dimensión sino que además describimos un procedimiento para encontrar una base del cociente /W a partir de una base de W, que completamos a una base de. Más aún, es fćil ver que este procedimiento (la construcción de una base de /W ) es válido aún en dimensión infinita. Corolario 7.15 (eorema de la dimensión). Sea un espacio vectorial de dimensión finita y supongamos que : U es una transformación lineal. Entonces, N( ) y ( ) U tienen dimensión finita y además dim ( N( ) ) + dim ( ( ) ) = dim( ). Demostración. Claramente N( ) tiene dimensión finita. Por otro lado, usando el Corolario 7.12, sabemos que los espacios vectoriales / N( ) y ( ) son isomorfos, y eso implica que ( ) tiene dimensión finita y además que dim( ) dim ( N( )yr) = dim ( / N( ) ) = dim ( ( ) ).

7. ESPACIOS COCIENE 61 Observación 7.16. Comparar esta prueba con la realizada anteriormente en el ejercicio??. Corolario 7.17. Sea un espacio vectorial sobre k y W un subespacio. Entonces = W /W. Demostración. Como en la prueba del teorema 7.13, completamos una base B 1 de W a una base B de. Si B 2 = B \B 1, entonces (B 2 ) es una base de /W. Consideremos la inclusión ι : W y la transformación lineal : /W inducida por ( (v) ) = v, v B 2. Entonces es inyectiva e (ι, inducen una transformación lineal biyectiva W /W. Queremos ahora comparar la matriz asociada a : con la matriz asociada al mapa inducido por en el cociente /W en el caso en que W es un subespacio invariante. eorema 7.18. Sea : una transformación lineal del espacio de dimensión finita. Sea W un subespacio invariante de. Llamemos W : W W la transformación lineal obtenida mediante la restricción de a W. Consideremos : /W /W la transformación lineal asociada a en el cociente. Sean C = {w 1,..., w t }, B = {w 1,..., w t, v t+1,..., v n } y B = { [v t+1 ],..., [v n ] } ( bases de W, y /W respectivamente. Entonces B C = [ ] ) C [ ] B B Demostración. Calculemos en primer lugar las coordenadas en la base B de los vectores (w i ), i = 1,..., t. Como éstos están en W, que es invariante por, concluímos que (w i ) se escribe como combinación lineal de {w 1,..., w t }. Los coeficientes correspondientes a esa combinación lineal son exactamente las entradas de la matriz asociada C [ W ] C. Eso prueba que las primeras t columnas de la matriz B son como se enuncia en el teorema. Consideremos la columna t + j, j = 1,..., n t, de la matriz asociada. Si escribimos (v j ) = α 1 w 1 + + α t w t + α t+1 v t+1 + + α n v n, de la igualdad anterior concluimos que ( [v j ] ) = [ (v j ) ] = α t+1 [v t+1 ]+ +α n [v n ]. Eso implica que la cola (o sea la parte que va del elemento t+1 hasta el elemento n) del t+j-ésimo vector [ columna de la matriz B es exactamente el j-ésimo vector columna de la matriz B ]B. Eso termina la demostración. Corolario 7.19. Sea : una transformación lineal de, espacio vectorial de dimensión finita, y = W 1 W 2 un descomposición en suma directa de subespacios invariantes. Sea B 1 una base de W 1, B 2 una base de W 2 y B = B 1 B 2. Entonces, ( ) B = B 1 1 B 2 2 Demostración. Aplicar el teorema anterior a W 1 para obtener las primeras t columnas de B, y a W 2 para obtener las últimas r columnas.