UNIDAD I: INTRODUCCIÓN. 03-Ene-2018 Sergio Andrés García

Documentos relacionados
UNIDAD I: INTRODUCCIÓN. 18-May-2016

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL

Física Breviario Primer Periodo

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores.

Física Breviario Segundo Periodo

1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

INTRODUCCION AL ESTUDIO DE LA FISICA 1er AÑO MEDIO NOMBRE: CURSO:

Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones.

Capítulo Medición y Sistema de Unidades

PREFIJOS MEDIDAS CIFRAS SIGNIFICATIVAS. Prefijo Símbolo Factor de multiplicación

La Física y la Química son ciencias experimentales porque utilizan la experimentación para realizar sus estudios.

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

Área: FÍSICO-QUÍMICA Asignatura: FÍSICA Título MAGNITUDES Curso: 3er AÑO Año: 2014 Pag.1/12

LAS HERRAMIENTAS DE LA FÍSICA. Ing. Caribay Godoy Rangel

UNIDADES Y MEDICIONES

UNIDADES Y MEDICIONES

Curso de Ciencias Física 2 año Profesor Javier Ponce. Qué es Ciencia? Qué es Ciencias Físicas?

UNIDADES Y MEDICIONES

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías

Un trozo de papel amarillea con el tiempo, la celulosa se va oxidando. Un trozo de mármol es atacado por un ácido desprendiendo hidrógeno.

Tipos de magnitudes físicas. Magnitudes de base o fundamentales

Tema 0. Introducción al Cálculo Vectorial. Temario de Física y Química 4 ESO Raúl González Medina Tema 0

Propiedades de las Funciones Exponenciales

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria

LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura...

1.1.- Nociones teóricas básicas

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S.

FICHA nº MATERIA: MAGNITUDES Y UNIDADES. FECHA: CURSO: 3ESO ALUMNO/A:

MAGNITUDES Y MEDIDAS

INTRODUCCION AL ESTUDIO DE LA FISICA 1er AÑO MEDIO

Tema 0 Magnitudes y Unidades

: INGENIERIA AGROINDUSTRIAL. : M.Sc. CHRISTIAN PUICAN FARROÑAY NUEVO CHIMBOTE

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Propiedades de los materiales

FENOMENOS DE TRANSPORTE Introducción

Capítulo 1 INTRODUCCIÓN A LA FÍSICA APLICADA Capítulo 2 ESTÁTICA, TRABAJO, POTENCIA Y MÁQUINAS SIMPLES Capítulo 3 MATERIA Y ENERGÍA Capítulo 4

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

Sistemas de Medición. Cantidades físicas. Unidades de medición 19/03/2012. José Luis Moncada

Generalidades de Mediciones y Magnitudes

La Física es la ciencia fundamental de la naturaleza

UNIDAD 1: MÉTODO CIENTÍFICO. SISTEMA INTERNACIONAL.

Unidades y conversiones de prefijos

TRATAMIENTO DE LA INFORMACION

Naturaleza de la ciencia

El ámbito de la Física. Presentación PowerPoint de Ana Lynch, Profesor de Física Unidad Educativa Monte Tabor Nazaret

BLOQUE I. Relaciona el conocimiento científico y las magnitudes físicas como herramientas básicas para entender los fenómenos. SABERES DECLARATIVOS

INTRODUCCIÓN a los sistemas de unidades

Rige a partir de la convocatoria

FÍSICA I MAGNITUDES FÍSICASF

Sistema de Referencia Transformación de Unidades

CONCEPTOS BÁSICOS. Unidades de medida. Preparación de soluciones

ENTRA EN LA FÍSICA DEL PARQUE

1. Análisis Cuantitativo. Unidades Físicas (SI) Tiempo: Masa: Constantes Fundamentales. Longitud

Potencias y raíces. Números aproximados

FÍSICA Y QUÍMICA 3º de ESO

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA QUÍMICA GRADO: 10º PROFESOR: ELVER RIVAS

MEDIDA DE LAS MAGNITUDES FÍSICAS

Componentes, cantidades y unidades

Principios de Mecánica

Tema 1 Magnitudes físicas y actividad científica

Física I. Juan Ignacio Rodríguez Hernández. Escuela Superior de Física y Matemáticas Instituto Politécnico Nacional

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

CURSO DE NIVELACIÓN EN QUÍMICA INTRODUCCIÓN A LA QUÍMICA

Estática. Principios Generales

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

2 MEDICIÓN DE VARIABLES Y LA INCERTIDUMBRE EN LA MEDIDA

FÍSICA. 6 horas a la semana 10 créditos. 4 horas teoría y 2 laboratorio

ACTIVIDAD Nº 2. MEDIDA, MAGNITUDES Y ERRORES.

Magnitudes. Unidades. FÍSICA Y QUÍMICA 3 E.S.O. Tema 2. Lourdes Álvarez Cid

.. común a cualquier investigación científica, válida y fiable, que los científicos usan para descubrir las. que rigen la naturaleza

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

LAS MAGNITUDES FÍSICAS Y SUS UNIDADES

Matemáticas Currículum Universal

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

TEMA 0: SISTEMAS DE UNIDADES.

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido.

Departamento de Física de la F.C.E.F. y N. de la U.N.C. Universidad Nacional de Córdoba

PROPIEDADES GENERALES DE LA MATERIA. ESQUEMA 1

PARTE 1. MECÁNICA. 1

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 1 MAGNITUD FÍSICA. Magnitudes Fundamentales, Magnitudes Escalares y Vectoriales.

LABORATORIO 1: MEDICIONES BASICAS

Introducción. Principios de Mecánica. Licenciatura de Física. Curso

PLAN DE AREA ASIGNATURA: FISICA DOCENTE LILIANA SOLIS NAZARIT

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q.

Interacciones Eléctricas La Ley de Coulomb

FÍSICA GENERAL. M C Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

GUÍA DIDACTICA CURSO FÍSICA 2º BACHILLERATO. PROFESOR: Alicia Blanco Pozos

DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O.

Es muy común que ocurra una confusión entre estos conceptos, entonces, para no cometer este error, vea la diferencia:

ÍNDICE. Primera Unidad: MECANICA. Segunda Unidad: CALOR 1. MEDIDA Y MOVIMIENTO

LABORATORIO DE INTRODUCCIÓN A LA FISICA GUIA DE LABORATORIO EXPERIENCIA Nº 1

NORMA OFICIAL MEXICANA NOM-008-SCFI-1993, SISTEMA GENERAL DE UNIDADES DE MEDIDA. (Extracto) (1) SEPTIEMBRE 2005

PRÁCTICAS DE LABORATORIO: MEDIR Y REGISTRAR

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones:

República Bolivariana de Venezuela Universidad Alonso de Ojeda Vicerrectorado Académico Facultad de Ingeniería Escuela de Computación

Transcripción:

UNIDAD I: INTRODUCCIÓN. 03-Ene-2018 Sergio Andrés García 0.1. La Física y su importancia. La física es la ciencia que estudia los cuerpos y fenómenos de la Naturaleza y lo que ocurre sobre ellos, siempre y cuando no se produzcan cambios en su composición química. Como consecuencia de ese estudio trata de describir las leyes de la naturaleza mediante leyes matemáticas 0.2. La Física en nuestro entorno. (poner ejemplos de fenómenos físicos que están ocurriendo ahora mismo en el aula) 0.3. Ramas de la física. Mecánica: Estudia el movimiento de los cuerpos o su estado en reposo, bajo la acción de fuerzas. Mecánica clásica:, Aquí los objetos son mucho más grandes que los átomos y se mueven a velocidades mucho menores a la de la luz Cinemática: Estudia las leyes del movimiento de los objetos sólidos sin considerar las causas que lo originan Dinámica: estudia el movimiento de los cuerpos causado por las fuerzas. Estática: estudia el efecto de las fuerzas sobre cuerpo que están inmóviles Mecánica de fluidos: estudia el movimiento de líquidos y gases bajo la acción de fuerzas Acústica: Estudia la transmisión de ondas mecánicas que se propagan por la materia (sonido) Mecánica cuántica: Es como se denomina la mecánica cuando tratamos con partículas a nivel atómico, como los electrones. Mecánica relativista: Es como se denomina la mecánica cuando los objetos se mueven a velocidades cercanas a la de la luz. Termodinámica, trata los procesos de transferencia de calor, y cómo se puede realizar un trabajo con ello.. Desde un punto de vista macroscópico estudia la materia como un conjunto, y cómo reacciona a cambios en su volumen, presión y temperatura. La mecánica estadística estudia el comportamiento individual de cada molécula, aplicando la estadística para poder hacer cálculos con un sistema de muchísimas partículas, curiosamente llegando a las mismas conclusiones que la termodinámica Electromagnetismo describe la interacción de partículas cargadas con campos eléctricos y magnéticos. Electrostática, estudia las interacciones entre cargas en reposo, Electrodinámica, estudia los fenómenos asociados a las cargas en movimiento y a los campos eléctricos y magnéticos variables, por tanto incluye: Electricidad: estudia los efectos producidos por el movimiento de las cargas eléctricas Magnetismo, estudia la atracción entre objetos que presentan la propiedad del magnetismo Ondas electromagnética: es el fenómeno de propagación de energía debido a una variación simultánea del campo eléctrico y magnético Óptica: Trata de la la parte de la radiación electromagnética llamada luz visible (o no) y como se propaga e interactúa con la materia Fisica atómica: Estudia las propiedades y el comportamiento de los átomos. Fisica nuclear: Estudia las propiedades y el comportamiento del núcleo de los átomos.

0.4.El método científico. El modelo Los científicos emplean el método científico como una forma planificada de trabajar. Sus logros son acumulativos y han llevado a la Humanidad al momento cultural actual. El método científico es un proceso destinado a explicar fenómenos, establecer relaciones entre los hechos y enunciar leyes que expliquen los fenómenos físicos del mundo y permitan obtener, con estos conocimientos, aplicaciones útiles al hombre. Aunque podemos decir que no hay un único método científico, algunos factores son comunes a todos: una idea brillante del hombre, el trabajo complementario de los científicos y de las ciencias, la verificabilidad, la utilización de herramientas matemáticas, etc. Toda investigación científica se somete siempre a una "prueba de la verdad" que consiste en que sus descubrimientos pueden ser comprobados, mediante experimentación, por cualquier persona y en cualquier lugar, y en que sus hipótesis son revisadas y cambiadas si no se cumplen. Principales Métodos Científicos: El método experimental o inductivo El científico, bien porque desea entender un fenómeno aún no explicado, o bien para desarrollar más un determinado proceso, realiza experiencias con el fenómeno estudiado variando de una en una las variables que intervienen hasta INDUCIR una ley que las relaciona. La ley inducida, para que sea cierta, debe cumplirse siempre. Así se confirma las hipótesis de partida. Este método nos induce al descubrimiento de una Teoría por medio de las experiencias. Los pasos usuales de este método son: Observar Plantear problema Formular hipótesis Comprobar experimentando Registrar datos Analizar datos y obtener relaciones (leyes) Confirmar hipótesis Enunciar las leyes El método teórico o deductivo Einstein utilizó este método para elaborar la Teoría de la Relatividad. Partió de una teoría, que imaginó, y dio por supuesto una serie de axiomas o definiciones previas. Al aplicar estos axiomas se llegaba a unos resultados (leyes) que contradecían "el sentido común", pero que resultaron ser ciertos cuando en años posteriores fueron sometidos a experimentos diseñados para comprobarlos. Por lo tanto el modelo es teórico en su partida, pero totalmente experimental en su validación. Modelo: Simplificación de la realidad, de forma que, de los muchos factores que influyen en un hecho, tomamos en cuenta sólo unos pocos que consideramos los más influyentes, con el objetivo de poder deducir una relación matemática entre los factores y los hechos. Esa relación ha de ser capaz de explicar hechos o experimentos del pasado, y ser capaz de explicar los resultados cada vez que se repita el hecho o experimento. Al ser una simplificación de la realidad es posible que los resultados sólo concuerden con la realidad cualitativamente, o quizás sólo en ciertas condiciones. Lo más posible es que en el futuro pueda surgir un modelo mejorado.

1.1.Magnitudes físicas y unidades Magnitud física: es cualquier propiedad física que puede ser medida Unidad de medida: es una cantidad estandarizada de una determinada magnitud física, definida y adoptada por convención o por ley. Por tanto, una magnitud física se expresará como un múltiplo de una unidad de medida Ej: Podemos decir que una pared mide lo mismo que 7 pies, o lo mismo que 8 hojas de papel por la parte larga. lo mismo que 8 baldosas del suelo Claro, hay que ponerse de acuerdo en el estándar de un pie o una hoja de papel, Una unidad de medida toma su valor a partir de: - un patrón. (Unidades básicas o magnitudes fundamentales) - una composición de otras unidades definidas previamente (magnitudes derivadas) Un conjunto de unidades de medida en el que ninguna magnitud tenga más de una unidad asociada es denominado sistema de unidades Las magnitudes fundamentales son aquellas magnitudes físicas elegidas por convención que permiten expresar cualquier magnitud física en términos de ellas. Además, se ha establecido un procedimiento para poder determinar cuánto es exactamente la unidad de la magnitud fundamental (Unidad básica o fundamental) Las magnitudes derivadas se obtienen como producto/cociente de potencias de magnitudes fundamentales. El sistema de unidades reconocido internacionalmente es el: SISTEMA INTERNACIONAL de UNIDADES, (ver documentos oficiales en la web) mantenido y actualizado por la OFICINA INTERNACIONAS DE PESAS Y MEDIDAS < Magnitud Nombre Símbolo Dimensión Longitud metro m L Masa kilogramo kg M Tiempo segundo s T Intensidad de corriente ampere A I Temperatura termodinámica kelvin K Cantidad de sustancia mol mol N Intensidad luminosa candela cd J Otros sistemas a evitar o extinguir serían el cgs, el anglosajón (USA) o imperial (UK).

1.2. Más sobre los múltiplos y submúltiplos y la notación científica da = 10 = x 10 = decena = deca h = 10 2 = x 100 = centena = hecto k = 10 3 = x 1 000 = mil = kilo M = 10 6 = x 1 000 000 = millón = Mega G = 10 9 = x 1 000 000 000 = mil millones = Giga T = 10 12 = x 1 000 000 000 000 = millón de millones = Tera d = 10-1 = x 0.1 = = décima = deci c = 10-2 = x 0.01 = = centésima = centi m = 10-3 = x 0.001 = = milésima = mili = 10-6 = x 0.000 001 = = millónésima = micro n = 10-9 = x 0.000 000 001 = =mil millonésima = nano p = 10-12 = x 0.000 000 000 001 = = pico Observación 1: En algunos países se usa el punto para el separador decimal, pero en otros se usa la coma. Ambas opciones son válidas según las normas internacionales. Observación 2: Las normas internacionales prohíben el uso de comas o puntos como separador de miles. En su lugar se agrupan las cifras de 3 en 3, dejando un pequeño espacio. Ejemplos: 650 nm = 650 10-9 m = m = 0.000 000 65 m (10-9 mover el punto 9 posiciones a la izquierda) 2.6 GHz = 2.6 10 9 Hz = 2.6 1 000 000 000 Hz = 2 600 000 000 Hz (10 9 mover el punto 9 posiciones a la derecha)

1.2.a.Expresiones equivalentes. ( por ejemplo de 1.234 10 6 ) Si muevo el punto hacia la derecha he de restar 1 al exponente del 10 Recordar que: 7 1 = 6 pero 7 1 = 8 si tienes un nº elevado a 1, el 1 no se pone: 10 1 = 10 cualquier nº elevado a cero da 1: 10 0 = 1 Si no hay punto, imagínatelo al final: 23 = 23.0 Ej1: 1.234 10 6 Hz= 12.34 10 5 Hz= 123.4 10 4 Hz= 1234 10 3 Hz= 12340 10 2 Hz= 123 400 10 1 Hz =1 234 000 Hz 1.234 MHz 1234 khz Ej2: 0.1234 10-3 F = 1.234 10-4 F = 12.34 10-5 F = 123.4 10-6 F = 1234 10-7 F = 12 340 10-8 F = 123 400 10-9 F 0.1234 mf 123.4 F 123 400 nf Si muevo el punto hacia la izquierda he de sumar 1 al exponente del 10 Recordar que: 7 + 1 = 8 pero 7 + 1 = 6 Ej1: 56 700 Hz= 5670 10 Hz= 567 10 2 Hz= 56.7 10 3 Hz= 5.67 10 4 Hz = 0.567 10 5 Hz = 0.0567 10 6 Hz 56.7 khz 0.0567MHz Ej2: 3450 10-9 F = 345 10-8 F = 34.5 10-7 F = 3.45 10-6 F = 0.345 10-5 F = 0.0345 10-4 F = 0.00345 10-3 F 3450 nf 3.45 F 0.00345 mf 1.2.b.Notación ciéntifica De las siguientes expresiones, aunque todas son correctas, sólo la subrayada está en notación científica- 3450 10-9 F = 345 10-8 F = 34.5 10-7 F = 3.45 10-6 F = 0.345 10-5 F = 0.0345 10-4 F = 0.00345 10-3 F Definamos términos: Mantisa 1.234 10-4 Exponente En notación científica, la mantisa tiene SIEMPRE una única cifra entera (y no puede ser cero) Por tanto: 12.3 10 3, 12.3 10-3 0.456 10 3, 0.456 10-3 (NO es Notac.Cientif) deberían expresarse como: 1.23 10 4, 1.23 10-2 4.56 10 2 4.56 10-4 (SI es Notac.Cientif)

1.2.c. Cómo transformar las unidades de superficie y de volumen? La superficie se mide en (unidades de longitud) 2 1m 2 equivale a un cuadrado de 1 m x 1 m 1 cm 2 equivale a un cuadrado de 1 cm x 1 cm 1 km 2 equivale a un cuadrado de 1 km x 1 km Si tengo km 2 considera que el cuadrado afecta tanto al prefijo como a la unidad. [a b] n = a n b n, [a m ] n =a m n, Ejemplos: 3 km 2 = 3 (km) 2 = 3 (10 3 m) 2 = 3 (10 3 ) 2 m 2 = 3 10 6 m 2 = 3 000 000 m 2 16 cm 2 = 16 (cm) 2 = 16 (10-2 m) 2 = 16 (10-2 ) 2 m 2 = 16 10-4 m 2 = 1.6 10-3 m 2 = 0.0016 m 2 16 mm 2 = 16 (mm) 2 = 16 (10-3 m) 2 = 16 (10-3 ) 2 m 2 = 16 10-6 m 2 = 1.6 10-5 m 2 = 0.000016 m 2 El volumen se mide en (unidades de longitud) 3 1m 3 equivale a un cubo de 1m x 1m x 1m Si tengo km 3 considera que el cubo afecta tanto al prefijo como a la unidad. 3 km 3 = 3 (km) 3 = 3 (10 3 m) 3 = 3 (10 3 ) 3 m 3 = 3 10 9 m 3 = 3 000 000 000 m 3 16 cm 3 = 16 (cm) 3 = 16 (10-2 m) 3 = 16 (10-2 ) 3 m 3 = 16 10-6 m 3 = 0.000 016 m 3 16 mm 3 = 16 (mm) 3 = 16 (10-3 m) 3 = 16 (10-3 ) 3 m 3 = 16 10-9 m 3 = 0.000 000 016 m 3 Otra unidad de volumen es el Litro, que equivale a 1 dm 3, si ese volumen es de agua su masa será 1 kg 1 m 3 1 dm 3 1 cm 3 1 mm 3 1000 L 1 L 1 ml 1 L 1000 kg de agua 1 kg de agua 1 g de agua 1.2.d.Cifras significativas Imagina que tienes el siguiente nº: 1.0049 Reescribimos ese nº aproximando con 3 cifras significativas: 1.00 El error cometido en % sería: Siendo que al medir ya es un éxito cometer sólo un error del 1%... Para qué expresar una magnitud con más de 3 cifras si el error al medir es mayor que el error de poner sólo 3 cifras significativas? Reglas para reescribir un nº con una cierta cantidad de cifras significativas a) Marca las cifras significativas que deseas usar b1) Si la primera cifra no significativa es menor que 5, eliminar las cifras no significativas sin más Ejemplos: n 1 = 1.23456x10-6 n 2 = 7.654321x10 9 n 1 = 1.23456x10-6 n 2 = 7.654321x10 9 menor que 5 menor que 5 n 1 1.23x10-6 n 2 7.65x10 9 b2) Si la primera cifra no significativa es mayor o igual que 5, aumentar una unidad la última cifra significativa

Ejemplos: n 1 = 2.1856x10-7 n 2 = 7.298321 n 1 = 2.1856x10-7 n 2 = 7.298321 mayor o igual que 5 mayor o igual que 5 n 1 2.19x10-6 n 2 7.30 Como excepción dejaremos el cero a la derecha para enfatizar que: La medida se consideró hasta las centésimas, y que por tanto se espera un error abs de 0.01 Si pusiéramos 7.3 en vez de 7.30 podría parecer que solamente consideramos hasta las décimas y que se espera un error abs de 0.1, cuando en realidad no es así. La misma excepción aplicamos cuando aproximamos 1.0049 por 1.00 1.3. Incertidumbre en las mediciones. Cálculo de medidas e incertidumbres Incertidumbre de medida significa duda sobre la validez del resultado de una medición El resultado de una medición M de una magnitud física, se indica en la forma M = R ± U, donde R es el resultado más probable y U es la incertidumbre de medida. En general, el resultado de una medición es sólo una aproximación o estimación del valor de la magnitud a medir, y únicamente se halla completo cuando está acompañado de una declaración acerca de la incertidumbre de dicha estimación. La medición de una magnitud debe realizarse empleando instrumentos o sistemas de medida calibrados; es decir, que han sido comparados con patrones o instrumentos de mayor nivel metrológico para determinar sus posibles errores, así como las incertidumbres de medida. Errores Durante cualquier medición tienen lugar una serie de errores provenientes de distintas fuentes: - la propia magnitud a medir(definición y/o realización práctica), - el instrumento de medida, - las condiciones ambientales, - el operador, etc., Los errores se clasifican en: Sistemáticos : se comenten siempre y en la misma cantidad, por lo que pueden cancelarse o corregirse, si se conocen sus causas, Por ejemplo, el error obtenido al medir una pieza a una temperatura distinta de la de referencia, puede corregirse teniendo en cuenta la dilatación o contracción sufrida por la pieza Aleatorios: de comportamiento impredecible, pero su influencia puede reducirse aumentando el número de observaciones

Errores absoluto y relativo. Imagina que al medir una magnitud X, se encuentra un valor distinto X E abs = X X Observa que el error absoluto tiene las mismas unidades que la magnitud, y puede tener un valor positivo o negativo E rel en tanto por uno, o bien: E rel en tanto por cien Ejercicio: Calcula el error absoluto y relativo cuando: a) Al medir un tiempo de 2 s en realidad mides 2.1 s b) Al medir la distancia de tu pueblo a la ciudad, que en realidad es 38 km, mides 39 km El concepto de exactitud de un instrumento de medida se refiere a la capacidad de dar valores o indicaciones próximas al valor verdadero de la magnitud medida. Una medición, o el resultado, es más exacto cuanto más pequeño es el error sistemático de medida; es decir, cuanto menor es la diferencia entre el valor medio de los sucesivos resultados obtenidos y el valor convencionalmente verdadero de la magnitud. La idea de precisión de un instrumento de medida refleja la capacidad de dar resultados próximos entre sí al efectuar mediciones repetidas. Una medición, o el resultado, es más preciso cuanto más pequeño es el error aleatorio de medida; es decir, cuanto menor es la dispersión que presentan entre sí los sucesivos resultados obtenidos. Incertidumbres de tipo A y de tipo B Mediciones con incertidumbres tipo A Cuando al realizar varias veces una medida, los valores obtenidos difieren en una cantidad no mayor que la apreciación del instrumento, En este caso, tomamos como incertidumbre la apreciación del instrumento. Por ejemplo, al medir con una regla cuya apreciación es de 1 mm = 0.1 cm, todas las medidas salen entre las marcas de 7.0 y 7.1 cm. La medida será: M = 7.0 0.1 cm Mediciones con incertidumbres tipo B Cuando las diferencias entre las medidas de un mismo evento o magnitud son mayores que la apreciación del instrumento o la estimación de la lectura; es decir, cada vez que medimos sale distinto. Ejemplo: Si 5 personas miden con un cronómetro el tiempo en caer un papel al suelo, todas medirán distintos. O cuando medimos el ángulo con el que empieza a resbalar un objeto en un plano inclinado. En este caso hay que hacer varias mediciones.

Resultado e Incertidumbre de una medida cuando hacemos n medidas repetidas Llamaremos: x i cada una de las medidas: x 1, x 2, x 3,, x n la media aritmética de esas medidas: s 2 la varianza muestral: s la desviación típica muestral: La desviación típica muestral nos da una idea de lo alejados que están los datos respecto de la media. DTM desviación típica de la media DTM = La desviación típica de la media da una idea de la incertidumbre de la media respecto al valor verdadero Normalmente se tomará como incertidumbre = U = DTM (ver la excepción en la nota final) Así, expresaríamos la medida como M = U Quiere decir que estamos seguros en aprox. un 70% que la medida está en ( U, + U) Si quisiéramos estar seguros en un 95% entonces M = 2 U Comentar que si n 10 es obligatorio hacer unas ciertas correcciones (t-student), siendo muy aconsejable hacerlas mientras n<30 En verdad lo tiene su complicación, por lo que, aunque no sea preciso, se puede aproximar y realizar la siguiente versión simplificada del cálculo de incertidumbres: M = DM siendo Desviación absoluta Media = 1.4. Análisis dimensional Para poder igualar, sumar o restar dos magnitudes han de tener la misma dimensión. Es tan lógico como decir: no puedes sumar 2 kg + 3 s Son adimensionales (dimensión 1): - Números - Ángulos, veces, desintegraciones, - Exponentes - Contenido de un seno, coseno,. Algunas constantes o coeficientes son adimensionales. Pero otras constantes sí que tienen dimensiones. 1. Comprueba que la fórmula: E = m v 2 + m g h es dimensionalmente correcta. 2.- Calcula las dimensiones de A, B en: F = A B e -B S sabiendo que F es Fuerza y S es Superficie 3.- Sabiendo que no hay constantes numéricas ni con dimensiones, halla una posible fórmula dimensionalmente correcta que relacione la velocidad de una onda en una cuerda, con la fuerza con la que la estiramos, su masa y su longitud.

1.5. Orden de magnitud El orden de magnitud de un número es el valor del exponente de la potencia de 10 más cercana a ese número. O(23456) = O(2 3456 10 4 ) = O(10 4 ) = 4 O(8 12 10 5 ) = O(10 6 ) = 6 La importancia de saber manejar los órdenes de magnitud es que nos permite representar y comparar de una forma simplificada distintas medidas. Por ej., si una longitud es 100 veces mayor que otra, se dice que es dos órdenes de magnitud mayor. Cuando dos números tienen aproximadamente el mismo valor, se dice que son del mismo orden de magnitud. Ver videos de ordenes de magnitud.

1.6. Sistemas de coordenadas o sistema de referencia para situar un objeto (puntual). Si el objeto sólo puede estar sobre una línea recta entonces será un sistema unidimensional. Habrá que indicar: un origen para las posiciones, donde x=0, una dirección y un sentido positivo. Utilizaremos una escala adecuada. Si el punto está sobre un plano, es un sistema bidimensional, habrá que dar 2 coordenadas. Podemos usar coordenadas cartesianas, donde tendremos 2 ejes perpendiculares e indicaremos la posición del punto midiendo perpendicularmente desde cada uno de los ejes Podemos usar coordenadas polares, donde indicaremos la distancia r desde el origen y el ángulo desde una referencia. Estas coordenadas son útiles cuando hay simetría circular. Si el punto está en el espacio, es un sistema tridimensional, habrá que dar 3 coordenadas. Podemos usar coordenadas cartesianas, donde tendremos 3 ejes perpendiculares entre sí (habrá que dibujar en perspectiva), e indicaremos la posición del punto midiendo perpendicularmente desde cada uno de los ejes Podemos usar coordenadas esféricas, donde indicaremos la distancia r desde el origen y dos ángulos. Estas coordenadas son útiles cuando hay simetría esférica. Podemos usar coordenadas cilíndricas, donde indicaremos la distancia r desde el eje z, un ángulo y la altura medida según el eje z. Estas coordenadas son útiles cuando hay simetría cilíndrica.

1.7. Dibujo esquemático del problema a resolver Recuerda: Sin dibujo, es imposible resolver un problema Estarás dando palos de ciego La expresión dar palos de ciego se usa principalmente cuando queremos referirnos a que se está realizando o llevando a cabo algo sin saber muy bien cómo hacerlo; titubeando, dudando, y sin un rumbo fijo con pocas probabilidades de éxito final. Se suele decir "dar palos de ciego " para expresar que se está haciendo algo sin saber exactamente cómo, probando o como diría otro dicho, "al tuntún", sin pensar. 1.8. Graficas Para entender por ejemplo la dependencia de una magnitud M respecto a otra magnitud x usaremos la fórmula correspondiente: M=f(x), aunque visualmente será más cómodo ver su gráfica de M versus x. Por ejemplo la relación de la fuerza F de atracción entre dos masas (puntuales) con la distancia r entre ellas viene dada por: También se puede estudiar la relación entre una magnitud respecto a otras 2 simultáneamente, es decir, M = f(x,y)