Tema 3: Variables aleatorias y vectores aleatorios bidimensionales



Documentos relacionados
Tema 4: Variables aleatorias.

Tema 5: Vectores aleatorios bidimensionales.

Variables aleatorias. Función de distribución y características asociadas

ESTIMACIÓN. puntual y por intervalo

Medidas de tendencia central o de posición: situación de los valores alrededor

Ejercicio de estadística para 3º de la ESO

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

Covarianza y coeficiente de correlación

Tema 10. Estimación Puntual.

1.1. Introducción y conceptos básicos

Subconjuntos destacados en la

2. Probabilidad. Estadística. Curso Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso / 24

1. Producto escalar, métrica y norma asociada

Tema 2. Espacios Vectoriales Introducción

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Introducción a la Teoría de Probabilidad

Tema 3. Medidas de tendencia central Introducción. Contenido

4. Se considera la función f(x) =. Se pide:

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Tema 2 Límites de Funciones

Un problema sobre repetidas apuestas al azar

Tema 7: Estadística y probabilidad

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL

Clase 2: Estadística

Definición Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Aplicaciones Lineales y Multilineales Continuas

todas especialidades Soluciones de las hojas de problemas

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Tema 2: Estimación puntual

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

Tema 3. Espacios vectoriales

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Apuntes de Matemática Discreta 9. Funciones

Integrales y ejemplos de aplicación

Variables aleatorias continuas

ANÁLISIS DESCRIPTIVO CON SPSS

1.- Primitiva de una función ( )

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Métodos generales de generación de variables aleatorias

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

PRESENTACIÓN GRÁFICA DE LOS DATOS

ANÁLISIS DE DATOS NO NUMERICOS

Ejemplos y problemas resueltos de análisis complejo ( )

Tema 2 Límites de Funciones

TEMA 4: Introducción al Control Estadístico de Procesos

Universidad del País Vasco

Otras medidas descriptivas usuales

Vectores aleatorios. Estadística I curso

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

x y 8000 x + y a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

Funciones de varias variables

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

LÍMITES Y CONTINUIDAD DE FUNCIONES

8.1. Introducción Dependencia/independencia estadística Representación gráfica: diagrama de dispersión Regresión...

1 Espacios y subespacios vectoriales.

Funciones, x, y, gráficos

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso

Subespacios vectoriales en R n

Selectividad Septiembre 2009 SEPTIEMBRE Opción A

1. El teorema de la función implícita para dos y tres variables.

1. MEDIDAS DE TENDENCIA CENTRAL

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta B

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

INTRODUCCIÓN A LA PROBABILIDAD.

Aplicaciones lineales continuas

Tema 1: Test de Distribuciones de Probabilidad

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

Variedades Diferenciables. Extremos Condicionados

8. Estimación puntual

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Estadística: conceptos básicos y definiciones.

FUNCIONES CUADRÁTICAS Y RACIONALES

Medidas de tendencia Central

Capítulo 7: Distribuciones muestrales

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

1. Ecuaciones no lineales

Tema 3. Variables aleatorias. Inferencia estadística

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

Espacios generados, dependencia lineal y bases

Tema 3: Producto escalar

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

VII. Estructuras Algebraicas

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas

Funciones de varias variables reales

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

1. Funciones de varias variables: representaciones gráficas, límites y continuidad.

Semana 08 [1/15] Axioma del Supremo. April 18, Axioma del Supremo

Control Estadístico de Procesos

Universidad Diego Portales Facultad de Economía y Empresa

FUNCIONES DE VARIAS VARIABLES Julián de la Horra Departamento de Matemáticas U.A.M.

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Transcripción:

Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos aleatorios, que en muchos casos son cualitativos, y que siguen patrones muy similares aunque la naturaleza del experimento no lo sea. Por ejemplo, un experimento consistente en observar el resultado de tirar una moneda, si ésta está trucada y la probabilidad de cara es 0.9 y la de cruz es 0.1, es similar al experimento observar una pieza fabricada en un proceso que produce un 90% de piezas buenas y un 10% de piezas con defecto, pues en ambos casos, los posibles resultados del experimento son dos y la asignación de probabilidades a los resultados es igual. Sin embargo, ambos experimentos son de naturaleza totalmente diferente. 3.1 Variable aleatoria y ley de probabilidad asociada a la variable. Definición 1 Dado un espacio muestral Ω asociado a un experimento aleatorio, llamaremos variable aleatoria (v.a.) definida sobre Ω a una aplicación X de Ω en IR. Por ejemplo, en los dos experimentos de la introducción, podría definirse la aplicación X que asigna al resultado cara el valor 1 y al resultado cruz el valor 0. Igualmente, en el caso de la pieza, podría definirse una variable asignando al resultado buena el valor 1 y al resultado defectuosa el valor 0. Definición 2 Dada una variable aleatoria X definida sobre el conjunto de sucesos de un experimento aleatorio, llamaremos soporte de X, que se denota por S X, al conjunto de posibles valores (números reales) de la variable aleatoria. Observación 1 El soporte de una variable aleatoria puede ser discreto o consistir en un intervalo de IR. En los dos ejemplos anteriores, S X = {0, 1}. El soporte de la variable aleatoria se puede considerar como un nuevo espacio muestral, sobre el que se puede definir una probabilidad relacionada con la probabilidad definida sobre el espacio muestral original Ω, de la siguiente forma: dado A IR, p(a) = p({ω Ω/X(ω) A}) De esta forma se define una aplicación con llegada en el intervalo [0,1], sobre los subconjuntos del soporte que son imagen de un suceso de Ω y se puede demostrar que esta aplicación es una probabilidad. Esta probabilidad se denomina probabilidad asociada a la v.a. X, ley de probabilidad de la v. a. X o distribución de la v.a. X. En el ejemplo: p(1) = p(cara) = 0.9, p(0) = p(cruz) = 0.1 e igualmente: p(1) = p(buena) = 0.9, p(0) = p(defectuosa) = 0.1

Estadística 39 Es decir, las probabilidades definidas sobre S X = {0, 1} son iguales, aún cuando los experimentos sean diferentes. Una vez que se conoce el soporte de una variable aleatoria y su distribución, se puede olvidar el experimento original. Cada variable aleatoria distinta (es decir, con soporte o distribución distinta) constituye un modelo probabilístico. En el resto del tema y en los siguientes nos centraremos en el estudio de estos modelos. 3.2 Variables aleatorias discretas. Una variable aleatoria es discreta si su soporte es discreto, es decir, si consiste en un número finito o numerable de resultados: S X = {x 1, x 2,... x n,...}. Definición 3 La ley de probabilidad o distribución de una variable aleatoria discreta X queda determinada por los valores p(x i ) = p(x = x i ), i = 1, 2,.... Se puede extender la definición de p a cualquier número real, definiéndola como cero para todos los x x i, i = 1, 2,.... A esta función definida en IR se la denomina función de probabilidad o de masa de la variable aleatoria. Ejemplo: El ejemplo más sencillo de variable discreta es la variable discreta uniforme, cuyo soporte es S X = {x 1, x 2,..., x n } con probabilidades: p(x i ) = 1 n. Otra forma de definir la distribución de una v.a. discreta es mediante la función de distribución: Definición 4 Llamaremos función de distribución de la variable aleatoria X a la función: F : IR [0, 1] definida por: F (x) = p(x x). Propiedades 1 Propiedades de la función de distribución. (a) lim F (x) = 1 y lim F (x) = 0. x x La primera igualdad se debe a que {X } es todo el espacio muestral y la segunda a que {X } es su complementario. (b) Si S X = {x 1, x 2,... x n,...} y los valores están ordenados de menor a mayor, F (x) = k p(x i ), si x [x k, x k+1 ). i=1 (c) F es creciente: si x y, F (x) F (y). (d) F es continua a la derecha: lim F (x + h) = F (x). h 0 + (e) p(x i ) = F (x i ) F (x i 1 ). (f) Como consecuencia de todas las propiedades anteriores, la gráfica de F es discontinua con saltos finitos en los puntos de probabilidad no nula, y creciente. 3.3 Variables aleatorias continuas. De forma intuitiva, una variable aleatoria continua es aquella que toma valores en un intervalo de IR. Posteriormente daremos una definición más rigurosa.

Estadística 40 Vamos a introducir este concepto y el de distribución de una variable continua de forma intuitiva, partiendo de un ejemplo. Consideremos la medida del diámetro interior de un rodamiento de determinadas características. Esta medida puede considerarse una variable aleatoria pues las medidas de los distintos rodamientos tomarán valores aleatorios dentro de un intervalo de IR más o menos amplio. Si tomamos 100 de estos rodamientos, anotamos sus medidas y construimos el histograma correspondiente, después de haber agrupado en clases, cada rectángulo del histograma tendrá área proporcional a la frecuencia relativa de la clase correspondiente, y esta frecuencia se puede escribir como: f i = F i+1 F i, donde f i es la frecuencia relativa de la clase [x i, x i+1 ) y F i+1 es la correspondiente frecuencia relativa acumulada. Vamos a suponer que la razón de proporcionalidad es 1 y por tanto, que: (x i+1 x i )h i = F i+1 F i dónde h i es la altura del rectángulo. Podemos observar en ese histograma que el área total es 1 y que la probabilidad de que una de las 100 piezas escogida al azar tenga su medida en el intervalo [x i, x i+1 ) es el área del histograma correspondiente a este intervalo Si ahora medimos 1000 piezas y agrupamos en clases (igualmente espaciadas), obtendremos un nuevo histograma; si tomamos 100000 piezas y agrupamos en clases,..., los sucesivos histogramas van a ir aproximándose a una curva (Ley de Regularidad Estadística). Cuál va a ser la altura f(x) correspondiente a cada x del soporte de esta variable, en esa curva?. En el histograma inicial, la altura de un punto x que estuviese en el intervalo [x i, x i+1 ) era: h i = F i+1 F i x i+1 x i e igualmente en los sucesivos histogramas, de forma que f(x) será el límite de estas alturas cuando el número de piezas observadas y el número de clases tiendan a infinito (y por tanto la amplitud de las clases tienda a cero). A esta curva límite la vamos a llamar función de densidad. Su nombre proviene de la similitud entre el concepto de probabilidad, las frecuencias relativas y la interpretación de éstas como masas. Cuando se consideran variables aleatorias continuas, el soporte de la variable se puede interpretar como una varilla delgada de masa unidad y densidad no constante, dada por la función de densidad de probabilidad f(x). Igual que en el caso de la varilla (en el que cada punto de la misma tiene masa cero) la probabilidad de cada punto es cero, sin embargo, la probabilidad de un intervalo contenido en el soporte (equivalente a la masa de un trozo de varilla) puede ser no nula. Definición 5 Diremos que una variable aleatoria X es continua si existe una función f : IR IR, integrable, tal que: (a) f(x) 0 para todo x IR. (b) f(x)dx = 1. (c) p(x x) = x f(t)dt. A dicha función se la denomina función de densidad de la variable aleatoria X. Observación 2 A partir de lo desarrollado en la introducción de este punto, se deduce que f(x) describe el comportamiento a largo plazo ( es decir, cuando el número de observaciones tiende a infinito) de la variable.

Estadística 41 Ejemplo: De nuevo, el ejemplo más sencillo de v. a. continua es la v.a. continua uniforme, que se define como aquella que tiene densidad constante en un intervalo acotado de IR. Así, la v.a. continua uniforme en [a, b] será la que tiene por soporte S X = [a, b] y densidad: f(x) = { 1 b a a x b 0 en otro caso ( Por qué 1 b a?) Igual que ocurre con las v.a. discretas, la distribución de una v.a. continua se puede definir también a partir de la función de distribución de la variable, que se define de igual forma: Definición 6 Llamaremos función de distribución de la variable aleatoria X a la función: F : IR [0, 1] definida por: F (x) = p(x x). Teniendo en cuenta la definición de función de densidad, se cumplen las siguientes propiedades: Propiedades 2 (a) lim F (x) = 1 y lim F (x) = 0. x x (b) F es creciente: si x y, F (x) F (y). (c) F (x) = x f(t)dt. (d) F(x) es continua en IR. (e) F(x) es derivable y F (x) = f(x), para cada x R en el que la función de densidad es continua. (f) La probabilidad de un punto es nula. (g) p([a, b]) = p((a, b]) = p([a, b)) = p((a, b)) = F (b) F (a) = b a f(t)dt. Ejemplo: La función de distribución de la v.a. continua uniforme será: 3.4 Medidas características de una v.a. 0 si x a x a F (x) = b a a x b 1 si x b Las medidas características asociadas a una v.a. reciben el mismo nombre que en el caso de variables estadísticas y se interpretan de idéntica forma. En este caso, para distinguir unas y otras, se representan con letras griegas. Vamos a definir a continuación las principales. Podrá observarse que en el caso discreto, las definiciones son totalmente análogas a las dadas para v. estadísticas, si en éstas se cambia frecuencia relativa por probabilidad. Medida v.a.discretas v.a. continuas Media o Esperanza µ ó E(X) x i p(x i ) xf(x) dx i Varianza σ 2 (x i µ) 2 p(x i ) (x µ)2 f(x) dx i Desviación típica σ (x i µ) 2 p(x i ) (x µ)2 f(x) dx i

Estadística 42 Observación 3 La media de una variable aleatoria se interpreta como el valor esperado a largo plazo, de la variable, de ahí su nombre de Esperanza. En cuanto a las restantes medidas, se definen: Mediana: - en el caso discreto se calcula de igual forma que para variables estadísticas. - en el caso continuo, es el valor para el que F (x) = 1 2. Moda: - en el caso discreto, es el valor x i para el cuál p toma el valor más alto. - en el caso continuo, coincide con los máximos absolutos de la función de densidad. Cuartiles: - en el caso discreto se calculan de igual forma que para variables estadísticas. - en el caso continuo son: Q 1 el valor para el que F (x) = 1 4 y Q 3 el valor para el que F (x) = 3 4. Rango intercuartílico: en ambos casos se define como la diferencia entre los cuartiles, Q 3 Q 1. Coeficiente de variación: en ambos casos se define como σ µ. Un resultado importante, que expresa la relación existente entre la media de una variable aleatoria y su desviación típica, es el teorema de Chebychev, cuyo enunciado es similar al visto en Estadística Descriptiva, y cuya demostración, en el caso discreto es análoga y por tanto, no la repetiremos: Teorema 1 Teorema de Chebychev Sea X una v.a. con media µ finita y desviación típica σ finita. Entonces, si k es un número real con k 1: p(µ kσ X µ + kσ) > 1 1 k 2 3.5 Vectores aleatorios bidimensionales Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos, interesa estudiar dos o más características y su relación: peso y altura, renta y consumo, producción y gastos de mantenimiento, inversión tecnológica y número de obreros,... Por comodidad vamos a estudiar los vectores aleatorios bidimensionales, aunque el estudio de variables n-dimensionales es análogo. Además, nos centraremos en los vectores discretos, aunque definiremos de forma intuitiva el concepto de vector continuo y veremos algunas propiedades comunes a ambos tipos de vectores. Definición 7 Se denomina vector aleatorio bidimensional a una aplicación del espacio de sucesos de un experimento aleatorio en IR 2, X = (X, Y ) : Ω IR 2. Definición 8 Se dice que se ha definido la distribución conjunta del vector si se conocen: (a) Los resultados posibles del vector (es decir, su soporte, que denotaremos por S X S (X,Y ) ). (b) Las probabilidades de cada resultado posible. o por Definición 9 Diremos que un vector aleatorio bidimensional X = (X, Y ) es discreto si sus dos componentes son variables aleatorias discretas.

Estadística 43 Ejemplo 1: Se lanzan dos dados y se consideran las variables aleatorias: X= suma de los resultados Y= valor absoluto de la diferencia En este caso, p(x 4, Y = 2) = p({(1, 3), (3, 1)}) = 1/18 y de igual forma se obtiene la distribución conjunta p(x = x i, Y = y j ). Además, podemos obtener los valores de p(x = 2) ó p(y = 4), utilizando tablas de doble entrada: Y \X 2 3 4 5 6 7 8 9 10 11 12 0 1/36 0 1/36 0 1/36 0 1/36 0 1/36 0 1/36 6/36 1 0 1/18 0 1/18 0 1/18 0 1/18 0 1/18 0 5/18 2 0 0 1/18 0 1/18 0 1/18 0 1/18 0 0 4/18 3 0 0 0 1/18 0 1/18 0 1/18 0 0 0 3/18 4 0 0 0 0 1/18 0 1/18 0 0 0 0 2/18 5 0 0 0 0 0 1/18 0 0 0 0 0 1/18 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 También podemos considerar la variable X/(Y 2), cuyo soporte es {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} y cuya distribución de probabilidades viene dada por: X/(Y 2) 2 3 4 5 6 7 8 9 10 11 12 p(x = x i /Y 2) 1/24 2/24 3/24 4/24 5/24 6/24 5/24 4/24 3/24 2/24 1/24 Vector aleatorio continuo Dijimos al principio que comentaríamos el concepto de vector continuo; de forma intuitiva un par de variables aleatorias (X,Y) definen un vectr continuo si existe una función de dos variables f(x, y), positiva, que determina un volumen unidad en IR 2 y de forma que la probabilidad de que el vector tome valores en un subconjunto de IR 2 es el volumen que esa función f(x, y) determina sobre él. Si el vector es continuo, cada una de sus componentes X e Y son variables aleatorias continuas y por tanto tienen funciones de densidad que denotaremos por f X y f Y. 4.6 Independencia de variables aleatorias Definición 10 Las v.a discretas X 1, X 2,... X n se dicen independientes si y sólo si p(x 1 = x 1, X 2 = x 2,... X n = x n ) = p X1 (x 1 )p X2 (x 2 )... p Xn (x n ) para cada (x 1,..., x n ) S (X1,X 2,...,X n). Ejemplo 3: Puede comprobarse que las variables X e Y definidas en el ejemplo 1 no son independientes. Ejemplo 4: En el experimento de tirar dos dados correctos, vamos a definir las variables X 1 y X 2 de la siguiente forma: X 1 = 2 si al menos uno de los resultados es par y X 1 = 1 si los dos resultados son impares X 2 = 3 si al menos un resultado es múltiplo de 3 y X 2 = 0 si ninguno de los dos resultados es múltiplo de 3. Puede comprobarse que la tabla de doble entrada del vector (X 1, X 2 ) es :

Estadística 44 X 1 \X 2 0 3 1 4/36 5/36 9/36 2 12/36 15/36 27/36 16/36 20/36 Las variables X 1 y X 2 son independientes, puesto que 9 20 = 5 9 16 = 4 27 20 = 15 27 16 = 12 Definición 11 El vector aleatorio continuo (X 1,..., X n ) tiene componentes que son independientes si y sólo si f(x 1, x 2,..., x n ) = f X1 (x 1 )... f Xn (x n ). 4.7 Funciones de vectores aleatorios En ocasiones, los sucesos a estudiar se expresan como una relación funcional de variables aleatorias (por ejemplo, el suceso X + Y 1, ó XY 62.5). Por ello, vamos a introducir brevemente las funciones de vectores aleatorios. Proposición 1 Si (X,Y) es un vector aleatorio y h : IR 2 IR es una función continua, entonces h(x,y) es una variable aleatoria que, si el vector es continuo, será continua. Algunas de las relaciones que más comúnmente aparecen al trabajar con variables aleatoria es la suma y el producto; las medidas de las nuevas variables, cumplen estas propiedades: Propiedades 3 Si (X,Y) es un vector aleatorio bidimensional y a,b son números reales: (a) E(aX + by ) = ae(x) + be(y ). (b) Si X e Y son independientes: V ar(ax + by ) = a 2 V ar(x) + b 2 V ar(y ). (c) Si X e Y son independientes: E(aXY ) = ae(x)e(y ).