Teoría de Colas Modelo G/M/1 y G/M/k

Documentos relacionados
Procesos estocásticos Sesión 10. Teoría de colas

ESTRUCTURA DE LINEAS DE ESPERA

S = N λ = 5 5 = 1 hora.

Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i)

12.Teoría de colas y fenómenos de espera

S = N λ = 5 5 = 1 hora.

1. Introducción a la redes de colas. 2. Redes de colas abiertas. Teorema de Burke Sistemas en tándem

Modelos Estocásticos I Tercer Examen Parcial Respuestas

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi

Sabaroni, Andrea Garello Torres, Melina Valeria Firmapaz, Maximiliano Caif, Pablo

Teoría de colas. Las colas (líneas de espera) son parte de la vida diaria

REDES ABIERTAS O DE JACKSON

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo

PROCESO DE NACIMIENTO PURO Y MUERTE PURA

H. R. Alvarez A., Ph. D.

Sistemas con cola. Area de Ingeniería Telemática Grado en Ingeniería en Tecnologías de Telecomunicación, 4º

13.Teoría de colas y fenómenos de espera

Maestría en Bioinformática Probabilidad y Estadística: Clase 10

Ejercicios de teoría de colas

Revisión - soluciones. lunes 9 de octubre de 2017

CONTENIDOS. 1. Definición de Cadena de Markov en Tiempo Continuo. 2. Comportamiento de transición. 3. Comportamiento estacionario

Tema 02. Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes. Rafael Estepa Alonso Universidad de Sevilla

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Aplicación de la simulación regenerativa y la técnica bootstrap, para mejorar la calidad del estimador.

Procesos de LLegadas. Jhon Jairo Padilla A., PhD.

Teoría de colas I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3

Investigación operativa: aplicaciones en la optimización de costes"

PROCESOS DE MARKOV DE TIEMPO CONTINUO

Interrogación (25 Ptos.) Conteste verbalmente las siguientes preguntas :

Introducción a la Teoría de Colas

Tema 4: Probabilidad y Teoría de Muestras

2 CADENAS DE MARKOV HOMOGÉNEAS DE PARÁMETRO DISCRETO

1.1. Distribución exponencial. Definición y propiedades

Solemne 2. CII Modelos Estocásticos 28 de junio Profesores: Basso, Batarce, Feres y Varas

Caracterización del tráfico

Tema 5. Introducción al Teletráfico y a la Teoría de Colas

Teoría de colas. Modelado y Análisis de Redes de Telecomunicaciones. IIE - Facultad de Ingeniería

PRÁCTICA 4: TEORÍA DE COLAS

PROBLEMAS TEMA 2: TEORÍA DE COLAS. Curso 2013/2014

Procesos estocásticos

TEORÍA DE COLAS. introducción

Modelos de cola.

FICHA DE IDENTIFICACIÓN DE ESTUDIO DE CASO. Arias Choque Edson Zandro Ingeniería de Sistemas. Investigación Operativa II

INVESTIGACIÓN DE OPERACIONES II. JULIO CÉSAR LONDOÑO ORTEGA

Una invitación al estudio de las cadenas de Markov

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 16 de febrero de 2007

La Función de Disponibilidad en Procesos de Renovación y aproximaciones útiles de ella.

4 APLICACIÓN DE CADENAS DE MARKOV A SISTEMAS DE ATENCIÓN

Tema 7. El Teorema de Burke y las redes de colas. Eytan Modiano Instituto Tecnológico de Massachusetts. Eytan Modiano Diapositiva 1

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir,

Estadística Bayesiana

Transformaciones y esperanza

FORMULARIO CADENAS DE MARKOV

Modelos de cola.

Determinación del tamaño de muestra (para una sola muestra)

Teoría de colas III: La cola M/M/m. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2

PROCESOS ESTOCÁSTICOS

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones

Apuntes de Clases. Modelos de Probabilidad Discretos

Temas 5 y /16.37

CONTENIDOS. 1. Introducción

Procesos estocásticos

PRUEBA DE BONDAD DE AJUSTE O PRUEBA CHI - CUADRADO

UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA USB PS4161 GESTION DE LA PRODUCCION I LINEAS DE ESPERA

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Investigación de Operaciones II. Modelos de Líneas de Espera

Tema 3.2 Ejercicios Investigación Operativa Ejercicio 1

EJERCICIOS. 1 Repaso de probabilidad

UNIVERSIDAD DE MANAGUA Al más alto nivel

Tema 7. Variables Aleatorias Continuas

Tema 2. Conceptos generales sobre sistemas de colas.

La Teoría de Hückel: Antecedentes

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 16 de febrero de 2006

Tema 5 Algunas distribuciones importantes

(3.d) ESTIMACIÓN DE LOS PARÁMETROS EN MODELOS DE COLAS PARA LOS PROCESOS DE LLEGADA Y

Solución al Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 11 de mayo de 2002

Distribuciones de probabilidad II

Distribución de Probabilidad

Tema 6 Algunas distribuciones importantes Hugo S. Salinas

1. Regla para los valores esperados en variables aleatorias

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

Introducción a la Teoría de la Información

INVESTIGACION DE OPERACIONES

Queue Análysis VI. MARCO TEÓRICO. Teoría de líneas de espera o colas (Queues). Principales componentes de los sistemas. Clientes Dependientes

Esperanza Condicional

Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson

Cálculo de bloqueo en la RTB

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa

LINEAS DE ESPERA. En diferentes ocaciones de la vida, la mayoria de las personas que viven en la sociedad moderna han esperado

Maestría en Bioinformática Probabilidad y Estadística: Clase 13

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Transcripción:

Teoría de Colas Modelo G/M/1 y G/M/k Rodrigo Salas Fuentes <rsalas@inf.utfsm.cl> Universidad Técnica Federico Santa María Departamento de Informática Profesor: Héctor Allende 1 Introducción En este trabajo se estudia el modelo mediante el cual los clientes llegan a los servidores en forma aleatoria. Cuando llegan deben esperar en una cola hasta que son servidos, una vez servidos se supone que ellos dejan el sistema. Se considera el modelo con tiempo de servicio exponencial, pero el tiempo entre llegadas de los clientes tienen una distribución arbitraria. Algunos definiciones básicas de colas son las siguientes: L : es el número promedio de clientes en el sistema. L Q : es el número promedio de clientes esperando en la cola. W:tiempo promedio que el cliente pasa en el sistema. W Q : tiempo promedio que el cliente pasa esperando en la cola. Razón promedio a la cual el sistema ganaλ a monto promedio que paga un cliente entrante. λ a es la razón promedio de llegada de un cliente entrante. N(t): es el número de clientes que llegan en un tiempo t. Luego se tiene lo siguiente: λ a lim t N(t) t

Si se supone que cada cliente paga $1 por unidad de tiempo en el sistema, entonces tenemos la fórmula de Little: L λ a W Similarmente, si se paga $1 cuando se encuentra en la cola: L Q λ a W Q Luego, el número de clientes en servicio λ a E[s] donde E[s] es definido como el tiempo promedio que un cliente gasta en servicio. 1.1 Probabilidades de Estado Estacionario Sea X(t) el número de clientes en el sistema en el tiempo t, y sea P n, n > definido por: P n lim t P {X(t) n} Donde P n es la probabilidad a largo plazo de que habrá exactamente n clientes en el sistema. Alguna veces se denomina como probabilidad de estado estacionario de exactamente n clientes en el sistema. Además se tiene: a n proporción de clientes que encuentran n en el sistema cuando ellos llegan. d n proporción de clientes que dejan atrás n en el sistema cuando ellos se van. 2 El Modelo G/M/1 El modelo G/M/1 asume que el tiempo entre llegadas sucesivas poseen una distribución arbitraria G. El tiempo de servicio se distribuye exponencialmente con razón m y existe sólo un servidor. La dificultad en el análisis de este problema se basa en el hecho de que el número de clientes en el sistema no son suficientes para servir como espacio de estado. Se necesita conocer el número en el sistema y el tiempo que ha pasado desde la última llegada. Para abordar este problema se debería mirar al sistema cuando el cliente llega; entonces definamos X n, n 1 por: X n el número en el sistema como se ve en la llegada n-ésima. El proceso {X n, n 1 } es una cadena de Markov. Para calcular las probabilidades de transición P ij, primero hay que notar que, a medida de que existan clientes para ser servidos, el número de servicios en cualquier tramo de tiempo es una variable aleatoria de Poisson con esperanza µt. Esto

se debe a que el tiempo entre servicios sucesivos es exponencial, por lo tanto, el número de servicios constituyen un proceso de Poisson. Es decir, P i,i+1 j µt (µt)j e dg(t) j! j, 1,..., i ya que si en una llegada encuentra i en el sistema, entonces en la próxima llegada encontrará i+1 menos el número servido, y la probabilidad de que j sea servido fácilmente se ve que iguala el lado derecho de arriba ( a través del condicionamiento en el tiempo entre llegadas sucesivas). La fórmula para P (la probabilidad de que al menos i+1 eventos de Poisson ocurren en un tiempo aleatorio teniendo distribución G) es un poco diferente y pude ser obtenido como: i P i 1 P i,i+1 j j Las probabilidades límites π k, k,1,..., puede ser obtenido como solución única de: π k i π i P ik, k π k 1 k la cual en éste caso se reduce a: π k ik 1 π i e µt (µt) i+1 k (i+1 k)! dg(t) k 1 (1) π k 1 Para resolver la ecuación (1), intentemos una solución de la forma π k cβ k. Se sustituye en (1), y luego se obtiene lo siguiente: cβ k c c ik 1 β i e µt β k 1 e µt ik 1 (µt) i+1 k (i + 1 k)! dg(t) (βµt) i+1 k dg(t) (2) (i + 1 k)!

Sin embargo, o ik 1 y la ecuación 2 se reduce a: (βµt) i+1 k (i + 1 k)! j (βµt) j j! β k β k 1 e µt(1 β) dg(t) β La constante c puede ser obtenida de π k 1, lo cual implica que: o c k e βµt e µt(1 β) dg(t) (3) β k 1 c 1 β Como π k es la única solución de (1), y π k (1 β)β k satisface, entonces : π k (1 β)β k, k donde β es la solución de la ecuación (3), donde los valores de β son obtenidos numéricamente. Como π k es la probabilidad límite en que una llegada ve k en el sistema cuando un cliente llega. Entonces: W k E[tiempo en el sistema llegada ve k](1 β)βk k k + 1 (1 β)βk µ Ya que si una llegada ve k, entonces el gasta k+1 períodos de servicios en el sistema. 1 µ(1 β) Ya que se usa kx k x (1 x) 2

y W Q W 1 µ L λw L Q λw Q β λ µ(1 β) µ(1 β) λβ µ(1 β) donde λ es el recíproco del intervalo de tiempo medio. Esto es: 1 µ xdg(x) Por lo tanto: W es exponencial con razón µ(1 β), (4) { WQ con probabilidad 1 - β exponencial con razon µ(1 β) con probabilidad β donde W y WQ es el tiempo que el cliente pasa en el sistema y en la cola, respectivamente. Sin embargo, a k (1 β)β k es la probabilidad que una llegada vea k en el sistema, no es igual a la proporción de tiempo durante el cual hay k en el sistema, ya que el proceso de llegada no es Poisson. Para obtener P k, primero hay que ver que la razón por la cual el número en el sistema cambia de k-1 a k debe ser igual a la razón a la cual cambia de k a k-1. Luego, la razón a la cual cambia de k-1 a k es igual a la razón de llegada λ multiplicado por la proporción de llegadas que encuentran k-1 en el systema. Esto es: La razón en la cual el sistema va de k-1 a k λa k 1 De forma similar, la razón por la cual el número cambia en el sistema de k a k-1 es igual a la proporción de tiempo durante el cual existe k en el sistema multiplicado por la razón de servicio (constante). Esto es: La razón en la cual el sistema va de k a k-1 P k µ Calculando estas razones, nos lleva a: P k λ µ a k 1k 1 Luego, P k λ µ (1 β)βk 1 k 1 y, como P 1 k1 P k obtenemos: P 1 λ µ

2.1 Los períodos ociosos y ocupados del G/M/1 Supóngase que una llegada ha encontrado el sistema vacío (entonces comienza el período ocupado), y sea N el número de clientes servidos en el período ocupad9o. Como la llegada N-ésima encontrará también el sistema vacío, entonces N es el número de transiciones en la cadena de Markov para ir del estado al estado. Por lo tanto, 1/E[N] es la proporción de transiciones que toma a la cadena de Markov en el estado ; o equivalentemente, es la proporción de llegadas que encuentran el sistema vacío. Por lo tanto, E[N] 1 a 1 1 β También, como el próximo período ocupado comienza después de la llegada N-ésima, entonces el tiempo de ciclo(es decir, la suma de los períodos ociosos y ocupados) es igual al tiempo hasta la llegada N-ésima. En otras palabras, la suma de los períodos ocupados y ociosos puede ser expresado como la suma de los tiempos de N llegadas. Por lo tanto, si T i es el timepo de llegada i-ésima después que el período ocupado comienza, entonces N E[Ocupado] + E[ocioso] E[ T i ] i1 Además se tiene: 1 P E[N]E[T ] 1 λ(1 β) E[ocupado] E[Ocioso] + E[ocupado] (5) y como P 1 λ µ y reemplazando con (5), entonces: E[ocupado] E[ocioso] 1 µ(1 β) µ λ λµ(1 β)

3 El Modelo G/M/k En este modelo se suponen k servidores, los cuales sirven con una razón exponencial µ. Sin embargo, no se permite que el tiempo entre llegadas sucesivas tenga distribucón arbitraria. Para asegurar que existe una distribución de estado estable, se asume las condiciones 1/µ G < kµ donde µ G es la media de G Si se define X n como el número en el sistema en el momento de la n-ésima llegada, entonces: X n+1 X n + 1 Y n n donde Y n es el número de salidas durante los tiempos llegadas entre la llegada n y la n+1. Por lo que las probabilidades de transición se pueden calcular como: Caso 1: j > i + 1 entonces P ij Caso 2: j i + 1 k En este caso si una llegada ve i en el sistema, entonces como i < k, entonces la nueva llegada entrará inmediatamente al servicio. Por esto, la próxima llegada encontrará j si los i+1 servicios, exactamente i+1-j son completados durante los tiempos entre llegadas. Condicionando sobre los tiempos entre los tiempos entre llegadas, nos lleva a: P ij P {i+1 j de i + 1 servicios son completados entre los tiempos de llegadas P {i+1 j de i + 1 son completados el tiempo entre llegadas t}dg(t) ( i+1 j )(1 e µt ) i+1 j (e µt ) j dg(t) donde la última igualdad se debe a que el número de servicios completados en un tiempo t tiene una distribución binomial. Caso 3: i + 1 j k Para evaluar P ij en este caso, primero vemos que cuando todos los servidores están ocupados, el proceso de partida es un proceso de Poisson con razón kµ. Por esto, condicionando sobre los tiempos entre las llegadas se tiene:

P ij P {i + 1 j departures} P {i + 1 jsalidas en el tiempo t}dg(t) Caso 4: i + 1 k > j kµt (kµt)i+1 j e (i + 1 j)! dg(t) En este caso, como todos los servidores se encuentran ocupados, el proceso de partida es un proceso de Poisson, entonces el tiempo para que existan sólo k en el sistema tendrá una distribución gama con parámetros i + 1 k, kµ (el tiempo hasta el evento i + 1 k de un proceso de Poisson con razón kµ ocurre si tiene una distribución gama con parámetros i + 1 k, µk). Condicionando primero en el tiempo entre llegadas hasta cuando existan sólo k en el sistema, entonces: t P ij t P {i + 1 j salidas en el tiempo t}dg(t) kµs (kµs)i k P {i+1 j salidas en el tiempo t T k s}kµe (i k)! dsdg(t) ( k j )(1 e µ(t s) ) k j (e µ(t s) ) j kµs (kµs)i k kµe (i k)! dsdg(t) donde la última igualda se debe a que como k personas en servicios en el tiempo s, el número cuyo servico terminará en el tiempo t es binomial con parámetros k y 1 e µ(t s). Ahora se puede verificar que las probabilidades límites de esta cadena de Markov es de la siguiente forma: π k 1+j cβ j, j,1,... Sustituyendo dentro de la ecuación π j i π ip ij cuando j > k nos da que β está dado por:

β e kµt(1 β) dg(t) Los valores de π, π 1, π 2,..., π k 2, puede ser obtenido resolviendo recursivamente las primeras k-1 ecuaciones del estado estacionario, y c puede ser calculado usando π i 1 Si WQ denota el tiempo que un cliente pasa en la cola, entonces: W Q { con probabilidad k 1 π i 1 cβ 1 β Exp(kµ(1 β)) con probabilidad k π i 1 cβ 1 β donde Exp(kµ(1 β)) es una variable aleatoria exponencial con razón kµ(1 β)