Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "www.academianuevofuturo.com"

Transcripción

1 Tecnología Industrial. Septiembre Opción A. Cuestión 1. a) 1--> Región monofásica (α) 2--> Región bifásica (α+l) 3--> Región monofásica (Líquido) 6--> Región bifásica (α+β) b) Hasta llegar a los 285ºC la aleación se encuentra en estado líquido. Entre las temperaturas de 285ºC y 200ºC coexiste la fase líquida con núcleos de fase α sólidos. Entre los 200ºC y los 150ºC sólo está presente la fase sólida α, y por debejo de los 150ºC se supera el límite de solubilidad de β en α, por lo que aparecen núcleos de β, y coexisten ambos metales en fase sólida. c) A 200ºC y con una proporción de 40% de B, coexisten la fase líquida y sólida α. Aplicando la regla de la palanca: d)! =! L = (50 40) 100 = 28, 57% (50 15) (40 15) 100 = 71, 43% (50 15)

2 Cuestión 2. Datos: masa vehículo= 1200 kg acelera de 0 a 100 km/h en 11,5 s rendimiento del 30% poder calorífico del combustible= kj/kg a) W mec = b) c) Cuestión 3. a) -Señal punto A. Observando en la gráfica: X=0 --> A=3 -Señal punto. -Señal punto B. E mec = 1 2 mv2 = , 282 = 463, 037kJ E tot = W mec 463, 037 = = 1543, 46kJ 0, 3 m = E tot 1543, 46 = =0, 0036Kg Q e = P 2 A = 3 1+P 2 P 3 2 B = P 2 = 1 2 b) Despejando en la función de transferencia para : A = 1+P 2P 3 = 3 (1 + 3) P =1 Por lo que los valores de entrada serían X=1, X=2 y X=3

3 A la señal de entrada X toma el valor 0, obtenga las señales en los puntos A, B y. (0,5 puntos X + cada spuesta correcta) 3 P 1 P 2 =3 el valor de la salida es =3/4, cuáles son los posibles valores de la entrada _ X? (0.5 puntos) 1 unción de transferencia del elemento P 1 : A=f(X). A B P 3 =1 toma el valor 0, A obtenga las 1 señales 2 C/ 3 Fernando 4 en X los puntos Poo A, B 5 y Madrid. (0,5 puntos (Metro cada Delicias o =3/4, X + 3 cuáles son los posibles valores de Pla 1 entrada X? (0.5 puntos) P 2 =3 Cuestión nº 4 (2 puntos) _ 1 Observe los siguientes elementos de un circuito neumático. Cuestión a) Cuestión Nómbrelos. A nº 34. (2(1 Bpuntos) punto) cia del elemento P 3 =1 1 2 Se P b) 3 muestra Diseñe 1 : A=f(X). 4 X con gráficamente ellos un circuito la función de tal de manera transferencia que el del cilindro elemento avance P 1 : cuando A=f(X). se accionen dos pulsadores a la v btenga las X señales a) y Si P en retroceda la los 1 señal puntos + de con entrada A, B y velocidad X P. 2 =3 toma (0,5 regulada el puntos valor cada y controlada 0, obtenga de las forma señales automática en los puntos al llegar A, al B final y. de (0,5 su puntos carrera. cad a) punto) respuesta correcta) los ión posibles nº 4 (2 puntos) valores _ b) Si de el la valor entrada de la X? salida (0.5 es puntos) =3/4, cuáles son los posibles valores de la entrada X? (0.5 puntos) ve los siguientes elementos de un circuito neumático. mbrelos. (1 punto) P 3 =1 X A B n eñe nº con 3 (2 ellos puntos) circuito de tal manera que el cilindro avance cuando A se Baccionen dos pulsadores a la vez etroceda tra gráficamente con velocidad la función A regulada de transferencia y Válvula controlada 3/2 del elemento de accionamiento forma Pautomática 1 : A=f(X). manual al llegar por al pulsador final de su y retorno carrera. (1 to) 1 + por P muelle. 2 =3 a señal de entrada X toma valor 0, obtenga las señales X en + 3 P 1 los puntos A, B y. P 2 =3 (0,5 puntos cada uesta ntos de correcta) un _ circuito neumático. _ l valor de la salida es =3/4, 1 cuáles son los posibles valores de la entrada X? (0.5 puntos) ito de tal manera que Pel 3 =1 cilindro avance cuando se accionen dos pulsadores a la vez P 3 =1 d regulada y controlada de forma 1 2 automática 3 4 X al llegar al final de su carrera. (1 nción de transferencia del elemento Unidad P A B A 1 : A=f(X). de mantenimiento autónomo. toma el valor 0, obtenga las señales en los puntos A, B y. (0,5 puntos cada Cuestión nº 4 (2 X puntos) + 3 P 1 P 2 =3 eumático. =3/4, cuáles Observe son los posibles los siguientes valores elementos de la entrada de un _ X? circuito (0.5 puntos) neumático. 1 a) Cuestión Nómbrelos. nº 5 (1 (2 punto) puntos) e el cilindro avance b) a) Diseñe Obtenga cuando con expresiones se ellos accionen Regulador un circuito de dos conmutación pulsadores de caudal tal manera a en unidireccional. la función vez que el cilindro de a, b, avance c y d de cuando las señales accionen lógicas dos x 1, xpulsadores 2, x 3 y z mostrad a la ve lada de forma automática A y en retroceda la figura. al B con llegar (1 punto) velocidad al final de P regulada su carrera. y controlada (1 3 = X de forma automática al llegar al final de su carrera. b) punto) Obtenga la tabla de verdad de la función lógica, z(a,b,c,d), que realiza el circuito mostrado en la figura. X n nº 4 (2 puntos) punto) P 1 + P 2 =3 ión los nº siguientes 5 (2 puntos) elementos de un _ circuito neumático. tenga brelos. expresiones (1 punto) de conmutación en función de a, b, c y d de las señales lógicas x 1, x 2, x 3 y z mostradas ñe la figura. con ellos (1 punto) P circuito de tal manera que Válvula 3 =1 el cilindro 5/2 avance de pilotaje cuando automático. se accionen dos pulsadores a la vez roceda tenga la con tabla velocidad de verdad regulada de función y controlada lógica, de z(a,b,c,d), forma automática que realiza al el llegar circuito al final mostrado de su en carrera. la figura. (1 (1 to) ) onmutación tos de un circuito en función neumático. de a, b, c y d de las señales lógicas x 1, x 2, x 3 y z mostradas o d de de tal la manera función que lógica, el cilindro z(a,b,c,d), avance que cuando realiza se el accionen circuito mostrado dos pulsadores en la figura. a la vez (1 regulada y controlada de forma Válvula automática de simultaneidad al llegar al final (AND). de su carrera. (1 Cuestión nº 5 (2 puntos) ión de a, b, c y a) d Obtenga de las señales expresiones lógicas de x 1 conmutación, x 2, x 3 y z mostradas en función de a, b, c y d de las señales lógicas x 1, x 2, x 3 y z mostrad en la figura. (1 punto) ica, z(a,b,c,d), b) que Obtenga realiza la el tabla circuito Cilindro de mostrado verdad de de doble en la la función figura. efectológica, (1 z(a,b,c,d), que realiza el circuito mostrado en la figura. punto) n nº 5 (2 puntos) nga expresiones de conmutación en función de a, b, c y d de las señales lógicas x 1, x 2, x 3 y z mostradas figura. (1 punto) nga la tabla de verdad de la función Válvula lógica, 3/2 z(a,b,c,d), de accionamiento que realiza el mecánico circuito mostrado por rodillo en la y figura. retorno (1 ) por muelle. nmutación en función de a, b, c y d de las señales lógicas x 1, x 2, x 3 y z mostradas de la función lógica, z(a,b,c,d), que realiza el circuito mostrado en la figura. (1

4 b)

5 Cuestión 5. a) x2=a d x1= c x3=(c +b) =c b z= (x2 x3) =((a d) (c b )) =(a d) +(c b ) = (a d) +c +b b) Tabla de verdad abcd z

6 Tecnología Industrial. Septiembre Opción B. Cuestión 1. Datos: sistema cúbico centrado en las caras densidad= 11,35 g/cm 3 masa atómica= 207,2 a) Número de átomos de la celdilla unitaria= 8 1/8+6 1/2=4 átomos b) La masa de plomo en 1 cm 3 --> m=d v=11,35 1=11,35 g Para calcular el número de átomos se utilizará el factor de conversión: El volumen de un átomo: 1mol 11, 35g 207, 2g NAatomos =3, atomos 1mol 1cm 3 1atomo 3, atomos =3, cm 3 Volumen de la celdilla unidad: V u =4 3, =1, cm 3

7 c) a = 3p V u =4, cm d) R = a p2 4 Cuestión 2. a) Proceso termodinámico del ciclo ideal de Otto. (PMI). =1, cm En el ciclo de Otto, el fluido de trabajo es una mezcla de aire y gasolina que experimenta una serie de transformaciones (seis etapas, aunque el trabajo realizado en dos de ellas se cancela) en el interior de un cilindro provisto de un pistón. El proceso consta de seis etapas: 1.Admisión: la válvula de admisión se abre, permitiendo la entrada en el cilindro de la mezcla de aire y gasolina. Al finalizar esta primera etapa, la válvula de admisión se cierra. El pistón se desplaza hasta el denominado punto muerto inferior 2. Compresión adiabática: la mezcla de aire y gasolina se comprime sin intercambiar calor con el exterior. La transformación es por tanto isentrópica. La posición que alcanza el pistón se denomina punto muerto superior (PMS). El trabajo realizado por la mezcla en esta etapa es negativo, ya que ésta se comprime. 3. Explosión: la bujía se activa, salta una chispa y la mezcla se enciende. Durante esta transformación la presión aumenta a volumen constante. 4. Expansión adiabática: la mezcla se expande adiabáticamente. Durante este proceso, la energía química liberada durante la combustión se transforma en energía mecánica, ya que el trabajo durante esta transformación es positivo.

8 5. Enfriamiento isócoro: durante esta etapa la presión disminuye y la mezcla se enfría liberándose calor al exterior. 6. Escape: la válvula de escape se abre, expulsando al exterior los productos de la combustión. Al finalizar esta etapa el proceso vuelve a comenzar. b) Ciclo ideal de Diesel. Un ciclo Diésel ideal es un modelo simplificado de lo que ocurre en un motor diésel. En un motor de esta clase, a diferencia de lo que ocurre en un motor de gasolina la combustión no se produce por la ignición de una chispa en el interior de la cámara. En su lugar, aprovechando las propiedades químicas del gasóleo, el aire es comprimido hasta una temperatura superior a la de autoignición del gasóleo y el combustible es inyectado a presión en este aire caliente, produciéndose la combustión de la mezcla. Para modelar el comportamiento del motor diésel se considera un ciclo Diesel de seis pasos, dos de los cuales se anulan mutuamente: Admisión E A El pistón baja con la válvula de admisión abierta, aumentando la cantidad de aire en la cámara. Esto se modela como una expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como una recta horizontal. Compresión A B El pistón sube comprimiendo el aire. Dada la velocidad del proceso se supone que el aire no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción. Combustión B C Un poco antes de que el pistón llegue a su punto más alto y continuando hasta un poco después de que empiece a bajar, el inyector introduce el combustible en la cámara. Al ser de mayor duración que la combustión en el ciclo Otto, este paso se modela como una adición de calor a presión constante. Éste es el único paso en el que el ciclo Diesel se diferencia del Otto. Expansión C D

9 La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible. Escape D A y A E Se abre la válvula de escape y el gas sale al exterior, empujado por el pistón a una temperatura mayor que la inicial, siendo sustituido por la misma cantidad de mezcla fría en la siguiente admisión. El sistema es realmente abierto, pues intercambia masa con el exterior. No obstante, dado que la cantidad de aire que sale y la que entra es la misma podemos, para el balance energético, suponer que es el mismo aire, que se ha enfriado. Este enfriamiento ocurre en dos fases. Cuando el pistón está en su punto más bajo, el volumen permanece aproximadamente constante y tenemos la isócora D A. Cuando el pistón empuja el aire hacia el exterior, con la válvula abierta, empleamos la isobara A E, cerrando el ciclo. En total, el ciclo se compone de dos subidas y dos bajadas del pistón, razón por la que es un ciclo de cuatro tiempos, aunque este nombre se suele reservar para los motores de gasolina. Cuestión 3. a) Función de transferencia =f(y) =P3(Y+P1P2Y)=P3(1+P1P2)Y b) Función de transferencia =F(X). = P 3 +(P 1 P 2 ) 1+P 4 (P 3 + P 1 P 2 ) X Cuestión 4. a) Datos: presión reguladora= Pa diámetro del pistón= 5cm F = P S = ( ) 2 =2, N b) > Unidad de mantenimiento autónomo > Cilindro de doble efecto > Válvula 5/2 de pilotaje neumático >Válvula 3/2 de accionamiento pilotado por electroimán y retorno por muelle > Válvula 3/2 de accionamiento mecánico por rodillo y retorno por muelle.

10 > Válvula limitadora de presión > Válvula reguladora unidireccional. c) El circuito empieza a funcionar cuando se activa la válvula 1.2, después de lo cual la válvula 1.1 permite el llenado del pistón controlado por la válvula Llegado al máximo, se ha de activar la válvula 1.3 para que proceda el vaciado del pistón. La válvula actúa como reguladora unidireccional, y controla el llenado del pistón. La válvula se utilizan para limitar la presión de trabajo a un valor máximo y proteger la instalación contra sobrecargas. Cuestión 5. a cd ab La función: f=a b d + c b)

Tema : MOTORES TÉRMICOS:

Tema : MOTORES TÉRMICOS: Tema : MOTORES TÉRMICOS: 1.1CARACTERÍSTICAS DE LOS MOTORES Se llama motor a toda máquina que transforma cualquier tipo de energía en energía mecánica. Según sea el elemento que suministra la energía tenemos

Más detalles

MÁQUINAS TERMODINÁMICA

MÁQUINAS TERMODINÁMICA MÁQUINAS r r Trabajo: W F * d (N m Julios) (producto escalar de los dos vectores) Trabajo en rotación: W M * θ (momento o par por ángulo de rotación) Trabajo en fluidos: W p * S * d p * Energía: capacidad

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: TECNOLOGÍA INDUSTRIAL II INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL

ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL Ing. Percy Castillo Neira PRESENTACIÓN La conversión de la energía química almacenada por la naturaleza en los combustibles fósiles

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B MOTOR GAS Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B QUÉ ES? Es un motor alternativo es una máquina de combustión interna capaz de transformar la energía desprendida en una reacción

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: TECNOLOGÍA INDUSTRIAL II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: TECNOLOGÍA INDUSTRIAL II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN 1. PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN 2. PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR

Más detalles

Definición genérica de motor: Aparato que transforma en trabajo mecánico cualquier otra forma de energía.

Definición genérica de motor: Aparato que transforma en trabajo mecánico cualquier otra forma de energía. Definición genérica de motor: Aparato que transforma en trabajo mecánico cualquier otra forma de energía. Nociones sobre el motor: Para empezar, definamos lo que la mayoría de la gente entiende por automóvil.

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS Pedro Fernández Díez I.- TURBINA DE GAS CICLOS TERMODINÁMICOS IDEALES I.1.- CARACTERISTICAS TÉCNICAS Y EMPLEO

Más detalles

NEUMÁTICA E HIDRÁULICA

NEUMÁTICA E HIDRÁULICA NEUMÁTICA E HIDRÁULICA Producción de aire comprimido. Comprimen el aire aumentando su presión y reduciendo su volumen, por lo que se les llama compresores. Pueden emplear motores eléctricos o de combustión

Más detalles

Si el motor térmico utiliza combustible como fuente térmica, se denomina motor de combustión.

Si el motor térmico utiliza combustible como fuente térmica, se denomina motor de combustión. 2. A.Introducción Un motor térmico es una máquina cíclica que tiene como misión transformar energía térmica en energía mecánica que sea directamente utilizable para producir trabajo. Si el motor térmico

Más detalles

COGENERACIÓN. Santiago Quinchiguango

COGENERACIÓN. Santiago Quinchiguango COGENERACIÓN Santiago Quinchiguango Noviembre de 2014 8.3 Selección del motor térmico. 8.3 Selección del motor térmico. MOTORES TÉRMICOS INTRODUCCIÓN Los motores térmicos son dispositivos que transforman

Más detalles

Física y Tecnología Energética. 8 - Máquinas térmicas. Motores de Otto y Diesel.

Física y Tecnología Energética. 8 - Máquinas térmicas. Motores de Otto y Diesel. Física y Tecnología Energética 8 - Máquinas térmicas. Motores de Otto y Diesel. Máquinas térmicas y motores Convierten calor en trabajo. Eficiencia limitada por el 2º principio a

Más detalles

Guía Nº 1 de Mecánica Automotriz. (Fuente de información: http://www.vochoweb.com/vochow/tips/red/motor/default.htm)

Guía Nº 1 de Mecánica Automotriz. (Fuente de información: http://www.vochoweb.com/vochow/tips/red/motor/default.htm) Fundación Universidad de Atacama Escuela Técnico Profesional Área de Electromecánica Profesor: Sr. Jorge Hernández Valencia Módulo: Mantenimiento de Motores. Objetivo: Guía Nº 1 de Mecánica Automotriz.

Más detalles

MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS. Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado gas

MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS. Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado gas MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS CICLOS DE POTENCIA CICLOS DE REGRIGERACIÓN Máquina Térmica Refrigerador, Bomba de calor Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA. Instrucciones:

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA. Instrucciones: PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

TEMA 8: MOTORES TÉRMICOS

TEMA 8: MOTORES TÉRMICOS TEMA 8: MOTORES TÉRMICOS Son máquinas cuya misión es transformar la energía térmica en energía mecánica que sea directamente utilizable para producir trabajo. Las fuentes de energía térmica pueden ser:

Más detalles

RESUMEN TEMA 13: CIRCUITOS NEUMÁTICOS

RESUMEN TEMA 13: CIRCUITOS NEUMÁTICOS RESUMEN TEMA 13: CIRCUITOS NEUMÁTICOS Neumática es la tecnología que utiliza la energía del aire comprimido para realizar un trabajo. Se utiliza para automatizar procesos productivos. Hoy en día son muchos

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento.

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento. Las máquinas térmicas -Todos los combustibles, tanto los renovables como los no renovables, proporcionan energía térmica, y esta es susceptible de transformarse en energía mecánica (movimiento) a través

Más detalles

MECÁNICA AUTOMOTRIZ. mezcla. Válvula de escape cerrada. Válvula de admisión cerrada.

MECÁNICA AUTOMOTRIZ. mezcla. Válvula de escape cerrada. Válvula de admisión cerrada. MECÁNICA AUTOMOTRIZ Principio de funcionamiento La bujía inflama la mezcla. Válvula de escape cerrada. Válvula de admisión cerrada. El pistón es impulsado hacia abajo ante la expansión producida por la

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 emas 5. Segunda ley de la ermodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

Motores térmicos de ciclo diesel de cuatro tiempos

Motores térmicos de ciclo diesel de cuatro tiempos Motores térmicos de ciclo diesel de cuatro tiempos 1_ Introducción: En este tipo de motores durante la admisión entra en el cilindro solamente aire, en la carrera de compresión el aire eleva su temperatura

Más detalles

BOLETÍN TÉCNICO TB NO. 1004 REV. 0

BOLETÍN TÉCNICO TB NO. 1004 REV. 0 BOLETÍN TÉCNICO TB NO. 1004 REV. 0 ASUNTO: Ajuste y Balanceo de Motores SUPERIOR a Diesel y Doble Combustible 1. INTRODUCCION El principio básico de operación de un Motor Superior de Diesel es: Cuatro

Más detalles

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE El combustible es el elemento necesario para producir la potencia necesaria que mueve a un vehículo. En la actualidad

Más detalles

UNIDAD 6.- NEUMÁTICA.

UNIDAD 6.- NEUMÁTICA. UNIDAD 6.- NEUMÁTICA. 1.-ELEMENTOS DE UN CIRCUITO NEUMÁTICO. El aire comprimido se puede utilizar de dos maneras distintas: Como elemento de mando y control: permitiendo que se abran o cierren determinadas

Más detalles

1 El motor SUMARIO AL FINALIZAR ESTA UNIDAD...

1 El motor SUMARIO AL FINALIZAR ESTA UNIDAD... Unidad 1 Y 1 El motor SUMARIO 1. Historia del motor 2. Clasificación de los motores 3. Motor de gasolina 3.1. Ciclo teórico 3.2. Ciclo real. Motor Diesel 5. Motor rotativo 6. Motor de dos tiempos 7. Características

Más detalles

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

Motores rotativos. 1. Inicio de los motores rotativos 2. Estudio del motor wankel Caso final. i d a d SALIR

Motores rotativos. 1. Inicio de los motores rotativos 2. Estudio del motor wankel Caso final. i d a d SALIR u» n Motores rotativos i d a d 16 1. Inicio de los motores rotativos 2. Estudio del motor wankel Caso final SALIR Motores Wankel: características, constitución, ciclo de» 1. Inicio de los motores rotativos

Más detalles

1. Calcula la cilindrada de un motor de 4 cilindros si el diámetro del cilindro es de 50 mm y la carrera del pistón es de 85 mm.

1. Calcula la cilindrada de un motor de 4 cilindros si el diámetro del cilindro es de 50 mm y la carrera del pistón es de 85 mm. UNIDAD 1: El motor de combustión ACTIVIDADES - PÁG. 16 1. Calcula la cilindrada de un motor de 4 cilindros si el diámetro del cilindro es de 50 mm y la carrera del pistón es de 85 mm. 2 2 2 d 3,14 5 cm

Más detalles

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones.

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. Esquema: TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones....1 1.- Introducción...1 2.- Máquina frigorífica...1

Más detalles

EJERCICIOS RESUELTOS DE CIRCUITOS HIDRÁULICOS

EJERCICIOS RESUELTOS DE CIRCUITOS HIDRÁULICOS EJERCICIOS RESUELTOS DE CIRCUITOS HIDRÁULICOS EJERCICIO Nº1: Se mueve un cilindro de simple efecto con un fluido. El diámetro del pistón es de 75 mm y el diámetro del vástago de 20 mm, la presión de trabajo

Más detalles

TEMA 4: NEUMÁTICA E HIDRÁULICA

TEMA 4: NEUMÁTICA E HIDRÁULICA TEMA 4: NEUMÁTICA E HIDRÁULICA 1. Sistemas hidráulicos y neumáticos 1.1. Mecánica de fluidos 1.2. Sistemas hidráulicos 1.3. Sistemas neumáticos 2. Componentes de los sistemas neumáticos 2.1. Compresor

Más detalles

GASOLINA DESEMPEÑO SUPERIOR

GASOLINA DESEMPEÑO SUPERIOR Automotriz GASOLINA DESEMPEÑO SUPERIOR Para qué sirve el Lubricante en el vehículo y cómo funciona? Las condiciones de operación de un motor son severas ya que involucran contaminación, para afrontarlas

Más detalles

CURSO OPERADOR DE VEHICULO

CURSO OPERADOR DE VEHICULO CURSO OPERADOR DE VEHICULO EQUIPADO MODULO 1- ELEMENTOS DEL TREN MOTRIZ 2010 Ing. Federico Lluberas Elementos del tren motriz 2 Objetivos Identificar los componentes básicos del tren motriz de los vehículos

Más detalles

CICLO TEÓRICO DE FUNCIONAMIENTO.

CICLO TEÓRICO DE FUNCIONAMIENTO. CICLO EÓRICO DE FUNCIONAMIENO. INRODUCCIÓN Los motores térmicos son máquinas que transforman la energía calorífica en energía mecánica directamente utilizable. La energía calorífica normalmente es obtenida

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 1.1. Representación de sistemas termodinámicos................. 1.. Representación de sistemas termodinámicos.................

Más detalles

Qué es PRESS-SYSTEM?

Qué es PRESS-SYSTEM? Qué es PRESS-SYSTEM? Es un sistema novedoso desarrollado e implementado por Efinétika que consigue mejoras sobre el rendimiento de los sistemas de bombeo de fluidos, aportando grandes ahorros energéticos

Más detalles

INTERCAMBIO MECÁNICO (TRABAJO)

INTERCAMBIO MECÁNICO (TRABAJO) Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3

Más detalles

INSTRUCCIONES DE USO ÍNDICE!

INSTRUCCIONES DE USO ÍNDICE! INSTRUCCIONES DE USO Desplace el mouse por encima de este icono que esta ubicado en las partes inferiores de las paginas, y luego haga clic o arrastre moviendo así las paginas a la siguiente hoja. También

Más detalles

D 2 8 2 cm 2 F SALIDA = p = 6 Kp/cm 2 3,14 = 301, 44 Kp 4 4. b) ( D 2 - d 2 ) V CILINDRO = V RETROCESO + V AVANCE V RETROCESO = C 4 D 2 V AVANCE = C 4

D 2 8 2 cm 2 F SALIDA = p = 6 Kp/cm 2 3,14 = 301, 44 Kp 4 4. b) ( D 2 - d 2 ) V CILINDRO = V RETROCESO + V AVANCE V RETROCESO = C 4 D 2 V AVANCE = C 4 1.- En una cierta instalación neumática se dispone de un cilindro de doble efecto cuyos datos son los siguientes: - Diámetro interior = 80 mm. - Carrera = 1000 mm. - Diámetro del vástago = 30 mm. - Carreras

Más detalles

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Entropía s [KJ/Kg.ºK]

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Entropía s [KJ/Kg.ºK] UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE VAPOR CICLO DE RANKINE ALUMNO: AÑO 2015 INTRODUCCIÓN El Ciclo

Más detalles

Presión absoluta = Presión relativa + Presión atmosférica. Caudal

Presión absoluta = Presión relativa + Presión atmosférica. Caudal En busca de soluciones prácticas y económicas a las distintas situaciones a las que nos enfrentamos a diario, el ser humano ha ido desarrollando artilugios, a veces sencillos y en ocasiones sofisticados,

Más detalles

Motores de Combustión Interna

Motores de Combustión Interna Motores de Combustión Interna Introducción Un motor de combustión interna es aquel que adquiere energía mecánica mediante la energía química de un combustible que se inflama dentro de una cámara de combustión.

Más detalles

7. REFRIGERACIÓN DE MOTOR

7. REFRIGERACIÓN DE MOTOR 7.1 Introducción 7.2 Técnica Modular de Refrigeración 7.3 Gestión Térmica Inteligente 7.4 Diseño de Sistema de Refrigeración: Metodología de Análisis 7.5 Refrigeración en Vehículos Eléctricos 2 7. REFRIGERACIÓN

Más detalles

A.N.E.P. Consejo de Educación Técnico Profesional. Educación Media Tecnológica TERMODINÁMICA ASIGNATURA: TERMOFLUIDOS II

A.N.E.P. Consejo de Educación Técnico Profesional. Educación Media Tecnológica TERMODINÁMICA ASIGNATURA: TERMOFLUIDOS II CÓDIGO DEL PROGRAMA Tipo de Curso Plan Orientación Área Asignatura Año A.N.E.P. Consejo de Educación Técnico Profesional Educación Media Tecnológica TERMODINÁMICA ASIGNATURA: Segundo año (5 horas semanales)

Más detalles

En la figura animada que aparece más abajo se puede apreciar el funcionamiento del motor de 4 tiempos.

En la figura animada que aparece más abajo se puede apreciar el funcionamiento del motor de 4 tiempos. El Motor de 4 Tiempos Combustión Interna Cómo funciona un motor de 4 tiempos? Un motor de combustión interna es básicamente una máquina que mezcla oxígeno con combustible gasificado. Una vez mezclados

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

Calentadores y Sistemas de Fluido Térmico.

Calentadores y Sistemas de Fluido Térmico. Calentadores y Sistemas de Fluido Térmico. El objetivo del presente artículo es entregar información técnica para diseñar, especificar y operar sistemas de fluido térmico. Introducción Agua y vapor son

Más detalles

CUESTIONARIO DE MECÁNICA AUTOMOTRIZ

CUESTIONARIO DE MECÁNICA AUTOMOTRIZ CUESTIONARIO DE MECÁNICA AUTOMOTRIZ Si se enciende la luz de advertencia del nivel de líquido de frenos mientras conduce: Qué indica? a) Que va a retroceder b) Que existe alguna condición defectuosa en

Más detalles

MEDIR EL TIEMPO DE INYECCIÓN

MEDIR EL TIEMPO DE INYECCIÓN MEDIR EL TIEMPO DE INYECCIÓN Vicente Blasco Introducción En este artículo vamos exponer como se mide el tiempo de inyección en motores de gasolina utilizando el osciloscopio y pese a que el tiempo de inyección

Más detalles

Página 1 de 13 INDICE

Página 1 de 13 INDICE Página 1 de 13 INDICE Manual del programa 1- Introducción 2- Requisitos técnicos 3- Instalación 3.1- Instalación automática 3.2- Instalación manual 4- Cálculos de ciclos 4.1- Generalidades 4.2- Método

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 2 1.1. Representación de sistemas termodinámicos................. 2 1.2. Representación de sistemas termodinámicos.................

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo

TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo ÍNDICE: -Introducción...1. -Motor diesel...2,3,4,5. -motor de gasolina...6,7. -Bibliografía...8. INTRODUCCIÓN:

Más detalles

Ejemplo: para producir 1 t de vapor saturado a 1 bar de presión (punto de ebullición 100 C) es necesaria la siguiente energía:

Ejemplo: para producir 1 t de vapor saturado a 1 bar de presión (punto de ebullición 100 C) es necesaria la siguiente energía: 4 - Ejemplos 4-1 Retorno de condensado Condensado caliente hacia un sistema de drenaje con 98 C Ejemplo: para producir 1 t de vapor saturado a 1 bar de presión (punto de ebullición 100 C) es necesaria

Más detalles

Ciclo Joule -Brayton

Ciclo Joule -Brayton Cap. 13 Ciclo Joule -Brayton INTRODUCCIÓN Este capìtulo es similar al del ciclo Rankine, con la diferencia que el portador de energìas es el AIRE, por lo que lo consideraremos como gas ideal y emplearemos

Más detalles

REFRIGERACION Y AIRE ACONDICIONADO REFRIGERACION Y AIRE ACONDICIONADO

REFRIGERACION Y AIRE ACONDICIONADO REFRIGERACION Y AIRE ACONDICIONADO REFRIGERACION Y AIRE ACONDICIONADO REFRIGERACION Y AIRE ACONDICIONADO AC 03.1 - DEMOSTRACION DE BOMBA DE CALOR RF 01.1 - CAMARA FRIGORIFICA J - 1 J - 3 AC 03.1 - DEMOSTRACION DE BOMBA DE CALOR El equipo

Más detalles

Introducción. La refrigeración industrial en nuestro país es principalmente utilizada en:

Introducción. La refrigeración industrial en nuestro país es principalmente utilizada en: 1 2 Introducción La refrigeración se define como cualquier proceso de eliminación de calor. Más específicamente, se define como la rama de la ciencia que trata con los procesos de reducción y mantenimiento

Más detalles

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA.

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA. OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA. CRITERIOS GENERALES DE EVALUACIÓN: Se valorarán positivamente las contestaciones ajustadas a las preguntas,

Más detalles

ELIJA UNA DE LAS DOS OPCIONES A o B Y DESARROLLE CUATRO CUESTIONES DE LAS CINCO PROPUESTAS.

ELIJA UNA DE LAS DOS OPCIONES A o B Y DESARROLLE CUATRO CUESTIONES DE LAS CINCO PROPUESTAS. UNIVERSIDAD DE ZARAGOZA PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. - JUNIO DE 2005 Ejercicio de: TECNOLOGÍA INDUSTRIAL Tiempo disponible: 1 h. 30 m. Se valorará el uso de vocabulario y la notación científica.

Más detalles

NORMA ISO. Actualizado al 24 de abril de. Mauricio Vanín Freire Ingeniero Civil Electricista. Alvaro Waman Moraga Ingeniero Civil Electricista

NORMA ISO. Actualizado al 24 de abril de. Mauricio Vanín Freire Ingeniero Civil Electricista. Alvaro Waman Moraga Ingeniero Civil Electricista UNIVERSIDAD DE SANTIAGO DE CHILE Departamento de Ingeniería Eléctrica NORMA ISO Actualizado al 24 de abril de 2003 Mauricio Vanín Freire Ingeniero Civil Electricista Alvaro Waman Moraga Ingeniero Civil

Más detalles

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene

Más detalles

Tema 6 Diagramas de fase.

Tema 6 Diagramas de fase. Tema 6 Diagramas de fase. Los materiales en estado sólido pueden estar formados por varias fases. La combinación de estas fases define muchas de las propiedades que tendrá el material. Por esa razón, se

Más detalles

BUJÍAS y CALENTADORES Una historia basada en hechos reales

BUJÍAS y CALENTADORES Una historia basada en hechos reales Descubre a los protagonistas de presenta BUJÍAS y CALENTADORES Una historia basada en hechos reales BUJÍAS, LA CHISPA DE LA VIDA DE TU VEHÍCULO Los conductores tienen la palabra Usuario muy activo Registrado:

Más detalles

Manual de Presurizadoras LÍNEA ZERO.

Manual de Presurizadoras LÍNEA ZERO. Manual de Presurizadoras LÍNEA ZERO. Para tanque cisterna CIRCUITO AGUA FRÍA CIRCUITO AGUA CALIENTE Presurizadora CISTERNA B A Referencias: 1 4 1 4 5 Presurizador DAVICA Llave de paso Tanque de agua Control

Más detalles

Características de los motores

Características de los motores Características de los motores SUMARIO Cilindrada Relación de compresión Par motor y potencia Consumo específico Rendimiento Curvas características Elasticidad Disposición de los cilindros OBJETIVOS Identificar

Más detalles

Motores térmicos. Autor: Santiago Camblor. Índice

Motores térmicos. Autor: Santiago Camblor. Índice Motores térmicos Autor: Santiago Camblor Índice 1 Motores de combustión interna y de combustión externa 2 Turbina de vapor 3 Máquina de vapor 4 Motor de explosión Funcionamiento: 5 Turbina de gas 6 Ejercicios

Más detalles

Catálogo 2013-14. Resortes a Gas

Catálogo 2013-14. Resortes a Gas Catálogo 2013-14 Resortes a Gas Resortes a gas Quienes somos: Somos una empresa dedicada a la fabricación de resortes a gas de todo tipo y diseño, de acuerdo a la necesidades de nuestros clientes. Nuestra

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

MOTORES TÉRMICOS. Sistemas anexos. La refrigeración

MOTORES TÉRMICOS. Sistemas anexos. La refrigeración 3.- Objeto de la refrigeración en los motores Durante el funcionamiento del motor, la temperatura alcanzada en el interior de los cilindros es muy elevada, superando los 2000 ºC en el momento de la combustión.

Más detalles

Revista de actualidad de Higiene y Seguridad Laboral editada por la Cámara Argentina de Seguridad

Revista de actualidad de Higiene y Seguridad Laboral editada por la Cámara Argentina de Seguridad Revista de actualidad de Higiene y Seguridad Laboral editada por la Cámara Argentina de Seguridad www.cas-seguridad.org.ar/revista_ahora.htm Sistemas de Detección y Alarmas Existen muchos motivos para

Más detalles

Clase 5 Nubes y Precipitación

Clase 5 Nubes y Precipitación Clase 5 Nubes y Precipitación Preguntas claves: 1. cómo se forman las nubes? 2. por qué el aire a veces asciende? 3. qué determina el tipo de nubes? Formación de nubes De la clase anterior, recordemos

Más detalles

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal EJERCICIOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN Ejercicio 1: Calcula la energía, en KWh, que ha consumido una máquina que tiene 40 CV y ha estado funcionando durante 3 horas. Hay que pasar la potencia

Más detalles

TEMA: NEUMÁTICA E HIDRÁULICA

TEMA: NEUMÁTICA E HIDRÁULICA TEMA: NEUMÁTICA E HIDRÁULICA Índice A1.- Introducción a la neumática...2 A2.- Energía neumática...3 A3.- Principios físicos de los sistemas neumáticos...3 A.3.1.- Principio de Pascal...3 A.3.2.- Presión...3

Más detalles

Contenidos. Centrales térmicas convencionales. Elementos Esquema de funcionamiento. Centrales térmicas especiales

Contenidos. Centrales térmicas convencionales. Elementos Esquema de funcionamiento. Centrales térmicas especiales Centrales térmicas José Manuel Arroyo Sánchez Área de Ingeniería Eléctrica Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones Universidad de Castilla La Mancha 1 Contenidos

Más detalles

CICLO CERRADO DEL MOTOR DE HIDRÓGENO

CICLO CERRADO DEL MOTOR DE HIDRÓGENO CICLO CERRADO DEL MOTOR DE HIDRÓGENO 19 de abril 2013 Antonio Arenas Vargas Rafael González López Marta Navas Camacho Coordinado por Ángel Hernando García Colegio Colón Huelva Lise Meitner ESCUELA TÉCNICA

Más detalles

Reconversión con FORANE 427A, de un almacén frigorífico de baja temperatura que utilizaba R-22 en MODENA TERMINAL (Italia)

Reconversión con FORANE 427A, de un almacén frigorífico de baja temperatura que utilizaba R-22 en MODENA TERMINAL (Italia) Reconversión con FORANE 427A, de un almacén frigorífico de baja temperatura que utilizaba R-22 en MODENA TERMINAL (Italia) 1 El uso de R22 virgen está prohibido para el mantenimiento de instalaciones de

Más detalles

AJUSTES HHO PARA PROFESIONALES

AJUSTES HHO PARA PROFESIONALES AJUSTES HHO PARA PROFESIONALES A partir de que a instalado correctamente el generador de HHO : Hay una gran variedad de situaciones, que determinan que el HHO funcione muy bien en un motor y no funcione

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: MÁQUINAS TÉRMICAS I

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: MÁQUINAS TÉRMICAS I SÍLABO ASIGNATURA: MÁQUINAS TÉRMICAS I CÓDIGO: 8C0047 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO : Ing. Electrónica e Informática 1.2. ESCUELA PROFESIONAL : Ingeniería Mecatrónica 1.3. CICLO DE ESTUDIOS

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

XII.- CICLOS DE MAQUINAS TÉRMICAS pfernandezdiez.es

XII.- CICLOS DE MAQUINAS TÉRMICAS pfernandezdiez.es XII.- CICLOS DE MAQUINAS TÉRMICAS XII.1.- INTRODUCCIÓN Y CLASIFICACIÓN DE LAS MAQUINAS TÉRMICAS Se llaman máquinas térmicas a todos aquellos sistemas que funcionando periódicamente sean susceptibles de

Más detalles

INTRODUCCIÓN. El principio del funcionamiento del sistema de inyección es:

INTRODUCCIÓN. El principio del funcionamiento del sistema de inyección es: INTRODUCCIÓN Por el motivo de los vehículos evolucionaren muy rápidamente, el viejo carburador ya no más sirve para los nuevos motores, no que se refiere a la contaminación del aire, economía de combustible,

Más detalles

ESCUELA POLTÉCNICA NACIONAL MOTORES DE COMBUSTIÓN INTERNA

ESCUELA POLTÉCNICA NACIONAL MOTORES DE COMBUSTIÓN INTERNA ESCUELA POLTÉCNICA NACIONAL MOTORES DE COMBUSTIÓN INTERNA CICLO TEÓRICO DE UN MOTOR OTTO DE CUATRO TIEMPOS ADMISIÓN COMPRESIÓN 2 CICLO TEÓRICO DE UN MOTOR OTTO DE CUATRO TIEMPOS COMBUSTIÓN Y EXPANSIÓN

Más detalles

Tecnología Industrial. Septiembre 2014. Opción A. Cuestión 1. Datos: probeta de sección cuadrada. lado=2cm longitud=25cm Δl= 2,5 10-3 cm carga= 10000N comportamiento elástico. tensión de rotura= 130 MPa

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

Hibridación energética con gas natural

Hibridación energética con gas natural Hibridación energética con gas Hibridación energética con gas 1. Qué es la hibridación? 2. La hibridación de diferentes fuentes 3. Hibridación de tecnologías con la misma fuente 2.1 Electricidad y gas

Más detalles

La energía y sus transformaciones

La energía y sus transformaciones La energía y sus transformaciones Índice 1 Definición de energía 2 Energías renovables y no renovables 2.1 Energías no renovables 2.2 Energías renovables 3 Transformaciones energéticas 4 Conservación de

Más detalles

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles.

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles. 1. Hidráulica. En los modernos centros de producción y fabricación, se emplean los sistemas hidráulicos, estos producen fuerzas y movimientos mediante fluidos sometidos a presión. La gran cantidad de campos

Más detalles

Tecnología Industrial II

Tecnología Industrial II Tecnología Industrial II Exámenes de Selectividad I.E.S. El Palmeral Prof. Cristóbal García Ruiz BACHILLERATO b) El alumno elegirá una sola de las dos opciones, sin mezclarlas, indicando la opción elegida.

Más detalles

Problemas de Termotecnia

Problemas de Termotecnia Problemas de Termotecnia 2 o curso de Grado de Ingeniería en Explotación de Minas y Recursos Energéticos Profesor Gabriel López Rodríguez (Área de Máquinas y Motores Térmicos) Curso 2011/2012 Tema 2: Primer

Más detalles

Examen de TERMODINÁMICA II Curso 1997-98

Examen de TERMODINÁMICA II Curso 1997-98 ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra Examen de TERMODINÁMICA II Curso 997-98 Obligatoria centro - créditos de agosto de 998 Instrucciones para el examen de TEST: Cada pregunta

Más detalles

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO Glosario. (Del lat. glossarĭum). 1. m. Catálogo de palabras oscuras o desusadas, con definición o explicación de cada una de ellas. 2. m. Catálogo de palabras

Más detalles

NEUMÁTICA: EL PODER DEL AIRE.

NEUMÁTICA: EL PODER DEL AIRE. NEUMÁTICA: EL PODER DEL AIRE. 1. INTRODUCCIÓN. Video de introducción: ver video (1) Introducción a la Neumática.rm La neumática es la parte de la Tecnología que emplea el aire comprimido para producir

Más detalles

Unidad didáctica: Simbología Neumática e Hidráulica

Unidad didáctica: Simbología Neumática e Hidráulica Unidad didáctica: Simbología Neumática e Hidráulica CURSO 4º ESO Autor: Juan 1 Unidad didáctica: Simbología Neumática e Hidráulica ÍNDICE 1.- Norma UNE-101 149 86 (ISO 1219 1 y ISO 1219 2). 2.- Designación

Más detalles

LADO DE ALTA PRESIÓN: Situadosalasalidadel compresor. Impide la transmisión de vibraciones del compresor. Refrigerante en fase vapor.

LADO DE ALTA PRESIÓN: Situadosalasalidadel compresor. Impide la transmisión de vibraciones del compresor. Refrigerante en fase vapor. INTRODUCCIÓN ACCESORIOS DEL CIRCUITO FRIGORÍFICO Para la constitución de un equipo frigorífico son necesarios: compresor, condensador, evaporador, expansor y tuberías de interconexión. Estos son imprescindibles

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM PROGRAMA ANALITICO Asignatura: Termodinámica II Código: Unidad I: Mezclas de Gases 0112T Objetivo General:

Más detalles