Más ejercicios y soluciones en fisicaymat.wordpress.com

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Más ejercicios y soluciones en fisicaymat.wordpress.com"

Transcripción

1 OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato (Body Mass Measurement Device) que se basa en el movimiento vibratorio armónico. Cuando el astronauta se coloca en él, el aparato inicia un movimiento vibratorio y mide el periodo de oscilación, a partir del cual calcula la masa del astronauta. Supongamos que el aparato dispone de un muelle de constante elástica k = 900 N/m. Cuando se coloca en el aparato un astronauta de masa m, medimos un periodo de oscilación T = 2 s. a) Calcule la masa m del astronauta. b) Calcule la amplitud máxima A para que la aceleración de la masa no supere a max =g 0 /4, donde g 0 = 9,81 m/s 2 es la aceleración de la gravedad en la superficie de la Tierra. Calcule la velocidad máxima para dicha amplitud. c) En t=0 el astronauta se separa una distancia x 0 = A hacia la derecha y se suelta con velocidad nula. Escriba la ecuación de la posición del astronauta en función del tiempo en unidades S.I. Represéntela gráficamente para dos periodos de oscilación. Aragón 2014 Opción A - Junio 2- Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra a 1 cm a la derecha de su posición de equilibrio, calcule: a) La fuerza ejercida sobre el bloque. b) La aceleración del bloque. c) La energía potencial elástica, la energía cinética y la energía total del sistema. Aragón 2014 Opción A Septiembre 3- Por una cuerda tensa se propaga, en el sentido positivo del eje X, una onda sinusoidal transversal. Los puntos de la cuerda oscilan con una frecuencia f = 2 Hz. En la gráfica se representa la posición de los puntos de la cuerda en el instante t=0. a) Determine la amplitud de la onda, su longitud de onda y la velocidad de propagación de la onda. b) Calcule la máxima velocidad de oscilación transversal de los puntos de la cuerda. c) Escriba la función de onda correspondiente, en unidades S.I. Aragón 2014 Opción B - Septiembre 13

2 4- Una masa m unida a un muelle realiza un movimiento armónico simple. La figura representa su energía potencial en función de la elongación x. a) Represente la energía cinética y la energía total en función de x. b) Calcule la constante elástica del muelle. c) Si la masa es m =1 kg, calcule su velocidad máxima. En qué posición x se alcanza esta velocidad? Aragón 2013 Opción A - Junio 5- Por una cuerda tensa se propaga, en el sentido positivo del eje X, una onda sinusoidal transversal a una velocidad de 10 m/s. Los puntos de la cuerda oscilan con una frecuencia f = 2 Hz. En el instante t = 0 el punto de la cuerda en x = 0 pasa por la posición de equilibrio con una velocidad de oscilación transversal positiva de 1 m/s. a) Calcule la amplitud de la onda y su fase inicial. b) Calcule la máxima velocidad de oscilación transversal de los puntos de la cuerda. c) Escriba la función de onda correspondiente, en unidades S.I. Aragón 2013 Opción B - Junio 6- Una onda transversal se propaga de izquierda a derecha, según el eje OX, a lo largo de una cuerda horizontal tensa e indefinida, siendo su longitud de onda λ = 10 cm. La onda está generada por un oscilador que vibra, en la dirección del eje OY, con un movimiento armónico simple de frecuencia f = 100 Hz y amplitud A = 5 cm. EN el instante inicial t = 0, el punto x = 0 de la cuerda tiene elongación nula. a) Escriba una expresión matemática de la onda indicando el valor numérico de todos los parámetros (en unidades S.I.). Escriba la ecuación que describe el movimiento de un punto situado a 30 cm a la derecha del origen. b) Determine la velocidad de propagación de la onda y la velocidad máxima de oscilación de un punto cualquiera de la cuerda. c) Dibuje un esquema de la cuerda en una longitud de 20 cm, en el instante t = 0. Aragón 2013 Opción A Septiembre 14

3 7- Una partícula de masa m = 25 g, unida a un muelle de constante elástica k = 10 N/m, oscila armónicamente con una amplitud de 4 cm sobre una superficie horizontal sin rozamiento. a) Deduzca la expresión de la aceleración de la partícula en función del tiempo y represéntela gráficamente. Indique sobre dicha gráfica qué instantes de tiempo corresponden al paso de la partícula por las posiciones de equilibrio y de máxima elongación. (Tome el origen de tiempos cuando la partícula pasa con velocidad positiva por la posición de equilibrio, x = 0). b) Calcule las energías cinética y potencial elástica de la partícula cuando se encuentra en la posición x = 1 cm. Aragón 2012 Opción A - Septiembre 8- a) Explique, e ilustre con un ejemplo, el fenómeno de las ondas estacionarias. Escriba la ecuación de una onda estacionaria y explique el significado de cada uno de sus parámetros. b) Una cuerda tensa, fija por sus dos extremos y de longitud L = 65 cm, oscila transversalmente con una frecuencia f = 220 Hz, teniendo la onda estacionaria un único vientre. b1) Determine la longitud de onda y represente gráficamente la oscilación del primer y segundo armónico indicando nodos y vientres. b2) Calcule la velocidad de propagación de la onda en la cuerda. Aragón 2011 Opción A Junio 9- Una bolita de masa m = 0,5 kg, apoyada sobre una superficie horizontal sin rozamiento, está unida a una pared mediante un muelle de masa despreciable y constante recuperadora k = 50 N/m. Se desplaza m hacia la derecha 2 cm, y se suelta con velocidad nula de forma que la bolita comienza a oscilar armónicamente en torno a su posición de equilibrio, O. a) Determine la frecuencia ω y el periodo T de la oscilación. Escriba la ecuación del movimiento armónico de la bolita. b) Represente gráficamente la velocidad de m en función del tiempo. c) Calcule la energía mecánica de m. Aragón 2011 Opción B Junio 15

4 10- Una partícula de masa m = 4 g oscila armónicamente a lo largo del eje OX en la forma x(t)=acos(ωt) con una amplitud de 5 cm y un periodo de oscilación T = 0,2 s. Determine y represente gráficamente: a) La velocidad de la partícula en función del tiempo. b) Las energías cinética y potencial de la posición x. Calcule la energía mecánica de la partícula. Aragón 2011 Opción A - Septiembre 11- a) Establezca la diferencia entre ondas longitudinales y transversales. Cite un ejemplo de onda real para cada una de ellas. b) Por una cuerda tensa, situada a lo largo del eje OX, se propaga una onda descrita por la ecuación descrita por la ecuación y(x,t)=0,5sen[2π(25t+x+0,25)], donde todas las magnitudes están expresadas en unidades del Sistema Internacional. Justifique si es una onda transversal o longitudinal y determine la amplitud, la longitud de onda, la frecuencia, la fase inicial, la velocidad y el sentido de propagación de la onda. Aragón 2011 Opción B - Septiembre 12- Una onda transversal se propaga de izquierda a derecha, según el eje OX, a lo largo de una cuerda horizontal tensa e indefinida, siendo la distancia mínima entre dos puntos que oscilan en fase 10 cm. La onda está generada por un oscilador que vibra, en la dirección del eje OY, con un movimiento armónico simple de frecuencia f = 100 Hz y amplitud A=5cm. a) Escribe una expresión matemática de la onda indicando el valor numérico de todos los parámetros (en el instante inicial el punto x = 0, posición del oscilador, tiene elongación nula). b) Determina la velocidad de propagación de la onda y la velocidad máxima de oscilación de un punto cualquiera de la cuerda. Aragón 2010 Opción B - Junio 13- La ecuación de una onda armónica que se propaga según el eje OX, por una cuerda horizontal, viene dada por y(x,t)=0,05sen[π(10x+20t+0,25)], donde todas las magnitudes se expresan en el S.I. de unidades. a) Determina la amplitud, la longitud de onda, la fase inicial y la velocidad, dirección y sentido de propagación de la onda. Justifica si la onda es longitudinal o transversal. b) Calcula la elongación y la velocidad transversal de oscilación del punto situado en x=0,5 m en el instante t=0,25 s. Aragón 2010 Opción A Septiembre 16

5 14- La partícula de masa m = 10 g de la figura 1a describe el movimiento armónico simple en torno a su posición de equilibrio representado en la figura 1b (rozamiento despreciable). a) Escribe la expresión de la elongación, en función del tiempo, indicando el significado y valor numérico de cada parámetro. b) Representa la evolución temporal de la energía potencial elástica y la energía total de la partícula. Aragón 2009 Opción B - Junio 15- a) Escribe la expresión de la elongación, en función del tiempo, del oscilador armónico. A partir de ella deduce y representa la evolución temporal de la velocidad y la aceleración de dicho oscilador. b) Un cuerpo realiza un movimiento armónico simple. Escribe la ecuación de dicho movimiento, en unidades del S.I., en las siguientes condiciones: La aceleración máxima es 2π 2 cm/s 2 ; el periodo T = 4 s; y, al iniciarse el movimiento, la elongación era 4 cm y el cuerpo se alejaba de la posición de equilibrio. Aragón 2009 Opción B - Septiembre 16- Una onda armónica transversal de frecuencia f = 2 Hz, longitud de onda λ = 20 cm y amplitud A = 4 cm, se propaga por una cuerda en el sentido positivo del eje OX. En el instante de tiempo t = 0, la elongación en el punto x = 0 es cm. a) Expresa matemáticamente la onda y represéntela gráficamente en b) Calcula la velocidad de propagación de la onda y determina, en función del tiempo, la velocidad de oscilación transversal de la partícula situada en x = 5 cm. Aragón 2008 Opción A Junio 17

6 17- Una partícula de masa m = 32 g, unida a un muelle de constante elástica k = 20 N/m, oscila armónicamente sobre una superficie horizontal sin rozamiento con una amplitud de 3 cm. a) Determina, y representa gráficamente, la velocidad de la partícula en función del tiempo. b) Calcula la energía mecánica de la partícula. Qué fuerza se ejerce sobre la masa cuando se encuentra a 1 cm de su posición de equilibrio? Aragón 2008 Opción B - Junio 18- a) Un cuerpo de masa m, unido al extremo libre de un muelle, realiza un movimiento armónico simple horizontal (sin rozamiento). Escribe y justifica las expresiones de las energías cinética, potencial y mecánica asociadas al mismo. Representa gráficamente dichas energías frente a la elongación. b) Un cuerpo de masa m = 0,1 k, unido al extremo libre de un muelle horizontal de constante k = 10 Nm -1, realiza oscilaciones de amplitud A = 8 cm. Con qué velocidad se mueve la masa m cuando la elongación es 4,8 cm? Para que valor de la elongación coinciden la energía potencial y la cinética? Aragón 2008 Opción A - Septiembre 19- Una onda transversal armónica puede expresarse en la forma:. a) Explica el significado físico de cada una de las magnitudes que aparecen en esta expresión. b) Si A = 0,01 m, ω = 100π rad/s, δ = 0 y la velocidad de propagación de la onda es de 300 m/s, representa el perfil de la onda, y(x), en el instante t = 0,02 s. Aragón 2007 Opción A - Junio 20- Un cuerpo de masa M = 0,1 kg oscila armónicamente en torno al origen O de un eje OX. En la figura se representa la aceleración de M en función del tiempo. a) Determina la frecuencia y la amplitud de oscilación de M. b) Determina y representa gráficamente la energía cinética de M en función del tiempo. Aragón 2007 Opción B - Junio 18

7 21- Una partícula de masa m = 20 g. Oscila armónicamente en la forma x(t) = Asenωt. En la figura se representa la velocidad de la partícula en función del tiempo. a) Determina la frecuencia angular ω y la amplitud A de la oscilación. b) Calcula la energía cinética y la potencial de la masa m en función del tiempo. Justifica cuanto vale la suma de ambas energías. Aragón 2007 Opción A - Septiembre 22- Una partícula de masa m, que sólo puede moverse a lo largo del eje OX, se sitúa inicialmente (t=0) en la posición x = x 0 y se libera con velocidad nula. Sobre ella actúa una fuerza, dirigida según el eje OX, F = -kx, donde k es una constante positiva. a) Qué tipo de movimiento realiza la partícula? Describe analítica y gráficamente cómo dependen del tiempo su posición, x(t) y su velocidad, v(t). b) Para m = 0,1 kg, k = 30 N/m y x 0 = 5 cm, calcula las energías cinética y potencial de la partícula cuando pasa por x = 0. Aragón 2006 Opción A - Junio 23- La bolita de un péndulo simple realiza una oscilación aproximadamente horizontal y armónica, en presencia del campo gravitatorio terrestre, con un periodo T = 2 s y una amplitud A = 5 cm. a) Determina y representa gráficamente la velocidad de la bolita en función del tiempo, v(t). Toma origen de tiempo, t = 0, cuando la bolita pasa por el centro de su oscilación desplazándose en sentido positivo. b) Cuál sería el periodo de oscilación de este péndulo en la superficie de la Luna, donde la intensidad del campo gravitatorio es la sexta parte del terrestre? Aragón 2006 Opción B Septiembre 19

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 4 Movimiento ondulatorio Ejercicio 1 La nota musical la tiene una frecuencia, por convenio internacional de 440 Hz. Si en el aire se propaga con una velocidad de 340 m/s y

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

Ejercicios de FÍSICA DE 2º DE BACHILLERATO

Ejercicios de FÍSICA DE 2º DE BACHILLERATO Movimiento Armónico Simple, Ondas, Sonido Ejercicios de FÍSICA DE 2º DE BACHILLERATO INDICE 1 ONDAS... 2 1.1 MOVIMIENTO ARMÓNICO... 2 1.2 MOVIMIENTO ONDULATORIO... 5 1.3 EL SONIDO... 10 2 INTERACCIÓN GRAVITATORIA...

Más detalles

VIBRACIONES Y ONDAS. Cuestiones

VIBRACIONES Y ONDAS. Cuestiones VIBRACIONES Y ONDAS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante.

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

Problemas Resueltos Primera Parte

Problemas Resueltos Primera Parte IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

SOLUCIONARIO FÍSICA 2.º BACHILLERATO

SOLUCIONARIO FÍSICA 2.º BACHILLERATO FÍSICA.º BACHILLERATO SOLUCIONARIO MADRID - BARCELONA - BUENOS AIRES - CARACAS GUATEMALA - LISBOA - MÉXICO - NUEVA YORK - PANAMÁ SAN JUAN - BOGOTÁ - SANTIAGO - SÃO PAULO AUCKLAND - HAMBURGO - LONDRES -

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 2 2013 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2013. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio)

Más detalles

Relación Problemas Tema 8: Movimiento Ondulatorio

Relación Problemas Tema 8: Movimiento Ondulatorio 0.- Una partícula vibra según la ecuación Relación Problemas Tema 8: Movimiento Ondulatorio y 0,03 sen 10 t 2 (S.I.) Calcular: a) Amplitud, periodo y frecuencia del movimiento. b) Tiempo mínimo que transcurre

Más detalles

Departamento de Física y Química Ies Dr.Rodríguez Delgado Ronda

Departamento de Física y Química Ies Dr.Rodríguez Delgado Ronda ANDALUCÍA / JUNIO98. LOGS / FÍSICA / VIBRACIONS Y ONDAS / OPCIÓN A/ Nº 3 3. Una partícula de 0,5 kg que describe un movimiento armónico simple de frecuencia 5/ Hz tiene, inicialmente, una energía cinética

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

2 (6370 + 22322) 10 = 2.09 10 J

2 (6370 + 22322) 10 = 2.09 10 J OPCIÓN A 1. La Agencia Espacial Europea lanzó el pasado 27 de Marzo dos satélites del Sistema de Navegación Galileo. Dichos satélites de masa 1,5 toneladas cada uno, orbitan ya a 22 322 km sobre la superficie

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo.

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo. ENERGIA La energía se define como la capacidad que tiene un sistema para producir trabajo. Tipos de energía almacenada: son aquellos que se encuentran dentro del sistema 1. Energía potencial: es debida

Más detalles

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ).

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ). Opción A. Ejercicio 1 Una masa m unida a un muelle realiza un movimiento armónico simple. La figura representa su energía potencial en función de la elongación x. (1 punto) [a] Represente la energía cinética

Más detalles

amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB;

amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB; E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 5: VIBRACIONES Y ONDAS F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

DINÁMICA FCA 05 ANDALUCÍA

DINÁMICA FCA 05 ANDALUCÍA 1. Con un arco se lanza una flecha de 0 g, verticalmente hacia arriba, desde una altura de m y alcanza una altura máxima de 50 m, ambas sobre el suelo. Al caer, se clava en el suelo una profundidad de

Más detalles

5. APLICACIONES DE LAS LEYES DE NEWTON

5. APLICACIONES DE LAS LEYES DE NEWTON 5. APLICACIONES DE LAS LEYES DE NEWTON En este capítulo extenderemos las leyes de Newton al estudio del movimiento en trayectorias curvas e incluiremos los efectos cuantitativos del rozamiento Rozamiento

Más detalles

PRÁCTICA 4 ESTUDIO DEL RESORTE

PRÁCTICA 4 ESTUDIO DEL RESORTE INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos

Más detalles

Exámenes de Selectividad de Física

Exámenes de Selectividad de Física Exámenes de Selectividad de Física Enunciados de las pruebas correspondientes a los cursos 2005 a 2014 Universidades de Andalucía CURSO 2013-2014 CRITERIOS ESPECÍFICOS DE CORRECCIÓN El enunciado del ejercicio

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, junio 2010. Fase general OPCION A Cuestión 1.- Enuncie la 2 a ley de Kepler. Explique en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y dónde es mínima. Enuncie

Más detalles

INMACULADA HERNÁNDEZ CARRASCO ROSARIO GARVÍN FLORES NAZARET CAMPOS MARTÍN

INMACULADA HERNÁNDEZ CARRASCO ROSARIO GARVÍN FLORES NAZARET CAMPOS MARTÍN INMACULADA HERNÁNDEZ CARRASCO ROSARIO GARVÍN FLORES NAZARET CAMPOS MARTÍN PROBLEMA 2 A través de la ecuación: X=7sen (2t+Π/6) Nos pide a) El desplazamiento de la partícula cuando t=0s Con la ecuación de

Más detalles

2001 J Opción 2 5. Qué se entiende por difracción y en qué condiciones se produce?. ( 1 punto)

2001 J Opción 2 5. Qué se entiende por difracción y en qué condiciones se produce?. ( 1 punto) Página 1 1999 J 1. Al pulsar una cuerda de guitarra, inicialmente en reposo, ésta vibra de tal modo que cada uno de sus puntos comienza a moverse en torno a su posición inicial según la dirección perpendicular

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

8. Un carro de 5 kg está moviéndose horizontalmente

8. Un carro de 5 kg está moviéndose horizontalmente Liceo Nº1 Javiera Carrera Departamento de Física L. Lastra, M. Ramos. 3ºM P.C. Guía Nº 3. Trabajo y Energía 1. Selección Múltiple 1 1. Un niño sostiene un bloque de 40 N en su brazo por 10 s. Su brazo

Más detalles

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO OPCIÓN A. POBLEMA 1. Un planeta gigante tiene dos satélites, S1 y S2, cuyos periodos orbitales son T 1 = 4.52 días terrestres y T 2 = 15.9 días terrestres respectivamente. a) Si el radio de la órbita del

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

LOGSE - JUNIO 2008 F Í S I C A

LOGSE - JUNIO 2008 F Í S I C A PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE - JUNIO 2008 F Í S I C A INDICACIONES AL ALUMNO 1. El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas

Más detalles

Chuletarios y ejercicios de física 2º de Bachillerato

Chuletarios y ejercicios de física 2º de Bachillerato Chuletarios y ejercicios de física Julián Moreno Mestre Estudiante de Ciencias Físicas Universidad Complutense de Madrid "Lo que hacemos por nosotros mismos, muere con nosotros. Lo que hacemos por los

Más detalles

ELECTROMAGNETISMO Profesor: Juan T. Valverde

ELECTROMAGNETISMO Profesor: Juan T. Valverde CAMPO MAGNÉTICO 1.- Considere un átomo de hidrógeno con el electrón girando alrededor del núcleo en una órbita circular de radio igual a 5,29.10-11 m. Despreciamos la interacción gravitatoria. Calcule:

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

Tema 1. Movimiento armónico simple (m.a.s.)

Tema 1. Movimiento armónico simple (m.a.s.) Tema 1. Movimiento armónico simple (m.a.s.) Si observas los movimientos que suceden alrededor tuyo, es muy probable que encuentres algunos de ellos en los que un objeto se mueve de tal forma que su posición

Más detalles

Módulo 5: La luz. Ondas electromagnéticas

Módulo 5: La luz. Ondas electromagnéticas Módulo 5: La luz 1 Ondas electromagnéticas Partículas cargadas eléctricamente (cargas) en movimiento forman una corriente eléctrica Una corriente eléctrica que cambia (debida al movimiento) crea un campo

Más detalles

Trabajo, energía y potencia

Trabajo, energía y potencia Trabajo, energía y potencia Qué es la energía? Idea intuitiva: La energía es la responsable de los cambios en los sistemas físicos puedes dar algunos ejemplos? Transformaciones energéticas en aparatos

Más detalles

Guía didáctica de la materia FÍSICA Prueba de Acceso a la Universidad (PAU) Curso Académico 2015-2016

Guía didáctica de la materia FÍSICA Prueba de Acceso a la Universidad (PAU) Curso Académico 2015-2016 Guía didáctica de la materia FÍSICA Prueba de Acceso a la Universidad (PAU) Curso Académico 015-016 Prof Pedro Córdoba orres Coordinador de Física Departamento de Física Matemática y de Fluidos de la UNED

Más detalles

Grado en Química. Física General I DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES. Mecánica del sólido rígido. UNIVERSIDAD DE JAÉN

Grado en Química. Física General I DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES. Mecánica del sólido rígido. UNIVERSIDAD DE JAÉN Grado en Química DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES UNIVERSIDAD DE JAÉN Física General I Mecánica del sólido rígido. 1.- Dos puntos se encuentran sobre un disco que gira, en torno

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

EL MOVIMIENTO ONDULATORIO

EL MOVIMIENTO ONDULATORIO EL MOVIMIENTO ONDULATORIO IDEAS PRINCIPALES Ondas electromagnéticas Ondas mecánicas Longitud de onda Velocidad de fase Fase y oposición de fase Intensidad de una onda Atenuación y absorción Interferencias

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz Entre la la física física conceptual aplicada MétodoIDEA Ondas 4º de eso Féli A. Gutiérrez Múzquiz Contenidos 1. CARACTERÍSTICAS DE LAS O DAS 2. I TERFERE CIAS...... 3 6 3. O DAS ESTACIO ARIAS.. 2 1. CARACTERÍSTICAS

Más detalles

Examen de Selectividad de Física. Septiembre 2009. Soluciones

Examen de Selectividad de Física. Septiembre 2009. Soluciones Examen de electividad de Física. eptiembre 2009. oluciones Primera parte Cuestión 1.- Razone si son verdaderas o falsas las siguientes afirmaciones: El valor de la velocidad de escape de un objeto lanzado

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I LEYES DE NEWTON PARA EL MOVIMIENTO SEGUNDA LEY DE NEWTON

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I LEYES DE NEWTON PARA EL MOVIMIENTO SEGUNDA LEY DE NEWTON GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I LEYES DE NEWTON PARA EL MOVIMIENTO SEGUNDA LEY DE NEWTON SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS LA SEGUNDA LEY DE NEWTON 1. Introducción

Más detalles

Tema 7. Movimientos oscilatorio y ondulatorio

Tema 7. Movimientos oscilatorio y ondulatorio Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 7. Movimientos oscilatorio y ondulatorio

Más detalles

ENUNCIADOS EXAMENES FISICA UNED Prueba de Acceso a la Universidad (PAU) 2011-2014

ENUNCIADOS EXAMENES FISICA UNED Prueba de Acceso a la Universidad (PAU) 2011-2014 ENUNCIADOS EXAMENES FISICA UNED Prueba de Acceso a la Universidad (PAU) 011-014 FÍSICA Criterios específicos de corrección y calificación PAU-Selectividad En la asignatura de FÍSICA se presentan al estudiante

Más detalles

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE 1. OBJETIVO Estudiar el Principio de Conservación de la Energía Mecánica en un móvil que se desplaza impulsado por un resorte.

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

; En el caso de fuerzas conservativas, de donde:

; En el caso de fuerzas conservativas, de donde: MECÁNICA DE FLUIDOS. PROBLEMAS RESUELTOS 1. Ecuación diferencial de la estática de fluidos en el caso particular de fuerzas conservativas. Analizar la relación entre las superficies equipotenciales y las

Más detalles

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r 1 PAU Física, junio 2011 OPCIÓN A Cuestión 1.- Un satélite que gira con la misma velocidad angular que la Tierra (geoestacionario) de masa m = 5 10 3 kg, describe una órbita circular de radio r = 3,6 10

Más detalles

14. Ondas mecánicas. Introducción. Características de las ondas. Ondas mecánicas

14. Ondas mecánicas. Introducción. Características de las ondas. Ondas mecánicas 14. Introducción Las ondas son un fenómeno natural común e importante. Las ondas de choque, las ondas en el agua, las ondas de presión así como las ondas de sonido son ejemplos cotidianos de ondas. El

Más detalles

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior.

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior. EXAMEN DE FÍSICA SELECTIVIDAD 04-05 JUNIO OPCIÓN A Problema. Dos lunas que orbitan alrededor de un planeta desconocido, describen órbitas circulares concéntricas con el planeta y tienen periodos orbitales

Más detalles

Ejercicios trabajo y energía de selectividad

Ejercicios trabajo y energía de selectividad Ejercicios trabajo y energía de selectividad 1. En un instante t 1 la energía cinética de una partícula es 30 J y su energía potencial 12 J. En un instante posterior, t 2, la energía cinética de la partícula

Más detalles

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

= 10 sin 2π (500 t 0,5 x)

= 10 sin 2π (500 t 0,5 x) UNIDD ctividades de final de unidad Ejercicios básicos. La frecuencia del sonido que se obtiene con un diapasón es 440 Hz. Si la velocidad del sonido en el aire es 40 m s, calcula la longitud de onda correspondiente

Más detalles

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 1) (P Jun94) Se lanza verticalmente un satélite de masa m = 2000 kg desde la superficie de la Tierra, y se pide: a)energía total

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

UNIVERSIDAD APEC ESCUELA DE INGENIERIA CATEDRA DE FÍSICA. Prácticas de Laboratorio de Física Mecánica (TEC-114) NOMBRE: MATRICULA: GRUPO: PROFESOR:

UNIVERSIDAD APEC ESCUELA DE INGENIERIA CATEDRA DE FÍSICA. Prácticas de Laboratorio de Física Mecánica (TEC-114) NOMBRE: MATRICULA: GRUPO: PROFESOR: UNIVERSIDAD APEC ESCUELA DE INGENIERIA CATEDRA DE FÍSICA Prácticas de Laboratorio de Física Mecánica (TEC-114) NOMBRE: MATRICULA: GRUPO: PROFESOR: Elaborado por: Ing. Emma K. Encarnación E. ENERO 2005

Más detalles

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS TRJO Y ENERGI: FUERZS NO CONSERVTIVS Determinar (atendiendo a los conceptos de trabajo y energía, es decir, sin utilizar la 2ª ley de Newton) la aceleración que alcanza un bloque de masa m al bajar por

Más detalles

Tema 8: Movimiento Ondulatorio

Tema 8: Movimiento Ondulatorio Física de º Bachillerato Tema 8: Movimiento Ondulatorio 8.0 Introducción 8.1 Movimiento oscilatorio. Movimiento armónico simple. 8. Movimiento ondulatorio. Características. 8.3 Ecuación del Movimiento

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

Capítulo 14. El sonido

Capítulo 14. El sonido Capítulo 14 El sonido 1 Ondas sonoras Las ondas sonoras consisten en el movimiento oscilatorio longitudinal de las partículas de un medio. Su velocidad de transmisión es: v = B ρ en donde ρ es la densidad

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

TEMA I.16. Ondas Sonoras. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.

TEMA I.16. Ondas Sonoras. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto. TEMA I.16 Ondas Sonoras Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 Personas Adultas PARTE ESPECÍFICA: DIBUJO TÉCNICO OPCIÓN B DATOS DEL ASPIRANTE CALIFICACIÓN Apellidos:. Nombre:.... EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 EJERCICIO 1. CIRCUNFERENCIAS

Más detalles

BLOQUE 3.2 ONDAS. Se puede transferir energía a un cuerpo distante mediante otro cuerpo portador: por ejemplo, la bola que

BLOQUE 3.2 ONDAS. Se puede transferir energía a un cuerpo distante mediante otro cuerpo portador: por ejemplo, la bola que BLOQUE 3. ONDAS La mayor parte de la información que recibimos nos llega en forma de algún tipo de onda. El sonido, la luz, las señales que reciben nuestros aparatos de radio y televisores son ejemplos

Más detalles

SUBSECTOR DE APRENDIZAJE: Física NOMBRE GUIA Y/O MÓDULO DE APRENDIZAJE: Sonido NIVEL: 1º Medio

SUBSECTOR DE APRENDIZAJE: Física NOMBRE GUIA Y/O MÓDULO DE APRENDIZAJE: Sonido NIVEL: 1º Medio SUBSECTOR DE APRENDIZAJE: Física NOMBRE GUIA Y/O MÓDULO DE APRENDIZAJE: Sonido NIVEL: 1º Medio OBJETIVOS GUIA Y/O MODULO DE APRENDIZAJE: Explicar el origen y la propagación del sonido y los fenómenos de

Más detalles

Mecánica II. 2010 Departamento de Física Universidad de Sonora

Mecánica II. 2010 Departamento de Física Universidad de Sonora Mecánica II Dr. Roberto Pedro Duarte Zamorano 010 Departamento de Física Universidad de Sonora Temario 1) Cinemática rotacional. ) Dinámica rotacional. 3) Las leyes de Newton en sistemas de referencia

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

Respuesta: ( 1; 2] [ [3; 1)

Respuesta: ( 1; 2] [ [3; 1) UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA DIRECCION DE POSTGRADO - CARRERA DE FISICA DIPLOMADO EN FISICA MODULO MATEMATICAS PRUEBA DE EVALUACION (16 de Junio de 016)......... Apellido

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE NIVEL SUPERIOR

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE NIVEL SUPERIOR PRUEBA DE ACCESO A CICLOS FORMATIVOS DE NIVEL SUPERIOR PARTE ESPECÍFICA Opción B: TECNOLÓGICO FÍSICA MÓDULO EJERCICIOS PRUEBA PROGRAMACIÓN Y RECURSOS SOLUCIONARIO SOLUCIONARIO Módulo FÍSICA OPCIÓN B (Ámbito

Más detalles

CUESTIONES Y PROBLEMAS APARECIDOS EN LOS EXÁMENES DE SELECTIVIDAD. T4. Magnét. T3. Eléctr.

CUESTIONES Y PROBLEMAS APARECIDOS EN LOS EXÁMENES DE SELECTIVIDAD. T4. Magnét. T3. Eléctr. I.E.S. Al-Ándalus. Dpto. de Física y Química. Física 2º Bachillerato. Problemas y cuestiones de Selectividad - 1 - CUESTIONES Y PROBLEMAS APARECIDOS EN LOS EXÁMENES DE SELECTIVIDAD. DISTRIBUCIÓN DE LAS

Más detalles

INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo

INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo Competencia: INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo Reconoce la importancia que tiene las ondas en nuestra cotidianidad, e interpreta todas las características

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

La energía de las ondas

La energía de las ondas 7 La energía de las ondas 1. Propagación y clasificación de las ondas 102 2. Magnitudes características de las ondas 104 3. Algunos fenómenos ondulatorios 106 4. El sonido 108 5. La luz. Reflexión de la

Más detalles

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA Selectividad Andalucía 2001: 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

Capítulo 5 Oscilaciones

Capítulo 5 Oscilaciones Capítulo 5 Oscilaciones 9 Problemas de selección - página 77 (soluciones en la página 120) 6 Problemas de desarrollo - página 82 (soluciones en la página 121) 75 5.A PROBLEMAS DE SELECCIÓN Sección 5.A

Más detalles

Instrumentos y aparatos de medida: El osciloscopio

Instrumentos y aparatos de medida: El osciloscopio Instrumentos y aparatos de medida: El osciloscopio Para entender el osciloscopio es necesario conocer el concepto básico de los tubos de rayos catódicos (Ferdinand Braum). El monitor o pantalla es quien

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

Cinética de partículas Leyes de Newton. Primera Ley de Newton o Ley de Inercia

Cinética de partículas Leyes de Newton. Primera Ley de Newton o Ley de Inercia Cinética de partículas Leyes de Newton Primera Ley de Newton o Ley de Inercia Segunda ley de Newton: Fuerza, Masa y Aceleración Momentum o Cantidad de Movimiento Principios de Conservación Tercera ley

Más detalles

ángulo θ. a) θ=0 o, b) θ=45 o, c) θ=60 o, d) θ=90 o, e) θ=120 o, f) θ=180 o.

ángulo θ. a) θ=0 o, b) θ=45 o, c) θ=60 o, d) θ=90 o, e) θ=120 o, f) θ=180 o. FISICA 1 (UNSAM -BUC-2-2009) Trabajo y Energía Cinética 1) Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de 500 N, que forma un ángulo θ con la dirección del

Más detalles