MOVIMIENTO ARMÓNICO AMORTIGUADO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MOVIMIENTO ARMÓNICO AMORTIGUADO"

Transcripción

1 MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN AMORTIGUAMIENTO Un movimiento armónico simple 1 exento de rozamientos está regido por una ecuación del tipo siguiente: d z + ω 0 z = 0 (1) dt donde z representa la variable característica del movimiento (puede ser una longitud, un ángulo u otra magnitud física) y ω 0 se denomina frecuencia angular del movimiento. La frecuencia angular se relaciona con el periodo (tiempo invertido en una oscilación completa) a través de la relación T 0 = π/ω 0, y la solución de la ecuación (1), la que describe la variación de la magnitud z con el tiempo, es de la forma: z ( t) = Acos( ω 0t + δ ) () Véase que en esta ecuación existen DOS constantes arbitrarias, la primera es A (amplitud, valor máximo de la oscilación alrededor de una situación de equilibrio), y la segunda es δ, que nos indica la fase inicial, es decir, la separación de la posición de equilibrio en el instante inicial t = 0. Uno de los sistemas físicos más sencillos en los que puede estudiarse el movimiento armónico simple es el péndulo simple (o péndulo matemático), un punto material suspendido de un hilo inextensible y sin peso, que puede oscilar en torno a una posición de equilibrio. La distancia del punto pesado al punto de suspensión se denomina longitud del péndulo simple. Aunque un péndulo matemático no tiene existencia real, ya que los puntos materiales y los hilos sin masa son entes abstractos, en la práctica se 1 Se recomienda repasar la teoría del movimiento armónico simple. 1/6

2 puede considerar como tal a un cuerpo de reducidas dimensiones suspendido de un hilo inextensible y de masa despreciable comparada con la del cuerpo. El péndulo simple describe un movimiento armónico simple en torno a su posición de equilibrio si sus oscilaciones son de amplitud suficientemente pequeña (en la práctica cuando la amplitud sea inferior a 15º), y la ecuación diferencial que describe dichas oscilaciones se puede escribir como: d θ g + θ = 0 dt L donde θ designa al ángulo formado por el hilo con la vertical, L es la longitud de dicho hilo y g es la aceleración de la gravedad. El periodo del péndulo simple y su frecuencia angular están dados por: (3) T π L = = π (4) ω g 0 donde L representa la longitud medida desde el punto de suspensión hasta la masa puntual y g es la aceleración de la gravedad en el lugar donde se ha instalado el péndulo. Finalmente la ecuación que nos da el ángulo en función del tiempo es de la misma forma de la ecuación (), siendo en este caso la variable dependiente θ(t). B) SISTEMA AMORTIGUADO Cuando el sistema oscilador que se considera está sometido a rozamientos, la descripción del movimiento resulta algo más complicada. Refiriéndonos en concreto al caso del péndulo simple, si se tiene en cuenta una fuerza de rozamiento proporcional a la velocidad (buena aproximación en muchos casos), la ecuación diferencial del movimiento es la siguiente: d θ dθ + γ + ω0θ = 0 dt dt donde γ es la constante de amortiguamiento y los demás símbolos tienen el significado que se señaló anteriormente. La solución de esta ecuación tiene la forma matemática de oscilaciones amortiguadas, es decir, oscilaciones en que la amplitud decrece con el tiempo. (5) /6

3 Sin entrar en la teoría de resolución de ecuaciones diferenciales, diremos que cuando el amortiguamiento es pequeño, la variación temporal del ángulo θ con el tiempo, a la que designaremos & θ & dθ θ = puede escribirse como: dt & dθ γt / θ = = Ae cos( ωt + δ ) (6) dt Debido a la presencia del término exponencial, esta ecuación expresa que la amplitud se va reduciendo a medida que transcurre el tiempo; además, en ella aparece el término ω como frecuencia angular. El valor de ω es γ 0 ω = ω (7) Esto supone que la frecuencia angular del movimiento amortiguado es MENOR que la del movimiento con amortiguamiento nulo, o dicho alternativamente, que el periodo T del movimiento amortiguado crece respecto al del movimiento no amortiguado. * Significado físico de & θ Ya que & θ es la derivada temporal de un ángulo, su significado es la velocidad angular instantánea que tiene el péndulo en su movimiento alrededor del punto de suspensión. No debe confundirse este concepto con el de la frecuencia angular ω, aunque el símbolo ω usado aquí para esta ultima se emplea en otros contextos para representar a la velocidad angular. A partir de la ecuación (6) puede obtenerse si se desea el valor del ángulo como función del tiempo por integración. La obtención completa de la solución θ = θ(t) se presenta en la sección Apéndice, pero no es necesaria para las medidas que van a tomarse en esta práctica. ω γ En este contexto, pequeño significa que 0 >> 1. 3/6

4 MEDIDAS EXPERIMENTALES Se va a medir la velocidad angular máxima en sucesivas oscilaciones de un péndulo simple consistente en una pequeña bola de diámetro D colgada de un hilo de longitud L, sometido a un amortiguamiento débil, con objeto de verificar si a medida que transcurre el tiempo la variación de la velocidad angular es una exponencial decreciente. En primer lugar, obsérvese que a partir de la ecuación 6) puede afirmarse que la velocidad angular máxima en cada oscilación es: & / max = Ae γt (8) θ Cuando un péndulo oscila, la velocidad angular máxima ocurre en el momento en que pasa por la vertical. Nosotros mediremos experimentalmente esa velocidad angular máxima de modo indirecto, a través de la medida del tiempo de interrupción t i de un haz fotoeléctrico cuando la bola del péndulo pasa a través del mismo. (No debe confundirse nuestra medida experimental, t i, con el tiempo t en la ecuación (8), que empieza a contarse desde que el péndulo pasa por primera vez por la vertical). El montaje experimental se muestra en la figura al margen. La puerta 1 mide el tiempo de interrupción de la oscilación i- ésima, t i, el cual nos permite calcular la velocidad angular máxima durante esa oscilación (D es el diámetro de la bola y L la longitud del péndulo): ( ) & D θ max i = (9) L t i θ & max L La puerta 1 debe colocarse debajo de la bola cuando el hilo del péndulo esté vertical, para medir así la velocidad angular máxima. La puerta se conecta en modo de impulsos, con el fin de contar el número de semioscilaciones (la bola del péndulo atraviesa dos vez la puerta en cada oscilación, una a la ida y otra a la vuelta). Puerta Puerta 1 D 4/6

5 PROCEDIMIENTO EXPERIMENTAL Se pone a oscilar el péndulo, asegurándose de que oscile en un plano (no debe oscilar como péndulo cónico). Primero se determina el periodo de oscilación usando un cronómetro y contando 0 oscilaciones. Después se realizan las medidas de tiempo de interrupción con el montaje de puertas fotoeléctricas. Una vez que se pone a cero la puerta, cada vez que el péndulo pasa a través de la puerta 1 queda registrado el tiempo de interrupción t i (en milisegundos). Debe tomarse el valor de tiempo de interrupción cada 10 semioscilaciones, para cada una de esas medidas hay que poner de nuevo a cero la puerta 1, pues su registro de tiempos es acumulativo. (Véase la sección EJEMPLO DE MEDIDAS) EJEMPLO DE MEDIDAS Puerta t i (ms) semiosc. osc. ( θ& ) (rad/s) max i t (s) , ,5 0,60 6, ,0 0,4 16, ,5 0,38, ,0 0,6 3, ,0 0,19 37, ,0 0,09 48, ,5 0,06 54, ,0 0,198 61, ,5 0,19 68, ,5 0,187 76, ,0 0,18 83, ,5 0,175 89, ,0 0,169 96, ,5 0, , ,0 0, , ,0 0, , ,0 0,151 18, ,5 0, ,34 Péndulo simple, longitud 1.79 m. Periodo de la oscilación.68 s. Diámetro de la bola del péndulo 5.1 mm. (La 1ª columna contiene la lectura de la puerta, igual a semioscilaciones+1) 5/6

6 TRATAMIENTO DE DATOS 1. A partir de los tiempo de interrupción se calculan las velocidades angulares máximas de acuerdo con la ecuación (9) (en realidad se calcula el valor absoluto, ya que podemos tomar los datos en cualquiera de los dos sentidos de la oscilación). Véase 5ª columna en la tabla ejemplo.. Conociendo el periodo de oscilación del péndulo, se calcula el tiempo que corresponde a cada una de las oscilaciones medidas. Véase columna 6ª en la tabla ejemplo. 3. Se representa la velocidad angular máxima frente al tiempo, y se procede a ajustar los puntos experimentales a una curva exponencial de la forma dada por la ecuación (8). Si no se dispone de un programa de ajuste que realice directamente el trabajo, hágase una representación semilogarítmica. 0,30 0,8 0,6 θ max (rad/s). 0,4 0, 0,0 0,18 0,16 0,14 0, t (s) Representación gráfica de la velocidad angular en función del tiempo(datos procedentes de tabla de medidas). No se presentan los parámetros del ajuste. 6/6

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO PRÁCTICA REMTA PÉNDUL FÍSIC AMRTIGUAD 1. BJETIV Estudio del comportamiento de un péndulo físico débilmente amortiguado. Determinación de la constante de amortiguamiento, γ, del periodo, T, de la frecuencia

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

Movimiento armónico conceptos básicos

Movimiento armónico conceptos básicos Movimiento armónico conceptos básicos Llamamos movimiento oscilatorio cuando un móvil realiza un recorrido que se repite periódicamente, y que tiene un máximo y un mínimo respecto a un punto. Por ejemplo,

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten bien presente la diferencia entre dos clases de cantidades: las que representan propiedades físicas básicas del sistema

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.

Más detalles

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA. TEM: TEOREM DEL TRJO Y L ENERGÍ. PRINCIPIO DE CONSERVCIÓN DE L ENERGÍ. Problema experimento #10: Trabajo y Conservación de la energía con plano inclinado. Medir el espesor de un pequeño bloque de madera

Más detalles

Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR

Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR PÉNDULO: Es un sistema físico que puede oscilar bajo la acción gravitatoria u otra característica física y que está

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

ONDAS ESTACIONARIAS FUNDAMENTO

ONDAS ESTACIONARIAS FUNDAMENTO ONDAS ESTACIONARIAS FUNDAMENTO Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a

Más detalles

DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO

DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO Sugerencias para quien imparte el curso: Hay que privilegiar el aspecto utilitario del Cálculo, haciendo ver que ante la necesidad de resolver problemas

Más detalles

5. PÉNDULO SIMPLE. MEDIDA DE g

5. PÉNDULO SIMPLE. MEDIDA DE g 5. PÉNDULO SIMPLE. MEDIDA DE g OBJETIVO El objetivo de la práctica es medir la aceleración de la gravedad en el laboratorio, g, a partir del estudio del movimiento armónico de un péndulo simple. MATERIAL

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

MOVIMIENTOS EN UNA Y DOS DIMENSIONES MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.

Más detalles

2 (6370 + 22322) 10 = 2.09 10 J

2 (6370 + 22322) 10 = 2.09 10 J OPCIÓN A 1. La Agencia Espacial Europea lanzó el pasado 27 de Marzo dos satélites del Sistema de Navegación Galileo. Dichos satélites de masa 1,5 toneladas cada uno, orbitan ya a 22 322 km sobre la superficie

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DE LA PARTICULA MOVIMIENTO CIRCULAR. AUTORES Santiago Prieto, Maximiliano Rodríguez, Ismael

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 4 Movimiento ondulatorio Ejercicio 1 La nota musical la tiene una frecuencia, por convenio internacional de 440 Hz. Si en el aire se propaga con una velocidad de 340 m/s y

Más detalles

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Sumario 1. Frecuencia una señal periódica

Sumario 1. Frecuencia una señal periódica LOGO REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ Departamento de Ingeniería Electrónica Tema 3 Técnicas de Modulación

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

Estimación de la gravedad mediante

Estimación de la gravedad mediante Estimación de la gravedad mediante métodos experimentales. Padilla Robles Emiliano, González Amador María Fernanda, Cabrera Segoviano Diego : UMDI-Juriquilla, UNAM En esta práctica se utilizarán conocimientos

Más detalles

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

EL PÉNDULO SIMPLE. 1. Objetivo de la práctica. 2. Material. Laboratorio de Física de Procesos Biológicos. Fecha: 13/12/2006

EL PÉNDULO SIMPLE. 1. Objetivo de la práctica. 2. Material. Laboratorio de Física de Procesos Biológicos. Fecha: 13/12/2006 Laboratorio de Física de Procesos Bioógicos EL PÉNDULO SIMPLE Fecha: 13/12/2006 1. Objetivo de a práctica Estudio de pénduo simpe. Medida de a aceeración de a gravedad, g. 2. Materia Pénduo simpe con transportador

Más detalles

Unidad: Movimiento Circular

Unidad: Movimiento Circular Unidad: Movimiento Circular En esta clase estudiaremos el movimiento de un auto que se mueve con rapidez constante en línea recta y que entra a una órbita circular. El objetivo de la guía es entender de

Más detalles

HOMOGENEIDAD DIMENSIONAL

HOMOGENEIDAD DIMENSIONAL HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud

Más detalles

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones?

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones? Movimiento armónico simple Problemas del capítulo 1. Un sistema de masa-resorte realiza 20 oscilaciones completas en 5 segundos. Cuál es el período y la frecuencia de las oscilaciones? 2. Un sistema de

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la practica es determinar la densidad de líquidos utilizando la balanza de Möhr y su aplicación a la determinación de la densidad de disoluciones

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

Manual de laboratorio de termodinámica I. Ley de Gay-Lussac

Manual de laboratorio de termodinámica I. Ley de Gay-Lussac Ley de Gay-Lussac Conceptos relacionados Presión, temperatura, volumen, coeficiente de expansión térmica, ecuación de estado de los gases ideales, constante universal de los gases. Principio El estado

Más detalles

En todo momento se supone que el cambio de posición del interruptor es brusco; es decir, se produce en un intervalo nulo de tiempo.

En todo momento se supone que el cambio de posición del interruptor es brusco; es decir, se produce en un intervalo nulo de tiempo. 31 32 Se denomina expresión temporal o expresión instantánea a una expresión matemática en la que el tiempo es la variable independiente. Es decir, si se desea conocer el valor de la corriente (o el de

Más detalles

Valor evaluación = 70 % Fecha de entrega: Agosto 20 de 2012. Valor presentación taller = 30% Fecha de evaluación: a partir de agosto 20 de 2012.

Valor evaluación = 70 % Fecha de entrega: Agosto 20 de 2012. Valor presentación taller = 30% Fecha de evaluación: a partir de agosto 20 de 2012. COLEGIO NACIONAL LOPERENA FISICA GRADO UNDECIMO PLAN DE RECUPERACION DE FISICA (SEGUNDO PERIODO) TEMPERATURA CALOR MOVIMIENTO PERIÓDICO MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO PENDULAR. NOTA: Desarrolla

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina

Más detalles

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II ANÍBAL CADENA E. CATEDRÁTICO DE LA UNIVERSIDAD 1 INTRODUCCIÓN A lo largo del curso, usted trabajara la parte teórica mediante la elaboración de mapas mentales

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

MOVIMIENTO DE UN OSCILADOR ARMÓNICO AMORTIGUADO

MOVIMIENTO DE UN OSCILADOR ARMÓNICO AMORTIGUADO MOVIMIENTO DE UN OSCILADOR ARMÓNICO AMORTIGUADO Alejo Hernández - Alihuén García - Franco Poggio - Renzo Espósito - Samuel Céspedes Turno Tarde - Curso de Física Experimental 1 (2009) - Departamento de

Más detalles

Tema 3: Acústica física III

Tema 3: Acústica física III Tema 3: Acústica física III Interferencia y ondas estacionarias. Principio, aplicación y demostración. Ondas estacionarias en un tubo. Ondas estacionarias 1D. Demostración. Modos propios y teoría de ondas

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Cinemática en 2D: Movimiento Circular.

Cinemática en 2D: Movimiento Circular. Cinemática en 2D: Movimiento Circular. Movimiento circular uniforme Otro caso particular de movimiento en dos dimensiones es el de una partícula que se mueve describiendo una trayectoria circular, con

Más detalles

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal Análisis Estructural - 9 Enunciado Dada la estructura de la Figura, idealizada mediante un marco con vigas rígidas y columnas inextensibles, sometida a una carga armónica lateral de 8 t, se pide: ) Determinar

Más detalles

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) :

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) : Movimiento circular uniforme (MCU) : Es el movimiento de un cuerpo cuya trayectoria es una circunferencia y describe arcos iguales en tiempos iguales. Al mismo tiempo que recorremos un espacio sobre la

Más detalles

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f.

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f. Actividad 1 Sobre el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento vibratorio armónico simple, perpendicular a la cuerda, que tiene una elongación máxima de 0,01 m y una frecuencia

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente:

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente: altura En la vida cotidiana las rectas tangentes a una curva u objeto podrán observar de muy diferentes maneras, como son el punto de contacto de la rueda de un automóvil, patineta. El deslizamiento de

Más detalles

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #1 ECUACIONES DIFERENCIALES 1. Definición. Solución de una Ecuación Diferencial. Clasificación UNIDAD # ECUACIONES DIFERENCIALES DE

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

Modelo Académico de Calidad para la Competitividad AIND-01 92/98

Modelo Académico de Calidad para la Competitividad AIND-01 92/98 9. Matriz de Valoración ó Rúbrica MATRIZ DE VALORACIÓN O RÚBRICA Siglema: AIND-01 Nombre del Módulo: Nombre del Alumno: PSP evaluador: Grupo: Fecha: Resultado de Aprendizaje: 1.1 Determina la gráfica,

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Verano 2008 Objetivos Experiencia 1: Viscosidad y Empuje En esta experiencia de laboratorio vamos a estudiar el movimiento

Más detalles

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación Unidad 1: El movimiento de los cuerpos i. Objetivos Observar las distintas magnitudes físicas que se ponen de manifiesto

Más detalles

Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador.

Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador. ITM, Institución universitaria Guía de Laboratorio de Física Mecánica Práctica 11: Resortes y energía. Implementos Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador.

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

ALUMNO: CURSO: 2 MECANICA ASIGNATURA: ESTABILIDAD I FECHA:

ALUMNO: CURSO: 2 MECANICA ASIGNATURA: ESTABILIDAD I FECHA: 3.1.- La viga AD soporta las dos cargas de 40 lb que se muestran en la figura. La viga se sostiene mediante un apoyo fijo en D y por medio del cable BE, el cual está conectado al contrapeso W. Determine

Más detalles

Análisis de los reactivos de la Evaluación de Concepciones Físicas (Efraín Soto Apolinar)

Análisis de los reactivos de la Evaluación de Concepciones Físicas (Efraín Soto Apolinar) Análisis de los reactivos de la Evaluación de Concepciones Físicas (Efraín Soto Apolinar) Reactivo 1: Las figuras adjuntas muestran las gráficas de aceleración en función del tiempo para cinco objetos.

Más detalles

FISICA 1 ( UNSAM - BUC 2-2004) CINEMATICA

FISICA 1 ( UNSAM - BUC 2-2004) CINEMATICA FISIC 1 ( UNSM - UC 2-2004) CINEMTIC 1) a) Puede ser negativo : Un escalar SI NO Modulo de un vector SI NO Componente de un vector SI NO b)? Existe alguna relación entre el vector posición y un desplazamiento?

Más detalles

PRUEBA EXPERIMENTAL: RESISTENCIA Y RESISTIVIDAD (10 puntos)

PRUEBA EXPERIMENTAL: RESISTENCIA Y RESISTIVIDAD (10 puntos) PRUEBA EXPERIMENTAL: RESISTENCIA Y RESISTIVIDAD (10 puntos) OBJETIVO Medida de la resistencia eléctrica y estimación de la resistividad de un conductor. El conductor empleado está formado principalmente

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

Pontificia Universidad Javeriana. Depto. Física. Periodo 1210. Sesión de problemas.

Pontificia Universidad Javeriana. Depto. Física. Periodo 1210. Sesión de problemas. 1. Problema experimento sobre medición e incertidumbre Objetivo: Medir la constante de elasticidad de un resorte por dos métodos: El método de la deformación (MD) y el método de movimiento armónico simple

Más detalles

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos Fuerzas 1. Al igual que las demás fuerzas, las fuerzas gravitatorias se suman vectorialmente. Considerar un cohete que viaja de la Tierra a la Luna a lo largo de una línea recta que une sus centros. (a)

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

Sucesiones (páginas 511 515)

Sucesiones (páginas 511 515) A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

TEMA 6 CORRIENTE ALTERNA

TEMA 6 CORRIENTE ALTERNA TEMA 6 CORRIENTE ALTERNA CARACTERÍSTICAS DE LA CORRIENTE ALTERNA Un circuito de corriente alterna consta de una combinación de elementos: resistencias, condensadores y bobinas y un generador que suministra

Más detalles

BLOQUE I - CUESTIONES Opción A Calcula el cociente entre la energía potencial y la energía cinética de un satélite en orbita circular.

BLOQUE I - CUESTIONES Opción A Calcula el cociente entre la energía potencial y la energía cinética de un satélite en orbita circular. El alumno realizará una opción de cada uno de los bloques La puntuación máxima de cada problema es de puntos, y la de cada cuestión es de 1,5 puntos. LOQUE I - CUESTIONES Calcula el cociente entre la energía

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

El Teorema Pi y la modelación

El Teorema Pi y la modelación El Teorema Pi y la modelación Luis Quintanar Medina Instituto Superior de Matemática (INSUMA) Aguascalientes, Ags. Magnitudes, unidades y dimensiones Para describir los fenómenos que nos rodean es necesario

Más detalles

Funciones de varias variables: problemas propuestos

Funciones de varias variables: problemas propuestos Funciones de varias variables: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

Cinemática de la partícula

Cinemática de la partícula Cinemática de la partícula Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

Tema: Movimiento rectilíneo uniformemente variado.

Tema: Movimiento rectilíneo uniformemente variado. LABORATORIO DE FÍSICA Tema: Movimiento rectilíneo uniformemente variado. 1. Objetivo: Establecer las leyes y ecuaciones para una partícula que tiene una trayectoria rectilínea con M.R.U.V. 2. Introducción

Más detalles

EXTRAPOLACIÓN DESDE EL PLANO INCLINADO A LA CAÍDA LIBRE

EXTRAPOLACIÓN DESDE EL PLANO INCLINADO A LA CAÍDA LIBRE RETOMANDO A GALILEO: MEDIDA DE LA GRAVEDAD POR EXTRAPOLACIÓN DESDE EL PLANO INCLINADO A LA CAÍDA LIBRE 1.- INTRODUCCIÓN El presente trabajo de investigación nace de una pregunta de clase: Un cuerpo más

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

CIDEAD. TECNOLOGÍA INDUSTRIAL I. MECANISMOS. PROBLEMAS 1.

CIDEAD. TECNOLOGÍA INDUSTRIAL I. MECANISMOS. PROBLEMAS 1. 1. Hallar la fuerza que es necesario aplicar para vencer una resistencia de 1000 Kg., utilizando: a. Una polea móvil. b. Un polipasto potencial de tres poleas móviles. c. Un polipasto exponencial de tres

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la práctica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Ley de Ohm. Determinar si un material tiene un comportamiento eléctrico lineal (ohmico). Determinar la resistencia óhmica de materiales

Ley de Ohm. Determinar si un material tiene un comportamiento eléctrico lineal (ohmico). Determinar la resistencia óhmica de materiales Ley de Ohm 1 Ley de Ohm 1. OBJETIOS Determinar si un material tiene un comportamiento eléctrico lineal (ohmico). Determinar la resistencia óhmica de materiales 2. FUNDAMENTO TEÓICO La ley de Ohm establece

Más detalles

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que se toma como unidad. El proceso de medida se puede realizar comparando directamente

Más detalles

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A)

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) Cinemática La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo

Más detalles