9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS"

Transcripción

1 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la practica es determinar la densidad de líquidos utilizando la balanza de Möhr y su aplicación a la determinación de la densidad de disoluciones con distinta concentración. MATERIAL Balanza de Möhr (1) Inmersor sólido () Jinetillos de tres pesos (3) Probetas (4) Agua destilada y disolución problema. FUNDAMENTO TEÓRICO Según el principio de Arquímedes: todo cuerpo sumergido en un fluido, experimenta un empuje vertical, E, de igual magnitud pero de sentido opuesto al peso del fluido que desplaza dicho cuerpo. E1 ρ1 = V g [9-1] en donde ρ 1 es la densidad del líquido y g la aceleración de la gravedad. Si el mismo cuerpo se introduce en un líquido de densidad distinta, ρ, el nuevo empuje será: = V g [9-] E ρ 1

2 Por lo tanto, la densidad de un líquido ρ, puede obtenerse a partir de una densidad conocida ρ 1 y de la determinación del empuje relativo E / E 1, utilizando la relación: E ρ = ρ1 [9-3] E1 Descripción de la balanza de Möhr Definimos el momento de una fuerza o torque,, como el producto vectorial entre la fuerza y la distancia ( = r xf ) donde r es el brazo medido desde el punto de aplicación de la fuerza F al punto fijo del sistema. La balanza de Möhr es una palanca de primer género con brazos desiguales, cuyo equilibrio se alcanza cuando los momentos debidos a los pesos suspendidos de ambos brazos se igualan. El brazo más corto está formado por un contrapeso montado sobre un tornillo de forma que se puede ajustar su distancia al eje de giro de la balanza, y con ello, el momento que genera. El brazo más largo está dividido en 10 partes iguales. Para conseguir el equilibrio, se utilizan unos jinetillos, cuyos pesos están en la proporción p, 0.1p y 0.01p siendo p el peso del jinetillo mayor. Los jinetillos colocados en distintas posiciones sobre el brazo largo de la balanza originan diferentes momentos Determinación del empuje relativo MÉTODO Para determinar el empuje relativo que el inmersor experimenta al ser sumergido en el líquido problema, respecto del, procederemos del modo siguiente: a) Se equilibra la balanza con el inmersor seco, fuera de la probeta, suspendido del extremo del brazo largo de la balanza, utilizando el tornillo del contrapeso, sin poner ningún jinetillo. Se tiene entonces que los momentos generados por el contrapeso, contrapeso y el inmersor, inmersor son iguales: contrapeso= inmersor [9-4] b) Se ponen unos 150 cm 3 de en la probeta más ancha, y se introduce el inmersor, y sin tocar el contrapeso, se colocan jinetillos sobre el brazo largo de la balanza hasta equilibrarla. Debe ponerse especial cuidado en que el inmersor esté totalmente sumergido y que no toque paredes ni fondo. En esta situación, el momento generado por el contrapeso se equilibra con el momento resultante del inmersor, empuje y jinetillos: contrapeso = + 1 [9-5] inmersor jinetillos E

3 De las ecuaciones [9-4] y [9-5] se deduce que: jinetillos 1 = E [9-6] c) Se repite una operación idéntica a la anterior, pero con el inmersor sumergido en el líquido problema. Por un razonamiento análogo se llega a que: jinetillos = Elíquido [9-7] Dividiendo las ecuaciones [9-6], [9-7] y teniendo en cuenta la ecuación [9-3] se llega a: jinetillos 1 jinetillos = E E lxe = lxe E = E = ρ ρ [9-8] Donde l es la longitud del brazo largo de la balanza. Utilizando la ec. [9-3] tenemos que la densidad del podemos ponerla en función de la densidad del y de los momentos relativos o de los empujes relativos: ρ = ρ [9-9] El valor de la densidad del, para una temperatura igual a la temperatura ambiente del laboratorio, puede encontrarse en la tabla siguiente: (Consideraremos ρ =0). Tabla (9.1): T(º C) ρ (g/cm 3 ) T (º C) ρ (g/cm 3 ) 0 0, , , , , , , , , , , , , , , , ,99 Para realizar el cálculo de los momentos se busca el equilibrio primero con el jinetillo mayor, de peso p, colocándolo en la ranura del brazo largo de la balanza más cercana al fulcro (o punto de giro), y desplazándolo hacia el extremo. Si así no se consigue el equilibrio utilizaremos el jinetillo mediano, de peso 0.1p, e iremos colocándolo en las distintas ranuras hasta equilibrar la balanza. Si tampoco se alcanza el equilibrio con éste, utilizaremos el jinetillo menor, de peso 0.01p, y procederemos de la misma manera. Según la ecuación [9-9], necesitamos conocer la proporción que guardan los momentos del y del problema, no sus valores reales; por ello normalizamos a la unidad 3

4 los momentos, considerando 1 el momento generado por el jinetillo mayor situado en la posición más alejado del fulcro, expresado en unidades arbitrarias (u.a.), ver tabla (9.): Tabla (9.): Momento (u.a.) División Grande Mediano Pequeño Un ejemplo del cálculo del momento creado por el peso de los jinetillos se muestra a continuación : jinetillos = = 0.54 u.a. El error cometido en, también relativo, será el mínimo momento que somos capaces de medir..- Determinación de la densidad en función de la concentración. Vacíese un volumen V' 0 cm 3 de la disolución inicial problema, y sustitúyase por un volumen igual de destilada. Operando como se indica en el apartado, determínese la densidad de esta nueva disolución. Repítase esta operación (vaciado y sustitución por destilada) hasta 5 veces. Calcúlense las concentraciones de cada disolución mediante la relación: C V V Cm m ( ') = 1 V [9-10] siendo m un índice de orden que nos va indicando el número de veces que hemos realizado la operación de dilución. Calcúlense todas las concentraciones suponiendo que la concentración de la disolución original C o es del 10%. 4

5 Nombre Curso Fecha Apellidos Grupo Letra de prácticas DATOS EXPERIMENTALES Medida Posición de los jinetillos (1-10) jinetillos Grande Mediano Pequeño (u.a.) H O Líquido problema Dilución 1 Dilución Dilución 3 Dilución 4 Dilución 5 Escribir en la tabla los valores de la incertidumbre de medida directa al usar los jinetillos y al medir el volumen. Variable Valor Unidades jinetillos V Indicar la densidad del para la temperatura a la que trabajas, a partir de los datos de la tabla (9.1) de densidades, interpolando si es necesario. AGUA T (ºC) DENSIDAD (g/cm 3 ) 5

6 Nombre Curso Fecha Apellidos Grupo Letra de prácticas RESUMEN DE RESULTADOS Calcular las incertidumbres de medida indirecta de las densidades y de las concentraciones, teniendo en cuenta que vienen determinadas por las incertidumbres de medida directa de los momentos y del volumen del y de la concentración, respectivamente. FÓRMULAS CALCULADAS ρ LIQUIDO Cm 6

7 Medida ρ LIQ (g/cm 3 ) ρ LIQ (g/cm 3 ) ρ LIQ ± ρ LIQ (g/cm 3 ) Cm (%) Cm (%) Cm ± Cm H O Líquido problema 10 0 Dilución 1 Dilución Dilución 3 Dilución 4 Dilución 5 Representar gráficamente, reflejando la escala y las unidades correspondientes, los datos experimentales obtenidos para la concentración en función de la densidad. 7

8 Ajusta a una recta por el método de regresión lineal (Cm = a ρ LIQUIDO + b) los valores experimentales obtenidos para la concentración en función de la densidad del. Rellena en los paréntesis de la tabla las unidades que asignas a las variables Y i y X i, respectivamente. i Y i ( ) X i ( ) X i Y i X i Σ Calcula los valores de la pendiente de ajuste, a, y del término independiente, b, con sus respectivas unidades: Variable Valor Unidades Pendiente Tno. Indep. 8

9 Cuestiones : 1.- Por qué es importante que el inmersor esté totalmente sumergido en el líquido?.- Por qué hay que tener en cuenta la división n en que se coloca cada uno de los jinetillos? 3.- Es correcto afirmar que el peso de los jinetillos usados para equilibrar la balanza con el inmersor sumergido en es exactamente igual al empuje que experimenta? Por qué? 4.- Se coloca un cubo de en un platillo de una balanza y un peso igual en el otro platillo. Atendiendo a la definición de empuje y a la 3ª ley de Newton (principio de acción y reacción), Se desequilibrará el sistema por introducir un dedo en el sin tocar el cubo? 9

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la práctica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS 6.- Principio de Arquímedes.

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que se toma como unidad. El proceso de medida se puede realizar comparando directamente

Más detalles

23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS

23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS 23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS OBJETIVO El objetivo de la práctica es familiarizarse con el uso del microscopio, determinar el aumento lineal de

Más detalles

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos

Más detalles

ρ 20º/20º = ρ a /ρ ref (I)

ρ 20º/20º = ρ a /ρ ref (I) Práctica N 1 Determinación de Densidad en los Alimentos Objetivos Determinar la densidad de diferentes muestras de alimentos utilizando el picnómetro. Determinar la densidad de diferentes muestras de alimentos

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

LABORATORIO DE FÍSICA GENERAL 10ª Edición EXPERIENCIA N 06

LABORATORIO DE FÍSICA GENERAL 10ª Edición EXPERIENCIA N 06 ABORATORIO DE FÍSIA GENERA 10ª Edición DAFI FF UNMSM DENSIDAD DE SÓIDOS Y ÍQUIDOS EXPERIENIA N 06 Arquímedes (Siracusa, actual Italia, h. 287 a..-id., 212 a..) Matemático e ingeniero griego, considerado

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Práctica 2 DENSIDAD RELATIVA Y DENSIDAD APARENTE DE UN MATERIAL EN POLVO

Práctica 2 DENSIDAD RELATIVA Y DENSIDAD APARENTE DE UN MATERIAL EN POLVO Práctica 2 DENSIDAD RELATIVA Y DENSIDAD APARENTE DE UN MATERIAL EN POLVO 1. Objetivos docentes Conocer un método para determinar la densidad de un material en polvo. Conocer los distintos tipos de densidades

Más detalles

La densidad es la masa específica, es decir, la masa por unidad de volumen. ρ ' m V

La densidad es la masa específica, es decir, la masa por unidad de volumen. ρ ' m V Página 1 I INTRODUCCIÓN. FUNDAMENTO TEORICO La densidad es la masa específica, es decir, la masa por unidad de volumen ρ ' m V Existen muchos procedimientos para determinar la densidad. Unos se basan en

Más detalles

MEDIDA DE PEQUEÑAS LONGITUDES.

MEDIDA DE PEQUEÑAS LONGITUDES. EDIDA DE PEQUEÑAS LOGITUDES. PROPÓSITO: Conocimiento de los instrumentos del laboratorio y su uso en la determinación de la longitud, masa y densidad. Instrumento especial: Calibrador o pié de Rey. Instrumento

Más detalles

PRÁCTICA 1. Mediciones

PRÁCTICA 1. Mediciones PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..

Más detalles

Tema 13: La materia Ciencias Naturales 1º ESO página 1. Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy

Tema 13: La materia Ciencias Naturales 1º ESO página 1. Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy Tema 13: La materia Ciencias Naturales 1º ESO página 1 TEMA 13: LA MATERIA, BASE DEL UNIVERSO 1. Qué es materia? Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO 1 Aplicaciones de la integral 3.6 uerza y presión de un fluido Cuando en un fluido contenido por un recipiente se encuentra un cuerpo sumergido, este experimenta una fuerza, perpendicular a cualquiera

Más detalles

Ejercicios resueltos sobre el estado de agregación de la materia. Estudio de las disoluciones

Ejercicios resueltos sobre el estado de agregación de la materia. Estudio de las disoluciones Ejercicios resueltos sobre el estado de agregación de la materia. Estudio de las disoluciones Recordemos algunos conceptos teóricos en nuestro nivel. Toda disolución tiene dos componentes: a) Soluto b)

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

FICHA DE EVALUACION - PRACTICA Nro. 3: Mediciones directas e indirectas. Propagación de errores.

FICHA DE EVALUACION - PRACTICA Nro. 3: Mediciones directas e indirectas. Propagación de errores. FICHA DE EVALUACION - PRACTICA Nro. 3: Mediciones directas e indirectas. Propagación de errores. LABORATORIO DE FISICA I (Licenciatura en Bioquímica) GRUPO Día: Hora: Docente: 1 3 4 5 6 Subgrupo Nro. Nombres

Más detalles

PLANO INCLINADO. Para la realización de esta práctica el alumno deberá venir al laboratorio provisto con hojas de papel milimetrado.

PLANO INCLINADO. Para la realización de esta práctica el alumno deberá venir al laboratorio provisto con hojas de papel milimetrado. PLANO INCLINADO Para la realización de esta práctica el alumno deberá venir al laboratorio provisto con hojas de papel milimetrado. Objetivo: Verificar experimentalmente la descomposición de fuerzas en

Más detalles

Fluidos. Presión. Principio de Pascal.

Fluidos. Presión. Principio de Pascal. Fluidos. Presión. Principio de Pascal. CHOQUES ELASTICOS E INELASTICOS Se debe tener en cuenta que tanto la cantidad de movimiento como la energía cinética deben conservarse en los choques. Durante una

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

Práctica No 2. Determinación experimental del factor de compresibilidad

Práctica No 2. Determinación experimental del factor de compresibilidad Práctica No 2 Determinación experimental del factor de compresibilidad 1. Objetivo general: Determinación del comportamiento de un gas a diferentes presiones, mediante el cálculo experimental del factor

Más detalles

Medición de los trabajos de Poliuretano Proyectado

Medición de los trabajos de Poliuretano Proyectado Medición de los trabajos de Poliuretano Proyectado A continuación se recoge un resumen de la Norma UNE 92310:2003, Criterios de medición y cuantificación para trabajos de aislamiento térmico en instalaciones

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

EXPERIMENTO 8 MÁQUINAS SIMPLES

EXPERIMENTO 8 MÁQUINAS SIMPLES EXPERIMENTO 8 MÁQUINAS SIMPLES 1. Objetivos 1.1 Estudiar sistemas en equilibrio estático traslacional y rotacional. 1.2 Calcular la ventaja mecánica para diferentes sistemas de poleas y palancas. 1.3 Adquirir

Más detalles

La Densidad, es la masa de un cuerpo por unidad de volumen.

La Densidad, es la masa de un cuerpo por unidad de volumen. Práctica INTRODUCCIÓN.- La Densidad, es la masa de un cuerpo por unidad de volumen. En ocasiones se habla de densidad relativa es significa la relación entre la densidad de un cuerpo y la densidad del

Más detalles

PROPIEDADES DE LOS FLUIDOS

PROPIEDADES DE LOS FLUIDOS PROPIEDADES DE LOS FLUIDOS CRUDO Objetivo: Determinar las propiedades importantes del Crudo, tales como la Densidad, Gravedad API, Viscosidad Cinemática y Viscosidad Dinámica; utilizando diferentes métodos.

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA. TEM: TEOREM DEL TRJO Y L ENERGÍ. PRINCIPIO DE CONSERVCIÓN DE L ENERGÍ. Problema experimento #10: Trabajo y Conservación de la energía con plano inclinado. Medir el espesor de un pequeño bloque de madera

Más detalles

Ix ʹ = 8 mb 2, I. c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje z ʹ ) será:

Ix ʹ = 8 mb 2, I. c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje z ʹ ) será: CALCULO DE MOMENTOS DE INECIA Se unen cuatro partículas de masa m mediante varillas sin masa, formando un rectángulo de lados a b. El sistema gira alrededor de un eje en el plano de la figura que pasa

Más detalles

PRÁCTICA 1: DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE SEDIMENTACIÓN

PRÁCTICA 1: DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE SEDIMENTACIÓN PRÁCTICA 1: DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE SEDIMENTACIÓN 1. Introducción Se llama sedimentación a la operación que consiste en separar de una suspensión, un líquido claro que sobrenada en

Más detalles

SAN JUAN DE AZNALFARACHE (SEVILLA) PROBLEMAS DE MECANISMOS

SAN JUAN DE AZNALFARACHE (SEVILLA) PROBLEMAS DE MECANISMOS IES MTEO LEMÁN SN JUN DE ZNLFRCHE (SEVILL) PROBLEMS DE MECNISMOS º ESO MOTOR D 4 5 6 7 B C P PEDRO J. CSTEL GIL-TORESNO DEPRTMENTO DE TECNOLOGÍ PROBLEMS DE MECNISMOS Calcula la fuerza F y el desplazamiento

Más detalles

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Verano 2008 Objetivos Experiencia 1: Viscosidad y Empuje En esta experiencia de laboratorio vamos a estudiar el movimiento

Más detalles

Determinación de la densidad de distintos cuerpos - Estudio experimental del principio de Arquímedes.

Determinación de la densidad de distintos cuerpos - Estudio experimental del principio de Arquímedes. Determinación de la densidad de distintos cuerpos - Estudio experimental del principio de Arquímedes. P. D Angelo Campos, N. C. Cagliotti y A. Sterverlynck Universidad de San Andrés - Mayo 2001 RESUMEN

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

CINÉTICA DE HIDRÓLISIS DEL ACETATO DE METILO Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara

CINÉTICA DE HIDRÓLISIS DEL ACETATO DE METILO Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara CINÉTICA DE HIDRÓLISIS DEL ACETATO DE METILO Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara OBJETIVOS 1.- Estudiar la cinética de la reacción de hidrólisis ácida del acetato de metilo en disolución

Más detalles

8/6/2014. Objetivos. Propiedad física. Marco teórico. Densidad de sólidos y tratamiento estadístico de los datos experimentales

8/6/2014. Objetivos. Propiedad física. Marco teórico. Densidad de sólidos y tratamiento estadístico de los datos experimentales 8/6/0 Densidad de sólidos y tratamiento estadístico de los datos experimentales Ileana Nieves Martínez QUIM 00 Obetivos Determinar la densidad de algunos sólidos usando diferentes métodos para: discernir

Más detalles

EJERCICIOS DE PALANCAS. 2. Aplicamos 100 N de fuerza en cada mango de estos alicates. Qué fuerza resultará en cada punta?

EJERCICIOS DE PALANCAS. 2. Aplicamos 100 N de fuerza en cada mango de estos alicates. Qué fuerza resultará en cada punta? EJERCICIOS DE PALANCAS 1. Indica la fuerza que debe realizar el cilindro hidráulico de esta grúa para levantar un peso de 1000 Kg. El brazo de la fuerza mide 1,5 m y el brazo de la resistencia 5 m. Qué

Más detalles

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación Unidad 1: El movimiento de los cuerpos i. Objetivos Observar las distintas magnitudes físicas que se ponen de manifiesto

Más detalles

TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1

TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1 TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1 PLANTEAMIENTO DEL MODELO CINÉTICO Objetivos de las reacciones heterogéneas fluido-fluido:! Obtener productos valiosos mediante reacciones gas-líquido!

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

TORQUE. Estudiar los torques producidos por fuerzas perpendiculares al brazo de palanca.

TORQUE. Estudiar los torques producidos por fuerzas perpendiculares al brazo de palanca. TORQUE Experimento 1. Objetivo: Estudiar los torques producidos por fuerzas perpendiculares al brazo de palanca. Fundamento teórico: En experiencias anteriores se calcularon fuerzas resultantes y equilibrantes

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Academia, Librería, Informática Diego FUERZAS Y PRESIONES I (4º E.S.O.) Fuerzas

Academia, Librería, Informática Diego FUERZAS Y PRESIONES I (4º E.S.O.) Fuerzas FUERZAS Y PRESIONES I (4º E.S.O.) Fuerzas 1. Con un dinamómetro, cuya constante elástica es k = 500 N/m, se han medido los pesos de dos cuerpos, obteniéndose un alargamiento de 4 y 8 cm, respectivamente.

Más detalles

Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS.

Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS. Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS. Medir es comparar cierta cantidad de una magnitud, con otra cantidad de la misma que se ha elegido como unidad patrón. Por ejemplo,

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

Método Brookfield para el análisis de la viscosidad

Método Brookfield para el análisis de la viscosidad Método Brookfield para el análisis de la viscosidad Documento Edición Página 05 Julio 15, 2005 1 de 5 1.0 Objetivo Establecer los pasos para determinar el grado de viscosidad utilizando el viscosímetro

Más detalles

PRÁCTICA Nº 1: MEDIDA EXPERIMENTAL DE DENSIDADES

PRÁCTICA Nº 1: MEDIDA EXPERIMENTAL DE DENSIDADES PRÁCTICA Nº 1: MEDIDA EXPERIMENTAL DE DENSIDADES INTRODUCCIÓN: Las magnitudes son propiedades de los cuerpos que se pueden medir. Existen magnitudes fundamentales, como la MASA, el TIEMPO y la LONGITUD,

Más detalles

TRABAJO DE ENTRADA= TRABAJO ÚTIL DE SALIDA + TRABAJO NECESARIO PARA VENCER LA FRICCIÓN

TRABAJO DE ENTRADA= TRABAJO ÚTIL DE SALIDA + TRABAJO NECESARIO PARA VENCER LA FRICCIÓN UNA MÁQUINA: es cualquier dispositivo con el cual se puede cambiar la magnitud, la dirección o el método de aplicación de una fuerza para obtener algún provecho. Como ejemplos de máquinas simples tenemos

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

UNIDAD 4. La materia: propiedades eléctricas y el átomo

UNIDAD 4. La materia: propiedades eléctricas y el átomo PRUEBAS EXTRAORDINARIA DE FÍSICA Y QUÍMICA DE 3º y 4º ESO 1.- CONTENIDOS MÍNIMOS 3º DE LA ESO UNIDAD 1. La ciencia, la materia y su medida 1. Diferenciar ciencia y pseudociencia. 2. Distinguir entre propiedades

Más detalles

Tema: Movimiento rectilíneo uniformemente variado.

Tema: Movimiento rectilíneo uniformemente variado. LABORATORIO DE FÍSICA Tema: Movimiento rectilíneo uniformemente variado. 1. Objetivo: Establecer las leyes y ecuaciones para una partícula que tiene una trayectoria rectilínea con M.R.U.V. 2. Introducción

Más detalles

ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas.

ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas. ESTÁTICA Objetivos: 1. Sumar y descomponer fuerzas (analizando su carácter vectorial) 2. Medir fuerzas resultantes y momentos resultantes de fuerzas paralelas y no paralelas. Analizar el equilibrio mecánico

Más detalles

PRÁCTICA 3 DETERMINACIÓN ESPECTROFOTOMÉTRICA DEL pk DE UN INDICADOR

PRÁCTICA 3 DETERMINACIÓN ESPECTROFOTOMÉTRICA DEL pk DE UN INDICADOR PRÁCTICA 3 DETERMINACIÓN ESPECTROFOTOMÉTRICA DEL pk DE UN INDICADOR Material Productos 2 matraces aforados de 250 ml Hidróxido de sodio en lentejas 2 matraces aforados de 25 ml Disolución de hidróxido

Más detalles

PROBLEMAS DE DISOLUCIONES 1º Bachillerato.-

PROBLEMAS DE DISOLUCIONES 1º Bachillerato.- 1 - Cuántos gramos de ácido nítrico son necesarios para preparar 1,5 litros de disolución acuosa de dicho ácido 0,6 M?. (Solución: 56,7 g) 2 - Una disolución 0,25 m de cloruro de sodio contiene 58,5 g

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los

Más detalles

TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES

TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES 0 TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES a) Determinación de la densidad de hidrógeno Objetivos Determinar la densidad de un gas Conceptos Gases ideales, presión de vapor, rendimiento, pureza,

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio

Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio Práctica N 2 Mediciones y Tipos de Errores 1.- Objetivos: Seleccionar el instrumento más apropiado para realizar una medición considerando su precisión y exactitud. Realizar transformaciones de unidades

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA

RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA Fluidos: RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA Materiales que fluyen, que no tienen forma propia, materiales que se comportan de manera diferente de los sólidos ya que estos tienen forma y volumen definido.

Más detalles

4 LAS FUERZAS Y EL EQUILIBRIO DE LOS SÓLIDOS

4 LAS FUERZAS Y EL EQUILIBRIO DE LOS SÓLIDOS 4 LAS FUERZAS Y EL EQUILIBRI DE LS SÓLIDS EJERCICIS PRPUESTS 4.1 Nombra cinco sólidos rígidos que se encuentren en tu aula. Mesa, silla, pizarra, libro, bolígrafo, etc. 4.2 Justifica si una moneda se comporta

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

"OBSERVACIÓN DE LA CAÍDA DE UNA ESFERA A TRAVÉS DE UN MEDIO VISCOSO"

OBSERVACIÓN DE LA CAÍDA DE UNA ESFERA A TRAVÉS DE UN MEDIO VISCOSO EXPERIMENTO FA6 LABORATORIO DE FÍSICA AMBIENTAL "OBSERVACIÓN DE LA CAÍDA DE UNA ESFERA A TRAVÉS DE UN MEDIO VISCOSO" MATERIAL: () VISCOSÍMETRO ESFERAS DE ACERO 3 () MICROMETRO. ESCALA (O.00mm) (D x=0.0mm).

Más detalles

Tema: TRATAMIENTO DE DATOS

Tema: TRATAMIENTO DE DATOS 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: TRATAMIENTO DE DATOS Objetivos 1. Que el estudiante se familiarice con el concepto de error en una medición.

Más detalles

SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA OBJETIVOS: Establecer los fundamentos teóricos de los proceso de separación.

SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA OBJETIVOS: Establecer los fundamentos teóricos de los proceso de separación. PRÁCTICA Nº 2 SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA OBJETIVOS: Establecer los fundamentos teóricos de los proceso de separación. Separar los componentes de una muestra problema. Realizar la destilación

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

ONDAS ESTACIONARIAS FUNDAMENTO

ONDAS ESTACIONARIAS FUNDAMENTO ONDAS ESTACIONARIAS FUNDAMENTO Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 08 Laboratorio 08: CALOR ESPECÍFICO DE UN METAL I. OBJETIVOS General Aplicar

Más detalles

5. PÉNDULO SIMPLE. MEDIDA DE g

5. PÉNDULO SIMPLE. MEDIDA DE g 5. PÉNDULO SIMPLE. MEDIDA DE g OBJETIVO El objetivo de la práctica es medir la aceleración de la gravedad en el laboratorio, g, a partir del estudio del movimiento armónico de un péndulo simple. MATERIAL

Más detalles

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas 11. Desgaste de herramientas Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas Desgaste de herramientas La herramienta durante su trabajo está sometida

Más detalles

Movimiento de proyectiles

Movimiento de proyectiles Movimiento de proyectiles Objetivo General El alumno estudiará el movimiento de un proyectil Objetivos particulares 1. Determinar las componentes horizontal y vertical de la velocidad de un proyectil en

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

Ejercicios resueltos de funciones

Ejercicios resueltos de funciones Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa.

La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa. Todo es materia Cuando estudiamos el Universo describimos una serie de elementos que forman parte de él, como los cuerpos grandes y pequeños, las sustancias que lo componen, etcétera. Qué es? Todos ellos

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

EJERCICIOS BÁSICOS DE EMPUJE

EJERCICIOS BÁSICOS DE EMPUJE EJERCICIOS BÁSICOS DE EMPUJE 1.- Un trozo de corcho de 40 cm ³ se coloca en éter (δ = 0,72 g/cm ³), si la densidad del corcho es de 0,24 g/cm ³, qué volumen queda sumergido?. Respuesta: 13,3 cm ³ 2) Se

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

3. DETERMINACIÓN DE LA DENSIDAD RELATIVA Y LA DENSIDAD APARENTE DE UN CERÁMICO EN POLVO

3. DETERMINACIÓN DE LA DENSIDAD RELATIVA Y LA DENSIDAD APARENTE DE UN CERÁMICO EN POLVO 3. ETERMINACIÓN E LA ENSIA RELATIVA Y LA ENSIA APARENTE E UN CERÁMICO EN POLVO 3.1. Objetivos docentes Conocer un método para determinar la densidad de un sistema material sólido disperso con tamaño de

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] OBJETIVOS! Aplicar la ecuación de conservación al análisis de la energía involucrada en un sistema.! Recordar las componentes de la energía (cinética, potencial

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES 1.- ECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS Una ecuación como 2x + 3y = 7 es una ecuación de primer grado con dos incógnitas. Es de primer grado porque las letras

Más detalles

Documento modificado con fines docentes del libro Fisica matemática para el estomatólogo. Dr. Edwin López

Documento modificado con fines docentes del libro Fisica matemática para el estomatólogo. Dr. Edwin López 1. FUERZA Una fuerza es una influencia que al actuar sobre un objeto, hace que éste cambie su estado de movimiento. En la práctica, se nota una fuerza al empujar o tirar un objeto. El símbolo de fuerza

Más detalles

Interacción aire - agua. Termómetro húmedo

Interacción aire - agua. Termómetro húmedo Interacción aire - agua. Termómetro húmedo Objetivos de la práctica! Obtener experimentalmente la denominada temperatura húmeda.! Estudiar las magnitudes psicrométricas de dos corrientes de aire húmedo,

Más detalles

de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC;

de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC; Entalpía a estándar de la reacción Es el incremento entálpico de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC; conc.. = 1 M).

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Al representar estos datos obtenemos una curva:

Al representar estos datos obtenemos una curva: Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer

Más detalles

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas 2.ESTÁTICA La palabra estática se deriva del griego statikós que significa inmóvil. En virtud de que la dinámica estudia la causa que originan la causa del reposo o movimiento de los cuerpos, tenemos que

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles