BIOMECÁNICA APLICADA A LA GIMNASIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "BIOMECÁNICA APLICADA A LA GIMNASIA"

Transcripción

1 BIOMECÁNICA APLICADA A LA GIMNASIA

2 ANÁLISIS BIOMECÁNICO POSICIONES ESTÁTICAS APLICACIÓN DE FUERZAS CONCEPTOS ADICIONALES LEYES DE MOVIMIENTO DE NEWTON FORMAS DE MOVIMIENTO ROTACIÓN BALANCEO RECEPCIONES

3 Qué es la Biomecánica? Aplicación de leyes mecánicas a estructuras vivas. Estudio de las fuezas que actúan sobre el cuerpo humano o son producidas por él (fuerzas externas e internas). Otras ciencias (aprendizaje motor, fisiología, psicología) se aplican al área del ENTRENAMIENTO. La Biomecánica se aplica al área de la TÉCNICA.

4 Usos del conocimiento biomecánico Entender las destrezas Analizar y enseñar las destrezas Identificar las causas de errores Corregir errores Adaptaciones a cambios en los aparatos/reglas Innovar (o evaluar innovaciones)

5 Usos del conocimiento biomecánico NO Ejemplo 1: nueva mesa de salto, continuación 4. Results of the Measurements Perfil más largo Aumenta la velocidad de aproximación (psicológico) Tiempo del primer vuelo más corto Superficie más ancha Aplicación de fuerzas más efectiva Superficie curva Posición de las muñecas más segura y cómoda Superficie inclinada Ventaja para la aplicación de fuerzas verticales Aumento del rozamiento (seguridad y aplicación de fuerzas)

6 Usos del conocimiento biomecánico Ejemplo 2: Evaluación de nuevas técnicas Técnica de primer vuelo estándar Técnica de primer vuelo recientemente introducida Puede la biomecánica ayudarnos a decidir? Es mejor? Deberíamos adoptarla?

7 Análisis biomecánico cualitativo Acercamiento a un análisis más descriptivo que matemático Un entrenador debe ser capaz de: 1. Identificar parámetros de movimiento y desviaciones 2. Describir posiciones y fases, acciones 3. Explicar causas, mecanismos, principios 4. Predecir efectos, técnicas, metodologías 5. Recomendar correcciones físicas o técnicas NO

8 Confusión entre masa y peso? MASA Cantidad de materia que contiene un objeto. Es siempre la misma en cualquier lugar del universo. Medida de la inercia de un objeto o resistencia a cambiar su estado de reposo o movimiento. Masa es una medida de cantidad. PESO La atracción gravitatoria entre dos objetos. Masa mayor = atracción gravitatoria mayor (por lo tanto puede variar según el sitio dónde esté). Peso es una medida de fuerza. En la Tierra, 1 kg de masa = 1 kg de peso Para nuestros propósitos, podemos usar estos términos de forma intercambiable.

9 Fuerza de gravedad Fuerza de atracción entre dos masas cualquiera. En la Tierra, se experimenta como una fuerza que actúa verticalmente hacia abajo pasando por el Centro de Masa. La fuerza descendente es aproximadamente 10m/s 2. (9.81m/s 2 ) Esta fuerza se mide como peso. La fuerza de 1 peso corporal a menudo se indica como 1g. (3 g s = 3 x peso corporal)

10 Estabilidad versus Equilibrio Qué es la estabilidad? La resistencia al movimiento lineal y angular. Qué es el equilibrio? La habilidad para mantener una posición estable. Para nuestros propósitos, podemos usar estos términos de forma intercambiable.

11 Principio de estabilidad #1 El descenso del CdM hacia la base de sustentación, aumenta la estabilidad. Menos estable Más estable

12 APLICACIÓN DE FUERZAS

13 Definición de fuerza Una fuerza es toda causa que cambia o tiende a cambiar la velocidad o la forma de un objeto. Fuerza resultante Si un cierto número de fuerzas actúan simultáneamente, sus efectos combinados se pueden representar con una única fuerza conocida como fuerza resultante. MÉTODO DEL PARALELOGRAMO Fuerza 2 F1 Fuerza 1 RESULTANTE F2 R RESULTANTE

14 Tipos de fuerza Fuerza de gravedad (peso) Fuerza centrípeta Fuerza de reacción del suelo Fuerza de rozamiento Fuerzas de impulso Fuerza de rotación (torque) Fuerzas internas Fuerza de Coriolis Fuerzas de cizalla Fuerzas de compresión y tensión Fuerzas de torsión friction force COM mass pushing force rough surface EXTERNAL force normal reaction R weight INTERNAL force COM thrust Joint

15 3 ra. Ley del Movimiento de Newton ley de acción y reacción Para toda acción hay una reacción igual y contraria Para toda fuerza de acción hay una fuerza de reacción que es: igual en magnitud opuesta en dirección simultánea Las fuerzas siempre actúan de a pares reacción normal R weight peso CdM impulsión

16 Mecánica de la repulsión Para generar una fuerza de reacción se debe aplicar una fuerza de acción suficientemente grande como para superar la fuerza de gravedad. Pueden ser fuerzas internas (contracción muscular) Pueden ser fuerzas externas (retroimpacto del minitrampolín, barra, trampolin, etc.).

17 Mecánica de la repulsión - continuación La aplicación efectiva de la fuerza está relacionada con: Magnitud - fuerza en todos los músculos activos Punto de aplicación - (rotación) Dirección - siempre opuesta a la aplicación Duración - rango de movimiento/flexibilidad Timing: sincronización del uso de la fuerza - coordinación Rigidez del cuerpo tensión y forma corporal

18 Mecánica de la repulsión - continuación Magnitud de la fuerza Debe ser suficiente para el resultado deseado (óptimo vs. máximo) Fuerza y potencia en todos los músculos activos Dirección de la fuerza Debe ser en la dirección deseada Recuerde fuerza de acción fuerza de reacción Duración de la fuerza Debe ser lo más larga en tiempo y recorrer la mayor distancia posible Rango de movimiento/flexibilidad en todas las articulaciones activas

19 Mecánica de la repulsión - continuación Fuerza aplicada a un cuerpo rígido De lo contrario, las fuerzas serán absorbidas por el cuerpo Tensión y forma del cuerpo correcto incorrecto Rígido NO Rígido FUERZA FUERZA

20 Proyectiles El Centro de Masa sigue la trayectoria de una parábola. La forma de la trayectoria depende de : 1) Ángulo de despegue 2) Altura de despegue 3) Velocidad de despegue Por lo tanto, es esencial que los parámetros durante el despegue sean correctos.

21 Aplicación Para cualquier velocidad de despegue, el ángulo de despegue del aparato determina la forma de la parábola del vuelo (la trayectoria del CdM). Un ángulo de despegue alto (pronunciado) produce un vuelo alto con desplazamiento horizontal pequeño. Un ángulo de despegue bajo (superficial) produce un vuelo bajo con desplazamiento horizontal grande.

22 Mecánica de las salidas de paralelas asimétricas y barra fija Efecto del cambio de altura a la que se suelta El centro de masa de un cuerpo rígido continua tangente al arco del balanceo (90º con respecto al radio). Esta es una consideración muy importante, pero los gimnastas pueden aplicar fuerzas justo antes de soltar para modificar algo este efecto. Además, la elasticidad de la barra puede modificar el efecto. Posible lesión Salidas Gienger Kovacs Soltar por debajo de la horizontal Soltar justo por debajo de la horizontal Soltar en la horizontal Soltar por arriba de la horizontal vertical baja horizontal grande vertical alta horizontal pequeña vertical máxima No horizontal Trayectoria de vuelo sobre la barra

23 Velocidad m Desplazamiento 25 m Es una medida de cuán lejos se ha movido un cuerpo en un período específico de tiempo o de cuán rápido se está moviendo. Comúnmente se mide en metros por segundo (m/s) Velocidad = Distancia Tiempo

24 Aceleración v=2m/s v=4m/s v=8m/s 0 m 0 m/s 8 m 3 m/s 16 m 5 m/s 24 m 7 m/s Aceleración promedio = (7 0) 7 s = 1 m/s2 La aceleración es la medida de cuánto cambia la velocidad de un cuerpo en el tiempo. Un incremento de la velocidad se denomina Aceleración y una disminución, Aceleración negativa (o desaceleración). Un cambio en la dirección es una aceleración. Se mide en metros por segundo al cuadrado(m/s2).

25 2 da. Ley del Movimiento de Newton aceleración El cambio de la cantidad de movimiento de un cuerpo es directamente proporcional a la fuerza aplicada y ocurre en la misma dirección de la fuerza. F = m x a No hay fuerza Fuerza pequeña Fuerza grande

26 Consecuencia de la 2 da. Ley de Newton W En el aire la única fuerza que actúa es la fuerza de gravedad. Fuerza vertical = gravedad que provoca aceleración hacia abajo. Fuerza horizontal = no hay aceleración horizontal.

27 3 Leyes del Movimiento de Newton PRIMERA LEY (inercia) Un cuerpo se mantendrá en reposo o continuará en estado de movimiento rectilíneo uniforme a menos que actúe sobre él una fuerza externa. SEGUNDA LEY (aceleración) El cambio de la cantidad de movimiento de un cuerpo es directamente proporcional a la fuerza aplicada y ocurre en la misma dirección de la fuerza. TERCERA LEY (acción reacción) Para cada fuerza de acción hay una fuerza de reacción de igual magnitud pero en dirección contraria.

28 Rotaciones 1. Cantidad de movimiento angular 2. Momento de inercia y Velocidad angular 3. Conservación de la cantidad de movimiento angular 4. Generación de la cantidad de movimiento angular

29 Principales conceptos para la rotación MOMENTO DE INERCIA Es la medida de la distribución de la masa alrededor del eje de rotación. Si la masa está lejos del eje, el momento de inercia es grande. Si la masa está cerca del eje, el momento de inercia es pequeño. VELOCIDAD ANGULAR Es la velocidad de rotación alrededor del eje de rotación CANTIDAD DE MOVIMIENTO ANGULAR Es la cantidad total de rotación alrededor del eje de rotación

30 Momento de Inercia MI MI Con el cuerpo extendido (fig. 4 y 5), la distribución de la masa está mas alejada del eje transversal. Por lo tanto el momento de inercia es grande relativo al eje de rotación. Con el cuerpo flexionado (fig. 6 y 7), la masa se ha acercado al eje transversal. Por lo tanto el momento de inercia es pequeño relativo al eje de rotación Hay menos resistencia al movimiento de giro.

31 Generación de Cantidad de Movimiento Angular Los brazos arriba crean fuerza de reacción hacia arriba. También el empuje hacia abajo del salto y extensión de piernas Ejemplo de mortal adelante Agrupado cerrado para momento de inercia pequeño y velocidad angular grande Cuerpo extendido para momento de inercia grande y velocidad angular pequeña Pies rápido adelante para una fuerza de reacción grande. Cuerpo elevado entonces la fuerza actúa lejos del eje Cuerpo extendido para momento de inercia máximo Aplicación de fuerzas durante el máximo tiempo

32 La fase de despegue es crítica. La mayoría de los errores ocurren aquí! La trayectoria del Centro de Masa en vuelo está determinada: Nada que el gimnasta haga en el aire puede cambiar la trayectoria del Centro de Masa. La cantidad de movimiento angular total del cuerpo en vuelo está determinada: Nada que el gimnasta haga en el aire puede cambiar la Cantidad de Movimiento Angular del cuerpo.

33 Balanceo Rotación alrededor de un eje externo. 1. Mecánica del balanceo

34 Mecánica de Rotación (balanceo) El/la gimnasta debe maximizar (optimizar) la cantidad de movimiento angular en el punto más bajo del balaceo. En la fase descendente, la gravedad proporciona la fuerza de giro (torque) La gravedad debe actuar el mayor tiempo posible La gravedad debe actuar lo más lejos del eje (barra) posible El gimnasta debe minimizar las fuerzas de rozamiento En la fase ascendente, la velocidad angular se incrementa acercando el centro de masa al eje de rotación (barra)

35 Mecánica de Rotación (balanceo) Fase descendente maximizar el torque para aumentar la cantidad de movimiento angular Fase ascendente reducir el torque negativo para aumentar la velocidad angular A brazo del momento x 1 Eje de rotación ACEPTABLE INACEPTABLE B x 2

36 Biomecánica del balanceo ejemplo: gigante (lo mismo para P. Asim, Barra fija, Paralelas) Máx extensión = acción de la gravedad por tiempo y distancia más largos para máx MA * * * La barra actúa como resorte y devuelve energía elástica Acercar el CdM a la barra para aumentar la velocidad angular y vencer el rozamiento **La patada ayuda al timing y pone carga sobre la barra. Variantes de la técnica con propósitos especiales.

37 Comparación entre conceptos: Lineal y Angular Distancia Masa Velocidad Cantidad de movimiento Fuerza Aceleración Ángulo (por el cual se mueve) Momento de Inercia Velocidad angular Cantidad de movimiento Angular Torque Aceleración angular

38 Recepciones Básicamente, lo contrario al despegue. En lugar de generar fuerzas para ganar cantidad de movimiento lineal y angular, durante las recepciones las fuerzas deben reducir la cantidad de movimiento a cero. 1. Absorber energía. (En el Nivel 2 se discuten los conceptos de energía.) 2. Reducir la cantidad de movimiento lineal y/o angular a cero. 3. Preparación para la recepción.

39 Recepciones e impacto Tiempo de impacto corto = gran fuerza Tiempo de impacto más largo = fuerza reducida

40 Recepciones cont. La cantidad de movimiento debe reducirse en el tiempo más largo posible. Cambiar la cantidad de movimiento requiere la aplicación de fuerzas La energía debe absorberse en el área más grande o la superficie del cuerpo lo más grande posible. La energía puede ser absorbida por superficies de recepción blandas.

41 Cantidad de movimiento angular y Recepciones La mayoría de las recepciones en gimnasia provienen de un elemento con rotación alrededor de uno o dos ejes. El/la gimnasta debe ser capaz de completar el giro o el mortal y extender el cuerpo antes de hacer la recepción. Una extensión de la posición del cuerpo antes de la recepción reduce la velocidad angular y proporciona tiempo para la aplicación de fuerzas que reducen la cantidad de movimiento angular a cero. Esto también disminuye las deducciones.

42 Mecánica de las Recepciones cont. La aplicación efectiva de las fuerzas para la recepción está relacionada con : Magnitud - fuerza en todos los músculos activos Punto de aplicación - (rotación) Dirección - siempre opuesta a la aplicación Duración - rango de movimiento/flexibilidad Timing (sincronización del uso de la fuerza) - coordinación Rigidez del cuerpo

43 GRACIAS POR SU ATENCIÓN

Módulo 1: Mecánica Rotación

Módulo 1: Mecánica Rotación Módulo 1: Mecánica Rotación 1 Movimiento de rotación En Física distinguimos entre dos tipos de movimiento de objetos: Movimiento de traslación (desplazamiento) Movimiento de rotación (cambio de orientación

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES FUERZA Fuerza es la interacción de dos o más cuerpos que puede causar el cambio de su movimiento. Fuerzas constantes dan origen a cambios progresivos del movimiento de un cuerpo o partícula en el tiempo.

Más detalles

Antecedentes históricos

Antecedentes históricos Mecánica Antecedentes históricos Aristóteles (384-322 AC) formuló una teoría del movimiento de los cuerpos que fue adoptada durante 2 000 años. Explicaba que había dos clases de movimiento: Movimiento

Más detalles

Cuando la masa es máxima y la aceleración tiende al mínimo (como la halterofilia).

Cuando la masa es máxima y la aceleración tiende al mínimo (como la halterofilia). Autor: DESARROLLO DE LA FUERZA DEFINICIÓN DE FUERZA Es la capacidad de vencer una resistencia con la contracción producida por los músculos, es decir, con la capacidad que tienen de realizar un trabajo.

Más detalles

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas 2.ESTÁTICA La palabra estática se deriva del griego statikós que significa inmóvil. En virtud de que la dinámica estudia la causa que originan la causa del reposo o movimiento de los cuerpos, tenemos que

Más detalles

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones?

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones? Movimiento armónico simple Problemas del capítulo 1. Un sistema de masa-resorte realiza 20 oscilaciones completas en 5 segundos. Cuál es el período y la frecuencia de las oscilaciones? 2. Un sistema de

Más detalles

A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s.

A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s. ESPOL Actividades en clase Taller Nombre: Paralelo 1) Cuál de las siguientes no es una cantidad vectorial? 1) A) aceleración. B) rapidez. C) todas son cantidades vectoriales D) velocidad. 2) Un avión vuela

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

TRABAJO POTENCIA - ENERGÍA

TRABAJO POTENCIA - ENERGÍA PROGRM DE VERNO DE NIVELCIÓN CDÉMIC 15 TRJO POTENCI - ENERGÍ 1. Un sujeto jala un bloque con una fuerza de 7 N., como se muestra, y lo desplaza 6 m. Qué trabajo realizó el sujeto? (m = 1 kg) a) 1 J b)

Más detalles

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS

Más detalles

Guía de Ejercicios en Aula: N 3

Guía de Ejercicios en Aula: N 3 Guía de Ejercicios en Aula: N 3 Tema: LEYES DE NEWTON Aprendizajes Esperados Opera con los Principios de Newton y da explicación de las fuerzas a las cuales están sometidos los cuerpos de un sistema proponiendo

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

5 Aplicaciones de las leyes

5 Aplicaciones de las leyes 5 Aplicaciones de las leyes de la dinámica ACIVIDADES Actividades DELdel DESARROLLO interiorde de LAla UIDAD unidad 1. Indica con qué interacciona cada uno de los siguientes cuerpos y dibuja las fuerzas

Más detalles

5. APLICACIONES DE LAS LEYES DE NEWTON

5. APLICACIONES DE LAS LEYES DE NEWTON 5. APLICACIONES DE LAS LEYES DE NEWTON En este capítulo extenderemos las leyes de Newton al estudio del movimiento en trayectorias curvas e incluiremos los efectos cuantitativos del rozamiento Rozamiento

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas Física General I Curso 2014 - Primer semestre Turno Tarde Contenidos de las clases dictadas 14/3 - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

BIOMECANICA APLICADA AL KARATE DO

BIOMECANICA APLICADA AL KARATE DO BIOMECANICA APLICADA AL KARATE DO Diana Valle Ruiz 10/12/2012 KARATE SHOTOKAN Los entrenadores expertos son capaces de analizar las técnicas del Karate-Do con el fin de modificarlas y realizar los mejoramientos

Más detalles

TEMA 5: Dinámica. T_m[ 5: Dinámi][ 1

TEMA 5: Dinámica. T_m[ 5: Dinámi][ 1 TEMA 5: Dinámica T_m[ 5: Dinámi][ 1 ESQUEMA DE LA UNIDAD 1.- Fuerzas. 2.- Fuerzas y deformaciones. Ley de Hooke. 3.- Fuerzas de interés. 4.- Las leyes de Newton. 5.- Cantidad de movimiento. 6.- Principio

Más detalles

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador. UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

PALANCAS.

PALANCAS. PALANCAS Las Palancas Una palanca representa una barra rígida r que se apoya y rota alrededor de un eje. Las palancas sirven para mover un objeto o resistencia. 1 Las palancas están n constituidas de:

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos Fuerzas 1. Al igual que las demás fuerzas, las fuerzas gravitatorias se suman vectorialmente. Considerar un cohete que viaja de la Tierra a la Luna a lo largo de una línea recta que une sus centros. (a)

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

CAPÍTULO 2 ACTIVIDADES PARA EL DESARROLLO DE LAS CAPACIDADES FÍSICAS DE LOS ESGRIMISTAS SECCIÓN CONTENIDO. Introducción 2.1

CAPÍTULO 2 ACTIVIDADES PARA EL DESARROLLO DE LAS CAPACIDADES FÍSICAS DE LOS ESGRIMISTAS SECCIÓN CONTENIDO. Introducción 2.1 CAPÍTULO 2 ACTIVIDADES PARA EL DESARROLLO DE LAS CAPACIDADES FÍSICAS DE LOS ESGRIMISTAS SECCIÓN 2.1 2.2 2.3 2.4 2.5 2.6 CONTENIDO Introducción Tipos de capacidades físicas Conclusiones Sugerencias didácticas

Más detalles

Los vagones A y B se mueven juntos hacia la derecha, con una rapidez de:

Los vagones A y B se mueven juntos hacia la derecha, con una rapidez de: UNIDAD 5: CANTIDAD DE MOVIMIENTO LINEAL: COLISIONES CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL 1 PROBLEMA 5.2: COLISIÓN INELÁSTICA Dos vagones idénticos A de y B del metro de masa 10.000 kg colisionan

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

Dinámica de la partícula: Leyes de Newton

Dinámica de la partícula: Leyes de Newton Dinámica de la partícula: Leyes de Newton Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice

Más detalles

UNIVERSIDAD LOS ANGELES DE CHIMBOTE

UNIVERSIDAD LOS ANGELES DE CHIMBOTE UNIVERSIDAD LOS ANGELES DE CHIMBOTE PROFESOR: EDWAR HERRERA FARFAN ALUMNO: MARTIN GUEVARA GRANDA 1.- UNIDAD II: I. CINEMATICA II. Objetivos y Conceptos III. Elementos IV. Leyes M.R.U V. Tipos de Movimiento

Más detalles

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS.

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. 1. FUERZAS Y SUS EFECTOS. La Dinámica es una parte de la Física que estudia el movimiento de los cuerpos, atendiendo a las causas que lo producen. Son las

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un mecánico empuja un auto de 2500 kg desde el reposo hasta alcanzar una rapidez v, realizando 5000 J de trabajo en el proceso. Durante este tiempo,

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA. TEM: TEOREM DEL TRJO Y L ENERGÍ. PRINCIPIO DE CONSERVCIÓN DE L ENERGÍ. Problema experimento #10: Trabajo y Conservación de la energía con plano inclinado. Medir el espesor de un pequeño bloque de madera

Más detalles

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Ing. Laura Istabhay Ensástiga Alfaro. 1 Ejercicios de movimiento Horizontal. 1. Un automóvil viaja inicialmente a 20 m/s y está

Más detalles

ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas.

ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas. ESTÁTICA Objetivos: 1. Sumar y descomponer fuerzas (analizando su carácter vectorial) 2. Medir fuerzas resultantes y momentos resultantes de fuerzas paralelas y no paralelas. Analizar el equilibrio mecánico

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

Electrostática. Procedimientos

Electrostática. Procedimientos Electrostática. Procedimientos 1. Calcula a qué distancia tendrían que situarse un electrón y un protón de manera que su fuerza de atracción eléctrica igualase al peso del protón. 0,12 m 2. Recuerdas la

Más detalles

Antes de entrar en la comprensión de la biomecánica del cuerpo humano, se deben conocer los principios en los que se basa.

Antes de entrar en la comprensión de la biomecánica del cuerpo humano, se deben conocer los principios en los que se basa. 39 A P J N T S. M E r) I C 1 N A DE L ' E S P O l< 1 2 O C 6 : I '1 8 : 3 9-13 Antes de entrar en la comprensión de la biomecánica del cuerpo humano, se deben conocer los principios en los que se basa.

Más detalles

Velocidad y Agilidad

Velocidad y Agilidad Velocidad y Agilidad Analizar las exigencias de velocidad Es la velocidad importante para tu jugador? Qué tipo de velocidad? Intevalos cortos o largos? Se alcanza la velocidad máxima? Cuán a menudo? Es

Más detalles

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S2991D2023 RIF: J-09009977-8 GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS Asignatura: Física Año Escolar: 2014-2015 Lapso:

Más detalles

1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m?

1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 1 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 2 / 144 2 Una fuerza realiza 30000

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA PROBLEMAS DE DINÁMICA 1º BACHILLERATO Curso 12-13 1. Se arrastra un cuerpo de 20 Kg por una mesa horizontal sin rozamiento tirando de una cuerda sujeta a él con una fuerza de 30 N. Con qué aceleración

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43. se cuádrupla 16F 4F

Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43. se cuádrupla 16F 4F Slide 1 / 43 1 La fuerza gravitacional entre dos objetos es proporcional a Slide 2 / 43 2 os cuerpos se atraen entre sí gravitacionalmente. Si la distancia entre sus centros es reducido a la mitad, la

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA I - 2016 PROGRAMACIÓN

INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA I - 2016 PROGRAMACIÓN INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA I - 2016 PROGRAMACIÓN PRIMER PERIODO UNIDAD 1: LOS FUNDAMENTOS (INTRODUCCIÓN) Utiliza los fundamentos matemáticos, en

Más detalles

GENERALIDADES DE LOS SALTOS en el ATLETISMO (Según J. Rius)

GENERALIDADES DE LOS SALTOS en el ATLETISMO (Según J. Rius) Por: Miguel A. Villalba Teoría: Longitud Triple GENERALIDADES DE LOS SALTOS en el ATLETISMO (Según J. Rius) (Según J. Rius) Los saltos constituyen una especialidad atlética formada por cuatro modalidades

Más detalles

3.- Para levantarse de la cama por la mañana, hay que realizar algún trabajo?

3.- Para levantarse de la cama por la mañana, hay que realizar algún trabajo? Grado en Química DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES UNIVERSIDAD DE JAÉN Física General I Tema 4: Trabajo y energía 1.- Verdadero o falso: (a).- Sólo la fuerza resultante que actúa

Más detalles

COMPOSICION DE FUERZAS

COMPOSICION DE FUERZAS FUERZAS La fuerza es una magnitud vectorial que modifica la condición inicial de un cuerpo o sistema, variando su estado de reposo, aumentando ó disminuyendo su velocidad y/o variando su dirección. SISTEMAS

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DE LA PARTICULA MOVIMIENTO CIRCULAR. AUTORES Santiago Prieto, Maximiliano Rodríguez, Ismael

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

TEMA 2.2. CONDICIÓN FÍSICA Y CAPACIDADES FÍSICAS

TEMA 2.2. CONDICIÓN FÍSICA Y CAPACIDADES FÍSICAS TEMA 2.2. CONDICIÓN FÍSICA Y CAPACIDADES FÍSICAS 1. DEFINICIÓN DE CONDICIÓN FÍSICA En términos generales, la condición física es la suma de todas las capacidades físicas que determina la capacidad de una

Más detalles

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Descripción del movimiento 1.- Enumera todos aquellos factores que te parezcan relevantes para describir un movimiento. 2.- Es verdadera

Más detalles

TEMARIO DEL EXAMEN DE ADMISIÓN PARA EL PROCESO DE ADMISIÓN 2016-02. Para facultades de Ingeniería y Arquitectura

TEMARIO DEL EXAMEN DE ADMISIÓN PARA EL PROCESO DE ADMISIÓN 2016-02. Para facultades de Ingeniería y Arquitectura TEMARIO DEL EXAMEN DE ADMISIÓN PARA EL PROCESO DE ADMISIÓN 2016-02 Para facultades de Ingeniería y Arquitectura CIENCIAS Conocimientos Álgebra Valor numérico Racionalización Tipo de cambio Teoría de exponentes

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

2. ANATOMÍA HUMANA 2.1. GEOMETRÍA

2. ANATOMÍA HUMANA 2.1. GEOMETRÍA 2. ANATOMÍA HUMANA Durante la marcha, el cuerpo humano se rige mediante movimientos no lineales, además el movimiento de los tejidos blandos puede ser despreciable frente a la dinámica global del movimiento.

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación Unidad 1: El movimiento de los cuerpos i. Objetivos Observar las distintas magnitudes físicas que se ponen de manifiesto

Más detalles

Las bolas ejercen fuerzas mutuamente, decimos que han interaccionado entre sí.

Las bolas ejercen fuerzas mutuamente, decimos que han interaccionado entre sí. TEMA 5 Caso 1 Partida de billar. Una bola golpea a otra que está en reposo. Tras el choque, las dos bolas modifican su velocidad (varían su movimiento). Actúa alguna fuerza en el momento del choque. Cada

Más detalles

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS En esta sección consideramos los efectos de la presión de un fluido, que actúa sobre superficies planas (lisas), en aplicaciones como las ilustradas.

Más detalles

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo.

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo. 1. A qué altura sobre la superficie de la Tierra colocaremos un satélite para que su órbita sea geoestacionaria sobre el un punto del Ecuador? RT = 6370 Km (R h= 36000 Km) 2. La Luna en su movimiento uniforme

Más detalles

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

1.- Inercia: Resistencia que presenta un cuerpo a cambiar su estado de movimiento

1.- Inercia: Resistencia que presenta un cuerpo a cambiar su estado de movimiento INERCIA EN LAS ROTACIONES: El concepto de inercia en el movimiento de traslación: 1.- Inercia: Resistencia que presenta un cuerpo a cambiar su estado de movimiento 2.- El torque Como se produce o se modifica

Más detalles

Estática. Equilibrio de una Partícula

Estática. Equilibrio de una Partícula Estática 3 Equilibrio de una Partícula Objetivos Concepto de diagrama de cuerpo libre para una partícula. Solución de problemas de equilibrio de una partícula usando las ecuaciones de equilibrio. Índice

Más detalles

Programa de Formación de Entrenadores de la ITF Curso de Nivel 2. Preparación física para tenistas de competición

Programa de Formación de Entrenadores de la ITF Curso de Nivel 2. Preparación física para tenistas de competición Programa de Formación de Entrenadores de la ITF Curso de Nivel 2 Preparación física para tenistas de competición Al final de esta clase podrá: Identificar y evaluar los factores físicos que se necesitan

Más detalles

TEMA 2.2. CAPACIDADES FÍSICAS

TEMA 2.2. CAPACIDADES FÍSICAS TEMA 2.2. CAPACIDADES FÍSICAS 1. DEFINICIÓN DE CONDICIÓN FÍSICA En términos generales, la condición física es la suma de todas las capacidades físicas que determina la capacidad de una persona para realizar

Más detalles

Mecanica en la Medicina El Movimiento del Cuerpo Humano Teoría

Mecanica en la Medicina El Movimiento del Cuerpo Humano Teoría Mecanica en la Medicina El Movimiento del Cuerpo Humano Teoría Dr. Willy H. Gerber Instituto de Ciencias Físicas y Matemáticas Facultad de Ciencias Universidad Austral de Chile Valdivia, Chile 1 Describiendo

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas (II) 1(5) Ejercicio nº 1 Un bloque de 10 kg se suelta sobre un plano inclinado α = 60º a un altura h = 18 m. El coeficiente de rozamiento es µ = 0 5. Calcula: a) La aceleración del bloque; b) La velocidad final.

Más detalles

CUALIDAD FUERZA EN FISIOTERAPIA

CUALIDAD FUERZA EN FISIOTERAPIA CUALIDAD FUERZA EN FISIOTERAPIA Sesión n 5. Valoración n de la fuerza -Concepto de Fuerza - Tipos de Fuerza -Formas de Evaluación n de la Fuerza -Aplicación n de la evaluación n al entrenamiento de la

Más detalles

Cinética de partículas Leyes de Newton. Primera Ley de Newton o Ley de Inercia

Cinética de partículas Leyes de Newton. Primera Ley de Newton o Ley de Inercia Cinética de partículas Leyes de Newton Primera Ley de Newton o Ley de Inercia Segunda ley de Newton: Fuerza, Masa y Aceleración Momentum o Cantidad de Movimiento Principios de Conservación Tercera ley

Más detalles

Resumen de Cinemática

Resumen de Cinemática Resumen de Cinemática En este apartado haremos un resumen de cinemática del curso de biofísica con el objetivo que sirva como una base para repasar los conceptos de del tema con vista al examen oral. CINEMÁTICA

Más detalles

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II ANÍBAL CADENA E. CATEDRÁTICO DE LA UNIVERSIDAD 1 INTRODUCCIÓN A lo largo del curso, usted trabajara la parte teórica mediante la elaboración de mapas mentales

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

La energía y sus formas

La energía y sus formas TRABAJO Y ENERGÍA La energía y sus formas En nuestro lenguaje habitual se utiliza con mucha frecuencia el término energía y aproximadamente sabemos lo que significa. Sabemos que necesitamos energía para

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión.

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión. UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Olga P. Rivera y el material de la coordinación [Escriba aquí el nombre] Fecha de Elaboración Fecha

Más detalles

COLEGIO TÉCNICO NACIONAL Arq. Raúl María Benítez Perdomo. Prof. María Teresa Szostak

COLEGIO TÉCNICO NACIONAL Arq. Raúl María Benítez Perdomo. Prof. María Teresa Szostak Arq. aúl María Benítez Perdomo ESTATICA Es la parte de la Mecánica, que tiene como objetivo, establecer si bajo la acción simultánea de varias fuerzas, un cuerpo se halla o no en equilibrio. FUEZA Se denomina

Más detalles

CONSIDERACIONES MECÁNICAS DE LOS GIROS

CONSIDERACIONES MECÁNICAS DE LOS GIROS CONSIDERACIONES MECÁNICAS DE LOS GIROS El giro o rotación de un cuerpo sucede cuando los puntos de su trayectoria describen arcos de circunferencias alrededor de un eje que es solidario (pertenece) al

Más detalles

Documento modificado con fines docentes del libro Fisica matemática para el estomatólogo. Dr. Edwin López

Documento modificado con fines docentes del libro Fisica matemática para el estomatólogo. Dr. Edwin López 1. FUERZA Una fuerza es una influencia que al actuar sobre un objeto, hace que éste cambie su estado de movimiento. En la práctica, se nota una fuerza al empujar o tirar un objeto. El símbolo de fuerza

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

5. Campo gravitatorio

5. Campo gravitatorio 5. Campo gravitatorio Interacción a distancia: concepto de campo Campo gravitatorio Campo de fuerzas Líneas de campo Intensidad del campo gravitatorio Potencial del campo gravitatorio: flujo gravitatorio

Más detalles

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS Ing. MSc. Luz Marina Torrado Gómez RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS SOLICITACIONES INTERNAS QUE SE GENERAN EN UN SUELO Tensiones normales, : Pueden

Más detalles

Dinámica. Fuerzas sobre un móvil, y fuerza neta. Leyes de Newton. Fuerzas disipativas, fricción

Dinámica. Fuerzas sobre un móvil, y fuerza neta. Leyes de Newton. Fuerzas disipativas, fricción Dinámica Fuerzas sobre un móvil, y fuerza neta. Leyes de Newton. Fuerzas disipativas, fricción Nivelación: Física Dinámica 1. Un hombre de 80 kg está de pie sobre una balanza de muelle sujeta al suelo

Más detalles

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

MOVIMIENTOS EN UNA Y DOS DIMENSIONES MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.

Más detalles

5 Casos de estudio 91 5 CASOS DE ESTUDIO

5 Casos de estudio 91 5 CASOS DE ESTUDIO 5 Casos de estudio 91 5 CASOS DE ESTUDIO Debido a la naturaleza de su funcionamiento en los mecanismos leva palpador en general, las variables (ángulo de presión, radio de curvatura, huella de contacto,

Más detalles

Mercedes López Quelle (Compañero: Luis García Pérez) (autores) 27 de Septiembre de 2010 (fecha)

Mercedes López Quelle (Compañero: Luis García Pérez) (autores) 27 de Septiembre de 2010 (fecha) Un título: El tiempo de reacción humano frente a un estímulo visual Otro título: Tiempo de reacción visual de una persona (título: palabras clave) Mercedes López Quelle (Compañero: Luis García Pérez) (autores)

Más detalles

Las Leyes de Newton. 1. El principio de la inercia. 2. Proporcionalidad entre la fuerza ejercida sobre un cuerpo y la aceleración resultante.

Las Leyes de Newton. 1. El principio de la inercia. 2. Proporcionalidad entre la fuerza ejercida sobre un cuerpo y la aceleración resultante. COMPLEJO EDUCATIVO SAN FRANCISCO Profesor: José Miguel Molina Morales Primer Periodo GUIA DE CIENCIAS FISICAS Segundo Año General Las Leyes de Newton El trabajo teórico de Isaac Newton diferencia dos etapas

Más detalles