DIAPOSITIVAS MEDIDORES DE CAUDAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIAPOSITIVAS MEDIDORES DE CAUDAL"

Transcripción

1 - CAUDAL DEFINICIONES BÁSICAS 1 DIAPOSITIVAS MEDIDORES DE CAUDAL Fluido: Sustancia que se deforma continuamente al ser sometida a una fuerza tangencial, de tal manera que adopta espontáneamente la forma del recipiente que lo contiene. Flujo: Fluido en movimiento, debido a una diferencia de presiones. Tipos De Flujo Flujos Abiertos: canales abiertos, ríos Flujos Cerrados: tuberías Flujos Laminares Flujos Turbulentos Flujos Cavitantes 2 LOS FLUIDOS La materia generalmente se clasifica de acuerdo con algunos de los cuatro estados en que se encuentra: sólido, líquido, gaseoso y plasma. Un sólido tiene forma y volumen definidos. Un líquido tiene un volumen definido pero no una forma definida. Un gas no tiene ni volumen ni forma definidos. Un sólido se comprime bajo la acción de fuerzas externas, pero si estas fuerzas dejan de actuar, tiende a retomar su forma y tamaño original. Según el tiempo de respuesta del cambio de la forma a una fuerza externa o presión, la materia puede comportarse como un sólido o como un fluido. En algunos casos, el material se comporta en un estado intermedio, como por ejemplo plástico, goma, asfalto, grasa, miel, etc. 3 LOS FLUIDOS Un fluido es un conjunto de moléculas que se distribuyen aleatoriamente y se mantienen unidas por fuerzas cohesivas débiles que se crean entre moléculas y por fuerzas ejercidas por las paredes de un envase. Por lo tanto, son fluidos los líquidos y los gases. Una diferencia esencial entre un fluido y un sólido es que un fluido no soporta fuerzas tangenciales y los sólidos sí. De acuerdo con esto, los fluidos son sistemas que están en continuo movimiento. En este contexto, la mecánica clásica debe modificarse un poco. Por ejemplo el concepto de masa se reemplaza por otro concepto, llamado densidad, que corresponde a la masa por unidad de volumen. 4 1

2 - CAUDAL DENSIDAD Una propiedad de cualquier sustancia es su densidad. La densidad ρ de cualquier material se define como la cantidad de masa m contenida en cada unidad de volumen V. Como la distribución de masa puede variar si se considera el volumen completo de sustancia, se debe definir en forma microscópica la densidad en cada punto del cuerpo en forma diferencial, esto es: ρ = dm dv DENSIDAD La densidad es una magnitud física escalar, su unidad de medida en el SI es kg/m3. La densidad cambia con la temperatura. La densidad de los fluidos depende también y de la presión. Si un cuerpo tiene la misma densidad en todo el volumen, es decir es constante, se dice que es homogéneo, en caso contrario es heterogéneo, en este caso el cuerpo tiene una distribución de masa variable dentro del volumen. La densidad de los líquidos (y sólidos) es del orden de 1000 veces la de los gases. 5 6 VALORES DENSIDAD SUSTANCIAS COMUNES 7 DINÁMICA DE FLUIDOS Cuando un fluido está en movimiento, el flujo se puede clasificar en dos tipos: a) Flujo estacionario o laminar si cada partícula de fluido sigue una trayectoria uniforme y estas no se cruzan, es un flujo ideal. Por ejemplo el humo de cigarrillo justo después de salir del cigarro es laminar. En el flujo estacionario la velocidad del fluido permanece constante en el tiempo. Sobre una velocidad crítica, el flujo se hace turbulento. b) Flujo turbulento es un flujo irregular con regiones donde se producen torbellinos. Por ejemplo el humo de cigarrillo en la parte superior alejada del cigarro es turbulento. El flujo laminar se vuelve turbulento por efecto de la fricción que también está presente en los fluidos y surge cuando un objeto o capa del fluido que se mueve a través de él desplaza a otra porción de fluido; lo notas por ejemplo cuando corres en el agua. 8 2

3 - CAUDAL DINÁMICA DE FLUIDOS La fricción interna en un fluido es la resistencia que presenta cada capa de fluido a moverse respecto a otra capa. La fricción interna o roce de un fluido en movimiento se mide por un coeficiente de viscosidad η. Por efecto de la viscosidad parte de la energía cinética del fluido se transforma en energía térmica, similar al caso de los sólidos. Debido a que el movimiento de un fluido real es muy complejo, consideraremos un modelo de fluido ideal con las siguientes restricciones: fluido incompresible -densidad constante flujo estacionario, laminar la velocidad en cada punto es constante. rotacional no tiene momento angular. 9 DINÁMICA DE FLUIDOS # DE REYNOLDS 10 DINÁMICA DE FLUIDOS # DE REYNOLDS DINÁMICA DE FLUIDOS # DE REYNOLDS

4 - CAUDAL ECUACIÓN DE CONTINUIDAD: La trayectoria seguida por una partícula de fluido estacionario se llama línea de corriente, así que por definición la velocidad es siempre tangente a la línea de corriente en cualquier punto. Por lo tanto las líneas de corriente no se pueden cruzar, sino en el punto de cruce, la partícula de fluido podría irse por cualquiera de las líneas y el flujo no sería estacionario. Un conjunto de líneas de corriente forma un tubo de corriente o de flujo, las partículas de fluido se pueden mover sólo a lo largo del tubo, ya que las líneas de corriente no se cruzan. 13 Considerar un fluido que se mueve a lo largo de un tubo de corriente, cuya sección transversal aumenta en dirección del flujo, como en la figura. En un intervalo Δt en la sección más angosta del tubo de área A1, el fluido se mueve una distancia Δx1 = v1 Δt. La masa contenida en el volumen A1 Δx1 es Δm1 = ρ1a1 Δx1. De manera similar, en la sección ancha del tubo de área A2, se obtienen expresiones equivalentes en el mismo Δt, cambiando el subíndice 1 por 2. Pero la masa se conserva en el flujo estacionario, esto es la masa que cruza por A1 es igual a la masa que pasa por A2 en el intervalo de tiempo Δt. Esta se llama ecuación de continuidad, representa la conservación de la masa: significa que la masa no puede ser creada ni destruida, sólo se puede transformar, similar a la conservación de la energía. 14 Para un fluido incompresible, es decir de densidad constante, la ecuación de continuidad se reduce a: LEY DE CONTINUIDAD esto es, el producto del área por la rapidez normal a la superficie en todos los puntos a lo largo del tubo de corriente es constante. La rapideces mayor (menor) donde el tubo es más angosto (ancho) y como la masa se conserva, la misma cantidad de fluido que entra por un lado del tubo es la que sale por el otro lado, en el mismo intervalo de tiempo. La cantidad Av, que en el SI tiene unidades de m3/s, se llama flujo de volumen o caudal Q = Av

5 - CAUDAL TEOREMA DE BERNOULLI ECUACIÓN DE BERNOULLI 17 Cuando un fluido se mueve por una región en que su rapidez o su altura se modifican la presión también cambia. La fuerza de la presión p1 en el extremo inferior del tubo de área A1 es F1 = p1 A1. El trabajo realizado por esta fuerza sobre el fluido es W1 = F1 Δx1 = p1a1 Δx1 = p1 ΔV, donde ΔV es el volumen de fluido considerado. De manera equivalente, si se considera un mismo intervalo de tiempo, el volumen ΔV de fluido que cruza la sección superior de área A2 es el mismo, entonces el trabajo es W2 = -p2a2δx1 = -p2 ΔV. 18 El trabajo neto realizado por las fuerzas en el intervalo de tiempo Δt es: y la variación de energía potencial gravitacional es: Por el teorema del trabajo y energía se tiene: Parte de este trabajo se usa en cambiar tanto la energía cinética como la energía potencial gravitacional del fluido. Si Δm es la masa que pasa por el tubo de corriente en el tiempo Δt, entonces la variación de energía cinética es:

6 - CAUDAL PERFIL DE FLUJO Y EFECTOS DE TUBERÍA Los cálculos del número de Reynolds son válidos para perfiles simétricos. Sin embargo, como el flujo se mueve a través de una tubería, los perfiles se distorsionan o son asimétricos. Un simple codo de 90o, distorsiona el perfil de flujo. Como el flujo se mueve a través del codo, se acelera alrededor y hacia fuera de la curva y disminuye su velocidad dentro de la curva. El perfil se distorsiona con una zona de alta velocidad ocurriendo al otro lado de la línea de centro de la tubería PERFIL DE FLUJO Y EFECTOS DE TUBERÍA PERFIL DE FLUJO Y EFECTOS DE TUBERÍA Existen algunas recomendaciones de ASME para tubería corriente arriba y corriente abajo para el caso de orificios o toberas de flujo después de un disturbio específico. Gráficas similares pueden existir para otro tipos de medidores. Idealmente el perfil de flujo lo define el Número de Reynolds y la condición de la pared interna de la tubería (rugosidad). El perfil puede ser restablecido por acondicionadores de flujo, aunque se deben de utilizar con discreción y sumo cuidado. Aunque la mayor parte de los acondicionadores de flujo como Sprenkle, Zanker, Mitsubishi y Vortab son efectivos en la eliminación de perfiles de flujo distorsionado, chorros y remolinos persistentes, su principal desventaja es que tienen pérdida de cabeza

7 - CAUDAL MEDICIÓN DE FLUJO UNIDADES DE MEDIDA DE FLUJO Siempre que se trabaja con un fluido, existe la necesidad de realizar un conteo de la cantidad que se transporta, para lo cual utilizamos medidores de flujo. Algunos de ellos miden la velocidad de flujo de manera directa, otros miden la velocidad promedio, y aplicando luego la Ecuación de Continuidad y la Ecuación de la Energía de Bernoulli se calculan la velocidad y el caudal FACTORES PARA LA ELECCIÓN DEL TIPO DE MEDIDOR DE FLUIDO Intervalo de medición Exactitud y precisión requerida Pérdida de presión Tipo de fluido Tipo de medición Calibración y configuración Medio ambiente Lugar de ubicación VARIABLES FISICAS APLICABLES En función del fluido y el tipo de caudal (volumétrico o másico)que se desea medir, se pueden agrupar los sensores por la variable física a transformar para la medición: Mediciones volumétricas: a) Presión diferencial Platina placa orificio Tubo venturi Tubo pitut Todos estos conectados a un tubo U o aun elemento de fuelle ó diafragma b) Área Variable (Rotámetro) c) Velocidad (Turbinas, Vortex, Ultrasonido) d) Tensión Inducida (Medidor Magnético) Mediciones másicas: 27 a)compensación de presión y temperatura. b) Fuerza de Coriolis 28 7

8 - CAUDAL TIPOS DE MEDIDORES DE FLUJO VOLUMÉTRICO MEDIDORES DE PRESIÓN DIFERENCIAL *Placa de Orificio, Tobera o Boquilla de Flujo, Tubo deventuri, Tubo de Pitot, Tubo Anubbar MEDIDOR DE ÁREA VARIABLE *Rotámetro MEDIDORES DE VELOCIDAD *Turbina, Transductores ultrasónicos MEDIDOR DE FUERZA * Medidor de Placa MEDIDOR DE TENSIÓN INDUCIDA *Medidor magnético de caudal MEDIDORES DE DESPLAZAMIENTO POSITIVO *Disco y Pistón oscilante, Pistón alternativo, rotativos, etc. MEDIDORES DE TORBELLINO Y VÓRTEX MEDIDOR OSCILANTE 29 PRESIÓN DIFERENCIAL Si imaginamos una corriente de agua por una tubería cerrada (ver gráfico), el caudal en la tubería se define como: Q= V/t Donde V es el volumen que se ha trasladado en el tiempo t. Si expresamos la velocidad como: v= l/ t Donde l es la longitud recorrida por el fluido en el tiempo t Entonces: Q= V/ t = A. l/ t = A.v 30 MEDIDORES DE PRESIÓN DIFERENCIAL VENTAJAS MEDIDORES DE PRESIÓN DIFERENCIAL DESVENTAJAS Las principales ventajas de estos medidores son: Su sencillez de construcción. No incluyen partes móviles. Su funcionamiento se comprende con facilidad. No son caros, particularmente si se instalan en grandes tuberías y se comparan con otros medidores. Pueden utilizarse para la mayoría de los fluidos. Hay abundante información sobre sus diferentes usos. 31 Sus principales desventajas son: La amplitud del rango de medida es menor que para la mayoría de los otros medidores. Puede producir pérdidas de carga significativas, es decir provocan una caída de presión alta. La señal de salida no es lineal con el flujo. Deben de respetarse tramos rectos de tubería corriente arriba y corriente abajo del medidor que, según la localización de la tubería y los accesorios existentes, pueden llegar a ser grandes. Pueden producirse efectos de envejecimiento, es decir, acumulación de depósitos o la erosión de las aristas vivas. La precisión suele ser menor que la de medidores más modernos, especialmente si, como es habitual, el medidor se entrega sin 32 calibrar. 8

9 - CAUDAL La placa de orificio es el dispositivo de medición de flujo más comúnmente usado, cuyas características son: Máxima pérdida de presión permanente. Más fácil de instalar. Fácilmente reproducible. Requiere inspección periódica. Es el de más bajo costo. Es el dispositivo más conocido. Mide flujos de líquidos, gases y vapores bajo un amplio rango de condiciones. Consiste básicamente de una placa circular perforada, la cual se inserta en la tubería y presenta una restricción al paso del flujo, lo que general una presión diferencial en el sistema, la que se mide, y resulta ser proporcional a la 33 magnitud del flujo. Consiste en una placa perforada (disco metálico), instalada en una tubería. Cuando una placa de orificio se coloca en forma concéntrica dentro de una tubería, ésta provoca que el flujo se contraiga de repente conforme se aproxima al orificio y después se expande de repente al diámetro total de la tubería. Su propósito es determinar la rata de flujo de mediciones de presión diferencial a través del orificio. La corriente que fluye a través del orificio forma una vena contracta (área del flujo mínima) que es más pequeña que el área de la abertura en la placa de orificio. La rápida velocidad del flujo resulta en una disminución de 34 presión hacia abajo desde el orificio

10 - CAUDAL TIPOS DE PLACAS DE ORIFICIO Ventajas: Es económica. El 50% de los medidores de caudal utilizados en la industria son P.O

11 - CAUDAL

12 - CAUDAL

13 - CAUDAL Desventajas: El coeficiente de descarga puede cambiar con el tiempo debido al desgaste y la acumulación de suciedad. Se puede obstruir y reducir el diámetro del orificio. Para evitar esto se utilizan orificios excéntricos y segmentales. * Pérdida de carga (caída de presión) apreciable debido al efecto de turbulencia que se puede generar antes de la placa * Los valores de Cd llegan a máximo 0,6 * Para mejorar esta situación se desarrollan perfiles más lineales, que minimicen estos efectos. * Así se formaron las toberas y los venturímetros, permitiendo valores de Cd hasta 0, BOQUILLA O TOBERA DE FLUJO Es una contracción gradual de la corriente de flujo seguida de una sección cilíndrica recta y corta. 50 BOQUILLA O TOBERA DE FLUJO La tobera permite caudales 60% superiores a los de placa-orificio en las mismas condiciones de servicio. Su pérdida de carga es de 30 a 80% de la presión diferencial. Puede emplearse para fluidos que arrastren sólidos en pequeña cantidad. La exactitud es del orden de +/-0.95 a +/-1.5%. BOQUILLA O TOBERA DE FLUJO

14 - CAUDAL TUBO VENTURI Consiste en un estrechamiento gradual cónico y una descarga con salida también suave. Es una tubería corta recta, o garganta, entre dos tramos cónicos. La presión varía en la proximidad de la sección estrecha; así, al colocar un manómetro o instrumento registrador en la garganta se puede medir la caída depresión y calcular el caudal instantáneo. Permite la medición de caudales 60% superiores a los de la placa orificio en las mismas condiciones de servicio y con una pérdida de carga de solo 10 a 20% de la presión diferencial. Se utiliza cuando es importante limitar la caída de presión. Se usa para fluidos sucios y ligeramente contaminados. El alto costo restringe su utilización. TUBO VENTURI TUBO VENTURI TUBO VENTURI

15 - CAUDAL TUBO VENTURI APLICACIONES

16 - CAUDAL TUBO DALL MEDIDORES DE PRESIÓN DIFERENCIAL MEDIDORES DE PRESIÓN DIFERENCIAL TUBO PITOT

17 - CAUDAL TUBO PITOT En la práctica se emplea un diseño con dos tubos concéntricos, uno interior que actúa como el tubo Pitot y el exterior como un medio de medir la presión Los tubos de Pitot son instrumentos sencillos, económicos, con una caída de presión baja y disponibles en un amplio margen de tamaños. Si se utilizan adecuadamente pueden conseguirse exactitudes moderadas y, aunque su uso habitual sea para la medida de la velocidad del aire, se usan también, con la ayuda de una técnica de integración, para indicar el caudal total en grandes conductos y, prácticamente, con cualquier fluido. Probablemente la principal desventaja sea su dificultad para medir bajas velocidades del aire. Para líquidos quizás el principal problema sea la rotura de la sonda. En el tubo pitot sencillo, la colocación es muy crítica. Si el flujo esta en el extremo inferior del perfil turbulento, la diferencia en velocidad que atraviesa el flujo requerirá que se inserte el flujo donde se pueda determinar que velocidad se esta midiendo. 65 TUBO PITOT 66 TUBO ANNUBAR El tubo annubar es una innovación del tubo de pitot. Cuenta con tubo exterior, situado a lo largo de un diámetro transversal de la tubería, y dos tubos interiores. El tubo exterior presenta cuatro orificios en la cara aguas arriba de la corriente, que utiliza para interpolar los perfiles de velocidad y realizar un promedio, y otro orificio en el centro del tubo pero en la cara aguas debajo de la corriente. De los tubos que están en su interior, uno sirve para promediar las presiones obtenidas en los cuatro orificios, midiendo la presión total, mientras que el otro tubo, que se encuentra en la parte posterior, mide la presión estática en el orificio central aguas debajo de la corriente. Existen diferentes tipos de tubos annubar, cuya selección depende del tamaño de la línea y su aplicación. El tubo annubar tiene mayor precisión que el tubo de pitot, así como una baja perdida de carga, utilizándose para la medida de pequeños y grandes flujos de fluidos. 67 TUBO ANNUBAR 68 17

18 - CAUDAL CODOS CODOS Cuando un fluido circula por el codo de una tubería, está sujeto a una aceleración angular. La fuerza centrífuga resultante crea una presión diferencial entre el radio interior y el radio exterior. La raíz cuadrada de esta presión diferencial es proporcional al caudal, siendo la base fundamental de estos medidores de caudal. Las tomas en el codo presentan la ventaja de que como la mayoría de las configuraciones de tuberías tienen codos, pueden situarse en ellos las tomas de presión. Esto permite una instalación económica, sin pérdidas de presión, y sin introducir obstrucciones en la línea. Debe ponerse especial cuidado para alinear los orificios de las tomas de presión en ambos planos. Si el codo esta calibrado, su precisión puede ser comparable a la de una placa de orificio

19 - CAUDAL MEDIDORES DE ÁREA VARIABLE ROTÁMETROS MEDIDORES DE ÁREA VARIABLE ROTÁMETROS MEDIDORES DE ÁREA VARIABLE ROTÁMETROS MEDIDORES DE ÁREA VARIABLE ROTÁMETROS Funcionamiento del Rotámetro

20 - CAUDAL MEDIDORES DE ÁREA VARIABLE ROTÁMETROS VENTAJAS Bajo costo Simple Relativamente inmune a los arreglos de tuberías cercanos Baja caída de presión constante Rango de flujo 10:1 Ningún tipo de suministro requerido LIMITACIONES No es apropiado para altas presiones Capacidad máxima limitada Las unidades en algunos casos son voluminosos. El costo se incrementa considerablemente con operaciones extras (corazas de protecciones o montaje en tablero) Transmisión no disponible como estándar Las incrustaciones de suciedad pueden volver difícil la lectura Solo manejan fluidos limpios. TIPO TURBINA Un medidor de flujo tipo turbina es aceptado ampliamente como una tecnología probada que es aplicable para medir flujo con una alta exactitud y repetibilidad y consiste de un sensor para detectar la velocidad real de un líquido que fluye por un conducto. La movilidad del líquido ocasiona que el rotor se mueva a una velocidad tangencial proporcional al flujo del volumen. El movimiento del rotor puede ser detectado mecánica, óptica o eléctricamente, registrándose el movimiento del rotor en un sistema lector externo TIPO TURBINA TIPO TURBINA La velocidad del fluido ejerce una fuerza de arrastre en el rotor; la diferencia de presiones debido al cambio de área entre el rotor y el cono posterior ejerce una fuerza igual y opuesta. 79 De este modo el rotor esta equilibrado hidrodinámicamente y gira entre los conos anteriores y posteriores sin necesidad de usar rodamientos axiales evitando así un rozamiento que necesariamente se produciría. Son básicamente aspas rotatorias soportadas a lo largo de la línea central del tubo. El rotor de la turbina axial está ligeramente suspendido y rota con el flujo de fluido (gas o líquido) a través del medidor de flujo. La velocidad rotacional de la turbina es proporcional a la velocidad del fluido Vt Vf. Como el paso de flujo es fijado, la velocidad rotacional es una representación exacta del volumen del fluido fluyendo a través del medidor de flujo

21 - CAUDAL TIPO TURBINA TIPO TURBINA La única conexión mecánica entre la turbina y el Housing son los cojinetes de la turbina. La rotación de la turbina es sensada por un Pick Up magnético en el cuerpo del medidor de flujo que responde al paso de cada aspa de la turbina. La salida del Pick Up magnético es un tren de pulsos de voltaje con una frecuencia proporcional a la rata de flujo volumétrico. Los pulsos se transmiten a un sistema de procesamiento de datos cercanos al medidor, donde son amplificados, contados e interfasados con un microprocesador para medir el flujo del 81 fluido. Son los más precisos (Precisión %). Son aplicables a gases y líquidos limpios de baja viscosidad. Problemas: Pérdida de carga y partes móviles 82 TIPO TURBINA TIPO TURBINA

22 - CAUDAL TIPO TURBINA TIPO TURBINA TIPO TURBINA TIPO TURBINA Rango: 0.03 a galones/minuto Los medidores de flujo tipo turbina hacen uso del principio de momento angular para medir la rata de flujo. El intercambio de momentum entre el flujo y el rotor gira al rotor a una velocidad rotacional que es proporcional a la rata de flujo. Como la bobina genera un pulso cada vez que un aspa pasa frente al Pick Up magnético, entonces: V=kn; donde: V= volumen total del líquido pasando por el medidor k=volumen líquido/ pulso n= número de pulsos Rata de flujo promedio 87 t= es un intervalo de tiempo; Q=kf ; f=frecuencia 88 22

23 - CAUDAL TIPO TURBINA TIPO TURBINA ULTRASONIDO ULTRASONIDO Los medidores de flujo tipo ultrasónico como su nombre lo indica, miden el flujo por medición de energía u onda ultrasónica en sistemas cerrados. Existen dos tipos: -Medidor ultrasónico de tiempo transitorio o por impulsos y - Medidor ultrasónico por efecto Doppler Una onda de sonido que viaja en la dirección del flujo de fluido requiere menos tiempo entre un punto fijado y otro que una onda viaja en la dirección opuesta. Este es el principio empleado para medir la rata de flujo con ondas ultrasónicas. 91 Una onda de sonido que viaja en la dirección del flujo de fluido requiere menos tiempo entre un punto fijado y otro que una onda viaja en la dirección opuesta. Este es el principio empleado para medir la rata de flujo con ondas ultrasónicas

24 - CAUDAL ULTRASONIDO ULTRASONIDO Tiempos diferentes de transiente son una indicación de la velocidad de flujo del fluido. En la gráfica anterior se muestra un esquema para un medidor de flujo particular, en el que se observan dos sensores e ultrasonido montados en lados opuestos el tubo a un ángulo con respecto al eje del tubo. Ambos sensores pueden recibir y transmitir ondas ultrasónicas. Las ondas ultrasónicas viajan desde A a B a la velocidad V AB, y desde el punto B al punto A a la velocidad V BA. Los tiempos del transiente t AB y t BA se pueden encontrar diciendo: 93 A: B: L: C 0 : transmisor receptor transmisor receptor Distancia de medición Velocidad del sonido en el producto V m : Velocidad promedio de flujo de fluido V AB (t AB ) = velocidad de propagación A-B V BA (t BA ) = velocidad de propagación B-A 94 VORTEX El medidor vortex o torbellino, mide la frecuencia de torbellino producida por una hélice estática situada en la tubería, perpendicular a la dirección del fluido. La frecuencia es directamente proporcional a la velocidad del fluido. El coeficiente de proporcionalidad es función de la forma de la hélice y se determina experimentalmente. El límite inferior de Número de Reynolds, para que se produzca torbellino también depende de la hélice y típicamente esta entre 10,000 y 20,000. La frecuencia de torbellino puede ser detectada de múltiples maneras y no existen resultados de pruebas que permitan establecer cual es la mejor. Son usuales: Sensores piezoeléctrico, termistores de baja inercia, Sensores 95 capacitivos o ultrasonido. VORTEX La frecuencia de torbellino no es afectada apreciablemente por las propiedades del fluido, mientras el Número de Reynolds sea superior al mínimo no es requerida compensación por cambios de densidad, viscosidad ni temperatura de fluido, a menos que esta varíe drásticamente. Si el fluido es altamente corrosivo o erosivo puede deteriorar la hélice y variar la constante de calibración. Es muy sensible a las condiciones de instalación, las recomendaciones de tramos rectos son similares a las de una platina de orificio con d/d= 0,7. La rangoabilidades típicas son de 10:1 para líquidos y 20:1 para gases y vapor, deben ser calculadas para cada aplicación y es definida por el mínimo numero de Reynolds y la máxima velocidad de fluido (usualmente 25 ft/sec líquidos y 250 ft/sec gases y vapor). Por esta razón fluidos viscosos (u>8cp) no son generalmente recomendados

25 - CAUDAL VORTEX VORTEX El medidor tipo Vortex es un ejemplo de un medidor de flujo oscilatorio. A baja velocidad, el modelo del flujo permanece alíneado, sin embargo al incrementar la velocidad, el fluido se separa de cada lado del cuerpo y se arremolina formando vórtices (torbellinos) corriente abajo del cuerpo. El número de vórtices generados es directamente proporcional a la velocidad del fluido. El Vortex crea una señal pulsante el cual puede ser medido. El costo total del medidor hace que sea una alternativa para reemplazar platinas de orificio; su costo inicial es similar hasta 4", costos de instalación y mantenimiento son generalmente más bajos y tumba entre 50 y 67% menos presión que esta. Sin embargo el hecho de que pueden ser afectados por problemas de vibración en las tubería, inhabilidad para indicación de flujo nulo (Salida es 0% con flujo nulo o por debajo del número de Reynolds mínimo), e imposibilidad de chequeo de calibración hacen que su uso no sea extendido ELECTROMAGNÉTICO El medidor de caudal electromagnético utiliza el mismo principio básico que el electrogenerador, es decir, cuando un conductor se mueve a través de un campo magnético se genera una fuerza electromotriz en el conductor, siendo su magnitud directamente proporcional a la velocidad media del conductor en movimiento. Si el conductor es una sección de un líquido conductor circulando por un tubo aislado eléctricamente, a través de un campo magnético y se montan los electrodos diametralmente opuestos en la pared de la tubería, la fuerza electromotriz generada a través de los electrodos es directamente proporcional a la velocidad media del fluido. 99 ELECTROMAGNÉTICO Es importante señalar que la diferencia de potencial entre los electrodos es del orden de milivoltios, por lo que dicha señal tiene que ser amplificada mediante un dispositivo secundario denominado convertidor, que proporciona una señal de salida en miliamperios, en voltios o en impulsos

26 - CAUDAL ELECTROMAGNÉTICO ELECTROMAGNÉTICO ELECTROMAGNÉTICO ELECTROMAGNÉTICO

27 - CAUDAL ELECTROMAGNÉTICO Estos medidores se aplican ampliamente en: - Líquidos mezclados con agua, - En el manejo de pasta, - En procesos altamente corrosivos, - En plantas de tratamiento de efluentes (industrias de desechos), - En plantas de papel, - En la industria del grano (maíz, cereal), - En la industria de resinas, pinturas, - En la medición de productos viscosos, - En la industria de alimentos (leche, mezclas de helados, industria de cerveza, café, salsas, etc) y - en donde la medición de flujo de proceso es díficil

Medidores volumétricos

Medidores volumétricos SENSORES DE CAUDAL Medidores volumétricos Determinan el caudal en volumen del fluido. (vol/tiempo) - Placa orificio Tubo Venturi Tubo Pitot Rotámetro Vertedero Turbina Vortex Ultrasónico Medidor magnético

Más detalles

Medición de Flujo. Ing. Alejandra Escobar

Medición de Flujo. Ing. Alejandra Escobar Medición de Flujo Ing. Alejandra Escobar Medición de Flujo Un fluido es una sustancia que posee la propiedad de que una porción de la misma puede desplazarse respecto a la otra, es decir, puede fluir venciendo

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 07 SEMANA : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe OBJETIVO GENERAL Al término de

Más detalles

Mediciones en Mecánica de Fluidos

Mediciones en Mecánica de Fluidos Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS I

LABORATORIO DE OPERACIONES UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PRÁCTICA 4. MEDIDORES DE FLUJO PARA FLUIDOS INCOMPRESIBLES

Más detalles

Medidores volumétricos

Medidores volumétricos SENSORES DE CAUDAL Medidores volumétricos Determinan el caudal en volumen del fluido. (vol/tiempo) - Placa orificio Tubo Venturi Tubo Pitot Rotámetro Vertedero Turbina Vortex Ultrasónico Medidor magnético

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 017 SEMANA 11 : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe 1 OBJETIVO GENERAL Al término

Más detalles

Instrumentación y control Control estadistico. CEBI_E12 : presentación cuatro

Instrumentación y control Control estadistico. CEBI_E12 : presentación cuatro CARRERA DE ESPECIALIZACION EN BIOTECNOLOGIA INDUSTRIAL FCEyN-INTI Materia de Especialización CEBI_E12E12 Instrumentación y control Control estadistico Docente a cargo: Juan José Dominguez CEBI_E12 : presentación

Más detalles

Medidores de flujo. Medidores de flujo volumétrico. Presión diferencial -Medidores conectados a tubo U o a elementos de fuelle o diafragma

Medidores de flujo. Medidores de flujo volumétrico. Presión diferencial -Medidores conectados a tubo U o a elementos de fuelle o diafragma Medidores de flujo Medidores de flujo volumétrico Sistema Presión diferencial -Medidores conectados a tubo U o a elementos de fuelle o diafragma Área variable Velocidad Tensión inducida Desplazamiento

Más detalles

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal.

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal. PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO A.- Objetivo Calibrar los siguientes medidores de flujo volumétrico: placa orificio, tobera y venturi, mediante el cálculo de los coeficientes

Más detalles

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES República bolivariana de Venezuela La Universidad del Zulia Facultad de Ingeniería Escuela de Ingeniería Química Laboratorio de Operaciones Unitarias I PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

Más detalles

INSTRUMENTACIÓN INDUSTRIAL CAUDALÍMETROS DE PRESIÓN DIFERENCIAL

INSTRUMENTACIÓN INDUSTRIAL CAUDALÍMETROS DE PRESIÓN DIFERENCIAL INSTRUMENTACIÓN INDUSTRIAL CAUDALÍMETROS DE PRESIÓN DIFERENCIAL 1. Cuál es el mayor inconveniente de la placa de orificio? A) Su alto precio B) Su pérdida de carga C) Su dificultad para ser desmontada

Más detalles

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos INDICE Prólogo XV Lista de Símbolos XVII Lista de abreviaturas XXI Capitulo 1. Introducción 1 1.1. Ámbito de la mecánica de fluidos 1 1.2. Esquemas históricos del desarrollo de la mecánica de fluidos 2

Más detalles

Medición n de Caudal

Medición n de Caudal www.freewebs.com/betochac Medición n de Caudal 1 Introducción En las funciones y/o operaciones realizadas en procesos industriales de control es de gran importancia la medición n de caudales de líquidos

Más detalles

Medidores de presión.

Medidores de presión. Introducción Estudiaremos el efecto, funcionamiento y las aplicaciones tecnológicas de algunos medidores de flujo el cual su invención data de los años 1.800,entre ellos el Tubo Vénturi, donde su creador

Más detalles

Instrumentación I Maestría en Ingeniería Electrónica. Sensores en proceso Dr. José Fermi Guerrero Castellanos FCE-BUAP

Instrumentación I Maestría en Ingeniería Electrónica. Sensores en proceso Dr. José Fermi Guerrero Castellanos FCE-BUAP + Instrumentación I Maestría en Ingeniería Electrónica Sensores en proceso Dr. José Fermi Guerrero Castellanos FCE-BUAP Motivación + Contenido n Sensores Presión n Sensores Caudal n Sensor Temperatura

Más detalles

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons SENSORES DE FLUJO Referencias bibliográficas Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons Sensores y acondicionamiento de señal, R. Pallás

Más detalles

Electrónica Industrial Monclova, S. de R.L. de C.V.

Electrónica Industrial Monclova, S. de R.L. de C.V. ELEMENTOS PRIMARIOS DE FLUJO INFORMACIÓN TÉCNICA La medición exacta del flujo de fluidos (gases y líquidos), en tuberías y ductos, es de principal importancia en las modernas industrias de proceso. Sin

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

SOLUCION (1/2) punto cada pregunta.

SOLUCION (1/2) punto cada pregunta. ULA. FACULTAD DE INGENIERIA. Mérida de enero de 015 3do EXAMEN PARCIAL. Teoría. A SOLUCION Seleccione de la lista de instrumentos de la columna derecha el que mejor se adapte a cada una de las afirmaciones

Más detalles

OTRO EJEMPLO DE MEDIDOR DE CAUDAL: ROTÁMETRO 2) DETERMINACIÓN DE PÉRDIDA DE CARGA EN TRAMO RECTO Y ACCESORIOS (VÁLVULA ESCLUSA Y GLOBO)

OTRO EJEMPLO DE MEDIDOR DE CAUDAL: ROTÁMETRO 2) DETERMINACIÓN DE PÉRDIDA DE CARGA EN TRAMO RECTO Y ACCESORIOS (VÁLVULA ESCLUSA Y GLOBO) TP FLUIDODINÁMICA 1) CALIBRACIÓN DE MEDIDORES DE CAUDAL - TUBO VENTURI - PLACA ORIFICIO OTRO EJEMPLO DE MEDIDOR DE CAUDAL: ROTÁMETRO 2) DETERMINACIÓN DE PÉRDIDA DE CARGA EN TRAMO RECTO Y ACCESORIOS (VÁLVULA

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm PARTE I: ECUACIÓN DE BERNOULLI (SIN INTERACCIONES ENERGÉTICAS) OBJETIVOS Los objetivos de estas clases son: CONSIDERACIONES TEÓRICAS DE LA ECUACIÓN DE BERNOULLI La ecuación de Bernoulli es la siguiente:

Más detalles

INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS

INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS INTEGRANTES: Angie De Jesus Gutierrez de la Rosa Bayron David Santoya Reales Brian Jesus Pereira Cantillo Oscar De Jesus Pedrozo Cadena PRESENTADO

Más detalles

CONTROL AUTOMATICO SEMANA 2 (17/09/2012)

CONTROL AUTOMATICO SEMANA 2 (17/09/2012) UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA I. CONTENIDO 1.INTRODUCCION 2.MEDIDA DEL CAUDAL 3. MEDIDA DE LA PRESION 4. PRACTICA N 02 CONTROL AUTOMATICO SEMANA 2 (17/09/2012) II. OBJETIVO

Más detalles

3.4. Sensores de Velocidad y Movimiento.

3.4. Sensores de Velocidad y Movimiento. 3.4. Sensores de Velocidad y Movimiento. Los sensores tacométricos, se encargan de medir la velocidad angular. Estos miden la frecuencia de impulsos de cualquier tipo de señal, que generalmente es de tipo

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

LABORATORIO DE INSTRUMENTACIÓN ELECTRÓNICA PRÁCTICA N 12

LABORATORIO DE INSTRUMENTACIÓN ELECTRÓNICA PRÁCTICA N 12 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

Unidad 5. Fluidos (Dinámica)

Unidad 5. Fluidos (Dinámica) Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula

Más detalles

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos 1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas

Más detalles

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE t CAPÍTULO LA DE..2.3.4.5.6.7.8.9.0..2 DE LOS FLUIDOS Y EL Panorama Objetivos 3 Conceptos fundamentales introductorios 3 El sistema internacional de unidades (SI) 4 El sistema tradicional de unidades de

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores 2. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos 1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas

Más detalles

DINÁMICA DE FLUIDOS ÍNDICE

DINÁMICA DE FLUIDOS ÍNDICE DINÁMICA DE FLUIDOS ÍNDICE. Tipos de flujo. Ecuación de continuidad 3. Ecuación de Bernouilli 4. Aplicaciones de la ecuación de Bernouilli 5. Efecto Magnus 6. Viscosidad BIBLIOGRAFÍA: Cap. 3 del Tipler

Más detalles

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo.

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-5 Hidrodinámica Hasta ahora, nuestro estudio se ha restringido a condiciones de reposo, que son considerablemente más sencillas que el estudio de fluidos en movimiento.

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Webpage: http://paginas.fisica.uson.mx/qb 2016 Departamento

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

Medición de Caudal. Principio de medición. Campo de aplicación

Medición de Caudal. Principio de medición. Campo de aplicación Medición de caudal Medición de Caudal La medida de caudal, representa una parte muy importante de la industria. En la mayoría de los procesos de la instrumentación es necesario medir el caudal instantáneo

Más detalles

Contadores mecánicos de chorro único

Contadores mecánicos de chorro único Contadores mecánicos de chorro único El agua entra por la boquilla de entrada formando un chorro que incide sobre las palas de la turbina, atacándolas desde una única dirección y sale por la boquilla de

Más detalles

CAUDALIMETROS. Esta cantidad puede expresarse en volumen o en masa

CAUDALIMETROS. Esta cantidad puede expresarse en volumen o en masa Detectores de caudal CAUDALIMETROS El caudal de un fluido (liquido o gaseoso) que circula una canalización es la cantidad de dicho fluido que pasa por una sección determinada, en la unidad de tiempo. Esta

Más detalles

SENSORES DE NIVEL. 1.- Medición directa

SENSORES DE NIVEL. 1.- Medición directa SENSORES DE NIVEL 1.- Medición directa Varilla o sonda: Consiste en una varilla o regla graduada, de la longitud conveniente para introducirla dentro del depósito. La determinación del nivel se efectúa

Más detalles

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos Dinámica de fluidos Cátedra de Física- FFyB-UBA Tipos de fluidos Fluido IDEAL Tipos de Fluidos INCOMPRESIBLE No varía su volumen al variar la presión al cual está sometido (δ cte) Según su variación de

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora. Dinámica de Fluidos

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora. Dinámica de Fluidos Mecánica y fluidos Webpage: http://paginas.fisica.uson.mx/qb 007 Departamento de FísicaF Universidad de Sonora Dinámica de Fluidos 1 Temario 7. Dinámica de fluidos Dinámica de fluidos (.5 semanas) 1. Características

Más detalles

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA INSTRUMENTO : GUIA DE APRENDIZAJE N 1 NIVEL (O CURSO) : CUARTO AÑO MEDIO PLAN : COMÚN UNIDAD (O EJE) : FUERZA Y MOVIMIENTO CONTENIDO(S) : ECUACIÓN

Más detalles

DINAMICA DE FLUIDOS O HIDRODINAMICA.

DINAMICA DE FLUIDOS O HIDRODINAMICA. DINAMICA DE FLUIDOS O HIDRODINAMICA. Es la rama de la mecánica de fluidos que se ocupa de las leyes de los fluidos en movimientos; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene

Más detalles

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio

Más detalles

1.2-Presión. Se incluye los temas de flujo y caudal

1.2-Presión. Se incluye los temas de flujo y caudal 1.2-Presión. Se incluye los temas de flujo y caudal Para optimizar el rendimiento en la obtención de electricidad a partir de la energía cinética del viento. Una de ellas está relacionada con la forma

Más detalles

M E C Á N I C A. El Torbellino. El Torbellino

M E C Á N I C A. El Torbellino. El Torbellino M E C Á N I C A M E C Á N I C A Los torbellinos o vórtices se forman en fluidos (gases y líquidos) en movimiento. Para describir el movimiento de un fluido (según Euler) se necesita determinar en cada

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Fluidodinámica: Estudio de los fluidos en movimiento

Fluidodinámica: Estudio de los fluidos en movimiento Universidad Tecnológica Nacional Facultad Regional Rosario Curso Promoción Directa Física I Año 013 Fluidodinámica: Estudio de los fluidos en movimiento Ecuaciones unitarias en el flujo de fluidos Ecuación

Más detalles

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora Mecánica y fluidos Webpage: http://paginas.fisica.uson.mx/qb 007 Departamento de FísicaF Universidad de Sonora Dinámica de Fluidos Temario 7. Dinámica de fluidos Dinámica de fluidos (.5 semanas) 1. Características

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que

Más detalles

INSTRUMENTOS DE CAUDAL

INSTRUMENTOS DE CAUDAL MEDICIÓN DE CAUDAL INSTRUMENTOS DE CAUDAL El caudal es la variable de proceso básica más difícil de medir. Existen numerosos tipos de medidores y transmisores: Elementos deprimógenos Transmisores de presión

Más detalles

INDICE. Capitulo I. Introducción

INDICE. Capitulo I. Introducción INDICE Capitulo I. Introducción I 1.1. La mecánica de fluidos en la ingeniera 1 1.2. Los fluidos y la hipótesis del continuo 22 1.2.1. El modelo del continuo 4 1.3. Propiedades de los fluidos 1.3.1. Densidad,

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PÉRDIDAS DE CARGA POR FRICCIÓN Profesora: Marianela

Más detalles

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido.

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Tipo de regimenes y número de Reynolds. Cuando un fluido fluye alrededor de

Más detalles

TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS

TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS La variable caudal, tipos. Perfil de velocidades, factores que determinan el régimen de flujo, fluidos no newtonianos, distorsiones. Características especiales de

Más detalles

TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS

TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS La variable caudal, tipos. Perfil de velocidades, factores que determinan el régimen de flujo, fluidos no newtonianos, distorsiones. Características especiales de

Más detalles

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII:

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII: UNIA VII: Acción dinámica de los fluidos. Generalidades. Ecuación de la cantidad de movimiento. Coeficiente de oussinesq. Ecuación de la cantidad de movimiento aplicada a un tubo de corriente. Escurrimiento

Más detalles

CINEMÁTICA 4. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

CINEMÁTICA 4. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CINEMÁTICA 4 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA MOMENTUM LINEAL(1) El MOMENTUM del fluido en un volumen

Más detalles

Bases Físicas de la Hemodinamia

Bases Físicas de la Hemodinamia Bases Físicas de la Hemodinamia ESFUNO UTI: Cardiovascular - Respiratorio Biofísica Facultad de Enfermería 1 Sistema Cardiovascular Bomba Energía Tubuladuras Colección Tubuladuras Distribución Vasos finos

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas. MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.. En las conducciones hidráulicas los accesorios provocan a menudo pérdidas

Más detalles

Importancia de las Bombas Hidráulicas

Importancia de las Bombas Hidráulicas BOMBAS HIDRÁULICAS Importancia de las Bombas Hidráulicas Para muchas necesidades de la vida diaria tanto en la vida doméstica como en la industria, es preciso impulsar sustancias a través de conductos,

Más detalles

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli.

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli. U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 05/02/2009 Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida

Más detalles

Hernán Verdugo Fabiani

Hernán Verdugo Fabiani Hidrodinámica Se estudian fenómenos con fluidos en movimiento 1 Ideas previas Los fluidos que se considerarán son líquidos que cumplen con las siguientes características: Fluidos incompresibles: de densidad

Más detalles

física física conceptual aplicada MétodoIDEA Líquidos Entre la y la 1º de bachillerato Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA Líquidos Entre la y la 1º de bachillerato Félix A. Gutiérrez Múzquiz Entre la y la física física conceptual aplicada MétodoIDEA Líquidos 1º de bachillerato Félix A. Gutiérrez Múzquiz Contenidos 1. PRESIÓ E U LÍQUIDO 2. PRI CIPIO DE ARQUÍMEDES 3. LÍQUIDOS E MOVIMIE TO.........

Más detalles

1.1.ECUACION FUNDAMENTAL DE LA DINÁMICA DE FLUIDOS.

1.1.ECUACION FUNDAMENTAL DE LA DINÁMICA DE FLUIDOS. INTRODUCCIÓN Los principios físicos más útiles en las aplicaciones de la mecánica de fluidos son el balance de materia, o ecuación de continuidad, las ecuaciones del balance de cantidad de movimiento y

Más detalles

Medidas del ph Como sabemos el ph es una variable de gran importancia, que nos da el valor de la concentración de los iones hidrógeno.

Medidas del ph Como sabemos el ph es una variable de gran importancia, que nos da el valor de la concentración de los iones hidrógeno. Automatización ENTREGA 31 Elementos de medida en automatización y robótica industrial Elaborado por Ing. Iván Escalona Medidas del ph Como sabemos el ph es una variable de gran importancia, que nos da

Más detalles

Principios de Medida - Flujo. James Robles Departamento de Instrumentación Huertas College

Principios de Medida - Flujo. James Robles Departamento de Instrumentación Huertas College James Robles Departamento de Instrumentación Huertas College En esta presentación: Definición de Flujo Unidades de medida de Flujo Consideraciones en medidas de Flujo Medida de Flujo utilizando métodos

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

Ingeniería Mecánica/Electromecánica MECANICA DE FLUIDOS I Página: PL01A/1 Medición del Gasto Fundamento Teórico Revisión 5

Ingeniería Mecánica/Electromecánica MECANICA DE FLUIDOS I Página: PL01A/1 Medición del Gasto Fundamento Teórico Revisión 5 Ingeniería Mecánica/Electromecánica MECANICA DE FLUIDOS I Página: PL0A/ Medición del gasto en base a la caída de presión en dispositivos convergentes.generalidades En general todo dispositivo intercalado

Más detalles

TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS

TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS La variable caudal, tipos. Perfil de velocidades, factores que determinan el régimen de flujo, fluidos no newtonianos, distorsiones. Características especiales de

Más detalles

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XI.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XI.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES En un flujo laminar la corriente es relativamente lenta y no es perturbada por las posibles protuberancias

Más detalles

Tema 7: Fundamentos del movimiento de fluidos

Tema 7: Fundamentos del movimiento de fluidos Tema 7: Fundamentos del movimiento de fluidos INTRODUCCIÓN La Cinemática de fluidos es la parte de la Mecánica de Fluidos que estudia las propiedades geométricas del movimiento de los fluidos. El estudio

Más detalles

6. pérdidas de carga en conduc tos climaver

6. pérdidas de carga en conduc tos climaver 6. pérdidas de carga en conduc tos climaver manual de conduc tos de aire acondicionado climaver 62 El aire que circula por la red de conductos, recibe la energía de impulsión (aspiración) por medio de

Más detalles

Caídas de presión en tuberías horizontales

Caídas de presión en tuberías horizontales Caídas de presión en tuberías horizontales PROBLEMAS 1. Obtener las ecuaciones fenomenológicas que muestre la dependencia de la caída de presión con: Longitud Diámetro Velocidad del fluido Para las siguientes

Más detalles

TECNOLOGIA APLICADA TEMA 1. Fundamentos de Mecánica de los Fluidos

TECNOLOGIA APLICADA TEMA 1. Fundamentos de Mecánica de los Fluidos TECNOLOGIA APLICADA TEMA 1 Fundamentos de Mecánica de los Fluidos Naturaleza de los fluidos, estática, presión, viscosidad. Movimiento de fluidos, caudal, regímenes de flujo. Teorema de Bernoulli, línea

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

IT-ATM Metodos de medida no normalizados Determinación de la velocidad y caudal

IT-ATM Metodos de medida no normalizados Determinación de la velocidad y caudal IT-ATM-08.1 Metodos de medida no normalizados Determinación de la velocidad y caudal ÍNDICE 1. OBJETO. 2. ALCANCE Y ÁMBITO DE APLICACIÓN. 3. DEFINICIONES. 4. EQUIPOS. 5. DESARROLLO. 6. CÁLCULOS Y EXPRESIÓN

Más detalles

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Pregunta 1 Considere el agua que fluye con rapidez de 3 [m/s] sometida a una presión de 00 [KPa], por una cañería horizontal que más

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PRÁCTICA 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 3 ELEMENTOS DE MEDICIÓN Y TRANSMISIÓN

CONTROL DE PROCESOS FACET UNT TEMA 3 ELEMENTOS DE MEDICIÓN Y TRANSMISIÓN VARIABLES DE PROCESO CONTROL DE PROCESOS FACET UNT Las variables más comunes que se miden y controlan en los procesos industriales son cuatro: PRESIÓN, TEMPERATURA, NIVEL DE INTERFASE y CAUDAL. También

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín DINÁMICA DE FLUIDOS REALES Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín Viscosidad Consideraciones Fluido ideal Viscosidad =0 Fluido real

Más detalles

ENCUENTRO NACIONAL DE ÁREAS COMERCIALES CUANTIFICACIÓN DEL CONSUMO DE AGUA POTABLE

ENCUENTRO NACIONAL DE ÁREAS COMERCIALES CUANTIFICACIÓN DEL CONSUMO DE AGUA POTABLE ENCUENTRO NACIONAL DE ÁREAS COMERCIALES CUANTIFICACIÓN DEL CONSUMO DE AGUA POTABLE TIPOS DE MEDIDORES DE AGUA COORDINACIÓN DE HIDRÁULICA SUBCOORDINACIÓN DE TECNOLOGÍA APROPIADA E INDUSTRIAL OBJETIVO DEL

Más detalles

MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica

MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica 1 / 23 Objetivos Al finalizar esta sección el estudiante deberá ser

Más detalles

MOVIMIENTO DE ROTACIÓN

MOVIMIENTO DE ROTACIÓN MOVIMIENTO DE ROTACIÓN PRINCIPIO BÁSICO: Cuando un cuerpo rígido gira sobre un eje de rotación, la velocidad angular de giro de todos los puntos respecto al centro de giro es la misma, pero la velocidad

Más detalles

(1) Requerimientos de aplicación. (2) Requerimientos de performance. (3) Requerimientos de costo.

(1) Requerimientos de aplicación. (2) Requerimientos de performance. (3) Requerimientos de costo. El caudal es una de las variables de proceso que más frecuentemente se mide. Los caudalímetros acaparan casi el 75% del monto de ventas anuales de transmisores convencionales. La gran demanda ha llevado

Más detalles

Centro de Preparación de Ingenieros

Centro de Preparación de Ingenieros C) Ríos Rosas nº 34, 8003 Madrid Teléfono: 91 546139-915593300 www.academiacpi.es Curso: 017-018 Tema 1: ANÁLISIS DIMENSIONAL VÍDEO 1: (1.1, 1., 1.3.) ECUACIÓN DE DIMENSIONES (Duración 9,40 m) PROBLEMA

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles