Universidad Complutense de Madrid. Para uso de alumnos de la. El Diodo según SPICE. 1. Corrientes en el diodo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Complutense de Madrid. Para uso de alumnos de la. El Diodo según SPICE. 1. Corrientes en el diodo"

Transcripción

1 Germán González Díaz e Ignacio Mártil de la Plaza Adaptado y formateado por Francisco J. Franco Para modelar adecuadamente el comportamiento del diodo, el lenguaje de simulación SPICE utiliza alrededor de 25 parámetros dependiendo de cada dialecto en particular. A continuación se explica el signicado de los parámetros más generales en relación con la física del dispositivo y las ecuaciones que los ligan. Por sencillez consideraremos una unión N + P abrupta, en la cual las trampas están en la energía correspondiente al centro de la banda prohibida y las secciones ecaces de captura para electrones y huecos son iguales. Sin embargo, debe tenerse en cuenta que los parámetros SPICE son válidos para cualquier tipo de diodo, sea Schottky, LED, etc. Simplemente, hay que ajustar de manera apropiada el valor numérico de cada término. Para usar la misma nomenclatura que SPICE tomamos: V D, o caída de tensión en la unión a través de la zona de carga espacial, con exclusión de la posible caída en la resistencia serie o en las zonas neutras). I D, o corriente a través del diodo. V J VJ 1 ), o potencial de contacto de la unión V T, o tensión térmica, es decir k T/q. siendo k la constante de Boltzmann, de valor J/K, y q la carga del electrón, de valor C. Asimismo, en todo diodo existe una resistencia serie parásita, R S RS), en la que se produce una pequeña caída de tensión que modica el valor efectivo de V D. 1. Corrientes en el diodo La corriente que atraviesa el diodo es: I D = I F W D I REV 1) donde I F W D modela no solamente la corriente ideal, sino también la de generación-recombinación y la alta inyección. I REV modela los mecanismos de ruptura de la unión. Se supone que I D es positiva 1 Todos los términos en negrita y sin subíndices SON parámetros SPICE 1

2 si uye de la zona P a la N. La expresión de I F W D es: I F W D = K INJ I NRM + K GEN I REC 2) donde I NRM modela la corriente ideal del diodo, K INJ modela el fenómeno de alta inyección y el producto I NRM modela tanto la corriente de generación cuando estamos en polarización inversa como la de recombinación cuando estamos en polarización directa. La expresión de I NRM es: [ ) VD I NRM = I S exp N V T ] 1 donde I S, representado en SPICE como IS, es la corriente de saturación ideal del diodo y N es el factor de idealidad. Obviamente como estamos tratando con la zona ideal, N valdrá por defecto 1. Para el caso de unión N + P, que estamos tratando, la corriente será: 3) I S = qn2 i D n L n N A 4) El paso a alta inyección se controla a través de K INJ, cuya expresión depende de un parámetro SPICE, IKF, y es: 1. Para I KF > 0, K INJ = I KF 2. Para I KF 0, K INJ = 1 I KF +I NRM donde I KF IKF) es la corriente para la cual se da el cambio entre el régimen ideal y el de alta inyección. Puede observarse de la fórmula anterior que cuando la corriente I NRM es mucho más pequeña que IKF el producto tiende a valer I NRM, mientras que cuando la tensión aplicada es tal que I NRM es mayor que IKF, el producto en la ecuación 2 tiende a valer: I NRM K INJ = I S I KF exp ) VD Si se comparan estas expresiones con las expresiones físicas para el diodo propuesto se encuentra sin dicultad: 2V T 5) I KF = 4 q D n n i L n 6) El valor exacto de IKF no es sencillo de encontrar experimentalmente puesto que corresponde con el encuentro entre la extrapolación de la zona ideal y de la de alta inyección, que es un valor que no se alcanza experimentalmente ya que, al valor de tensión en que se cambia de régimen, le corresponde una corriente I KF 2, como se puede demostrar con unos sencillos cálculos. Si IKF no se especica toma valor por defecto innito con lo que que K INJ se hace 1 en todo el rango de corrientes. Electrónica Analógica Ingeniería Superior en Electrónica 2

3 son: Con respecto a las corrientes de generación y recombinación las expresiones de I REC y K GEN [ ) ] VD I REC = I SR exp 1 7) N R V T [ K GEN = 1 V ) 2 ] M/2 D + 0,005 8) V J Siendo I SR ISR), N R NR), V J VJ) y M M) parámetros que se pueden proporcionar al modelo SPICE. En estas expresiones, ISR es la corriente de saturación del mecanismo de recombinación, NR es el factor de idealidad de este mecanismo nominalmente, 2) y M es el índice de gradualidad de la unión, que vale 1/2 para uniones abruptas y 1/3 para graduales. Si estamos en polarización inversa, V D es negativo por lo que la exponencial desaparece y, en el término K GEN, es despreciable ) frente a 1 V D 2, VJ por lo que el producto queda: I F W D = I SR 1 V ) M D 9) V J Si se recuerda la expresión de la corriente de generación es J GEN = q n iw τ expresión que queda reducida a: donde τ era: τ = γ n exp ) E T E i kt + γp exp ) E i E T kt 10) γ n γ p N T τ = 2 γ N T 11) si las trampas están en el centro de la banda y las secciones ecaces son iguales para electrones y huecos. Por otra parte, la anchura de la zona espacial es dependiente de la tensión de forma: De las anteriores relaciones se deduce inmediatamente que: W = α V J V D ) M 12) I SR = 1 2 q n i γ N T W 0 13) donde W 0 es la anchura de vaciamiento a potencial aplicado nulo. En polarización directa aparece la exponencial multiplicando a ISR y el término K GEN prácticamente se hace igual a 1, puesto que V D se aproxima a VJ. El término constante se añade para que esta desaparición sea más efectiva en polarización directa. forma: El término I REV modela, como ya se ha dicho, la ruptura. Para ello usa dos exponenciales de la I REV = I REV,HIGH + I REV,LOW 14) Electrónica Analógica Ingeniería Superior en Electrónica 3

4 donde I REV,HIGH = I BV exp V ) D + BV N BV V T I REV,LOW = I BV L exp V ) D + BV N BV L V T En estas expresiones BV es el potencial de ruptura, siendo complementado en SPICE con los parámetros IBV I BV ), IBVL I BV L ), NBV N BV ) y NBVL N BV L ). Todos los parámetros se entienden como positivos y han de hallarse experimentalmente. 15) 16) 2. Capacidades Como ya conocemos a través de la física del dispositivo, existen dos capacidades diferentes que se modelan por separado, siendo la capacidad total la suma: C T = C D + C J 17) donde C T es la capacidad total, C D es la capacidad de difusión o de tránsito y C J es la capacidad de vaciamiento o de unión. La capacidad de difusión, C D es, según SPICE: C D = τ T g D 18) donde τ T, simbolizado en SPICE como TT, es el tiempo característico de acumulación de los portadores en las zonas neutras y g D es la conductancia del diodo denida como: g D = d dv D K INJ I NRM + K GEN I REC ) 19) De acuerdo con el modelo de admitancias, la capacidad de difusión C D o C t según SPICE) vale: τ C D = g D 2 con lo que la asimilación TT = τ/2 es inmediata. Recordemos que esta τ es un tiempo promedio entre los tiempos de vida de los electrones y huecos denido como: 20) τ = D P p n0 τ p L n + D n n p0 τ n L p D P p n0 L n + D n n p0 L p 21) expresión que, para el caso que estamos analizando, coincide con el tiempo de vida para los electrones en la zona P. Con respecto a la capacidad de transición o de unión, SPICE usa dos fórmulas diferentes dependiendo del margen de tensión de polarización. Para ello introduce un parámetro que llama FC, de Electrónica Analógica Ingeniería Superior en Electrónica 4

5 forma que: Si V D < F C V J, entonces C J = C J0 1 V D VJ ) M Si V D > F C V J, entonces C J = C J0 1 F C) 1+M) ) 1 F C 1 + M) + M VD VJ El valor por defecto de FC es 0.5, lo que indica que para la zona de potenciales inversos o incluso ligeramente directos la expresión de la capacidad de transición es la habitual, siendo C J0 CJO) la capacidad de unión medida a potencial cero. 3. Efectos de la temperatura sobre corrientes y potenciales En SPICE se puede especicar una temperatura nominal, que será la habitual de funcionamiento para todos los dispositivos y que llamaremos T NOM TNOM en.options). Sin embargo podemos simular el circuito a otras temperaturas. Llamaremos T a la temperatura como variable TEMP en.options). Por lo tanto hay que especicar las ecuaciones según las cuales todos las corrientes y tensiones dependen de la temperatura Dependencia de las corrientes de saturación Las corrientes de saturación son los parámetros más fuertemente dependientes de la temperatura y, por tanto los más importantes de modelar correctamente. SPICE usa la siguiente expresión para la dependencia de la corriente de saturación ideal: [ ) ] T E G I S T ) = I S exp 1 T NOM N q V T ) T XT I/N 22) T NOM Recordemos que IS, TNOM y N son parámetros SPICE denidos previamente, E G EG) es el ancho de banda prohibida del semiconductor y XTI es el exponente de la dependencia con la temperatura. Valdrá por defecto 3, por las razones que a continuación veremos. Esta expresión es sencilla de deducir si tenemos en cuenta la expresión de la corriente de saturación ideal, mostrada en la ecuación 4, en la que: n 2 i = N C N V exp E ) G 23) k T 2 π m e kt ) 3/2 24) N C = 2 h² 2 π m h kt ) 3/2 25) N V = 2 h² de donde se deduce la expresión de SPICE sin más que operar. Electrónica Analógica Ingeniería Superior en Electrónica 5

6 Respecto a la corriente de saturación en la zona dominada por la recombinación la expresión usada es: I SR T ) = I SR exp [ ) T E G 1 T NOM N R q V T ] T T NOM ) XT I/NR 26) Puede reconocerse que la expresión es similar a la ecuación 22 reemplazando N por NR. Esta expresión es inmediata si se tiene en cuenta que esta corriente depende de n i anterior zona ideal) dependía de n 2 i. mientras que la 3.2. Dependencia de los demás parámetros La dependencia de IKF es mucho más débil que la de las corrientes de saturación. Para el caso de una unión N + P, vimos que su expresión estaba recogida en la ecuación 6, por lo que las variaciones con la temperatura solamente pueden provenir del coeciente de difusión a través de la movilidad. SPICE considera sucientemente preciso un ajuste lineal de la forma: I KF T ) = I KF 1 + T IKF T T NOM )) 27) siendo, evidentemente, T IKF TIKF) el coeciente lineal de variación con la temperatura del codo de paso a alta inyección I KF IKF), T TEMP) y T NOM TNOM) han sido denidos con anterioridad). Con respecto a la tensión de ruptura BV) la expresión es algo más complicada porque se supone la posibilidad de ajuste lineal y cuadrático: [ BV T ) = BV 1 + TBV 1 T T NOM ) + T BV 2 T T NOM ) 2] 28) Con T BV 1 TBV1) y T BV 2 TBV2) dos parámetros térmicos. De la misma forma la resistencia serie debida a zonas neutras y contactos) es similar a otras resistencias: [ R S T ) = R S 1 + TRS1 T T NOM ) + T RS2 T T NOM ) 2] 29) siendo R S RS), T RS1 TRS1) y T RS2 TRS2) diversos parámetros SPICE. El potencial de contacto varía con la temperatura de forma distinta a los anteriores: ) T T T V J T ) = V J 3 V T ln E G + E G T ) 30) T NOM T NOM T NOM En esta expresión pueden reconocerse algunos parámetros SPICE como VJ, TNOM, o EG. Otro parámetro adicional es la evolución de EG en función de la temperatura, que, en el caso del silicio, SPICE calcula en ev como: T 2 E G T ) = 1,16 0, T ) Electrónica Analógica Ingeniería Superior en Electrónica 6

7 Otros semiconductores no se han implementado en SPICE. Esta expresión puede deducirse a partir de: ) NA N D V J = V T ln n 2 i 32) Finalmente, la variación con la temperatura de la capacidad de transición se expresa como: C J0 T ) = C j0 1 + M 0,0004 T T NOM )+ 1 V JT ) V J ))) 33) La mayor parte de los parámetros incluidos ya se denieron con anterioridad. 4. Ruido El ruido en el diodo proviene por una parte de la resistencia asociada a zonas neutras y contactos blanco) y el ruido proveniente de la conducción a través de la zona de vaciamiento shot y icker ). El ruido de la resistencia se modela como una fuente de corriente alterna que, suponiendo un ancho de banda de 1Hz, tiene una densidad espectral de potencia por unidad de ancho de banda: I 2 N = 4 k T R S 34) R S es la resistencia parásita, que se modela en SPICE como RS. El ruido generado intrínsecamente en el diodo no es blanco como el anterior y su expresión es: I 2 N = 2 q I D + K F donde K F KF) y A F AF) dos parámetros llamados coeciente y exponente de ruido. 5. Ejemplos de diodos reales A continuación, se muestran los modelos SPICE de algunos diodos sobradamente conocidos y I A F D de amplio uso en el diseño electrónico con componentes discretos N4148 f 35) Diodo de silicio de conmutación rápida. Versión proporcionada por Fairchild Semiconductors..model D1N4148 DIs=5.84n N=1.94 Rs=.7017 Ikf=44.17m Xti=3 Eg=1.11 Cjo=.95p + M=.55 Vj=.75 Fc=.5 Isr=11.07n Nr=2.088 Bv=100 Ibv=100u Tt=11.07n) Electrónica Analógica Ingeniería Superior en Electrónica 7

8 5.2. BAT54 Diodo Schottky típico. Versión proporcionada por Fairchild Semiconductors..model BAT54 DIs=31.12n N=1.048 Rs=1.256 Ikf=0 Xti=3 Eg=1.11 Cjo=13.36p M= Vj=.3905 Fc=.5 Isr=2.465u Nr=2 Bv=50 Ibv=10u) 5.3. BZX284-6V2 Diodo Zener con tensión de ruptura en torno a 6.2 V. Versión proporcionada por NXP..model BZX284-B6V2 D IS=2.6665E-18 N= RS= IKF=11.760E-3 + CJO=167.78E-12 M= VJ= ISR=48.886E-9 BV= IBV= TT=121.76E-9) 5.4. LXHL-BW02 Diodo LED de GaAs. Versión proporcionada por LTSPICE-IV..model LXHL-BW02 DIs=4.5e-20 Rs=.85 N=2.6 Cjo=1.18n Iave=400mA Vpk=5) Puede apreciarse que aparecen dos parámetros no convencionales propios de este dialecto SPICE IAVE, VPK). Ambos están relacionados con la capacidad de disipación del dispositivo. Electrónica Analógica Ingeniería Superior en Electrónica 8

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Interpretación de las hojas de datos de diodos

Interpretación de las hojas de datos de diodos 1 Interpretación de las hojas de datos de diodos En las hojas de datos dadas por el fabricante de cualquier dispositivo electrónico encontramos la información necesaria como para poder operar al dispositivo

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

TEMA 3: Diodos de Unión

TEMA 3: Diodos de Unión TEMA 3: Diodos de Unión Contenidos del tema: Unión PN abrupta: condiciones de equilibrio Diodo PN de unión: Electrostática Análisis en DC o estacionario del diodo PN Desviaciones de la característica ideal

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

REVISTA COLOMBIANA DE FISICA, VOL. 33, No

REVISTA COLOMBIANA DE FISICA, VOL. 33, No CÁLCULO DE LA CONSTANTE DE BOLTZMAN A PARTIR DE MEDIDAS DE LA CARACTERÍSTICA IV DE UNA CELDA SOLAR. M. Grizález*, C. Quiñones y G. Gordillo Departamento de Física, Universidad Nacional de Colombia, Bogotá,

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2 J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada

Más detalles

Transistor BJT: Fundamentos

Transistor BJT: Fundamentos Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

El transistor sin polarizar

El transistor sin polarizar EL TRANSISTOR DE UNIÓN BIPOLAR BJT El transistor sin polarizar El transistor esta compuesto por tres zonas de dopado, como se ve en la figura: La zona superior es el "Colector", la zona central es la "Base"

Más detalles

El transistor es un dispositivo no lineal que puede ser modelado utilizando

El transistor es un dispositivo no lineal que puede ser modelado utilizando Modelo de Ebers-Moll para transistores de unión bipolar El transistor es un dispositivo no lineal que puede ser modelado utilizando las características no lineales de los diodos. El modelo de Ebers-Moll

Más detalles

RECTIFICADORES MONOFASICOS NO CONTROLADOS

RECTIFICADORES MONOFASICOS NO CONTROLADOS UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERIA QUIMICA Y TEXTIL CONTROLES ELECTRICOS Y AUTOMATIZACION EE - 621 RECTIFICADORES MONOFASICOS NO CONTROLADOS TEMAS Diodos semiconductores, Rectificadores

Más detalles

DIODOS SEMICONDUCTORES DE POTENCIA

DIODOS SEMICONDUCTORES DE POTENCIA DIODOS SEMICONDUCTORES DE POTENCIA Los diodos de potencia son de tres tipos: de uso general, de alta velocidad (o de recuperación rápida) y Schottky. Los diodos de uso general están disponibles hasta 6000

Más detalles

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

Contactos semiconductor - semiconductor

Contactos semiconductor - semiconductor Contactos semiconductor semiconductor Lección 02.2 Ing. Jorge CastroGodínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge CastroGodínez

Más detalles

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE PÁCTCA 3 TANSSTOES BPOLAES: POLAZACÓN Y GENEADOES DE COENTE 1. OBJETVO. Se pretende que el alumno tome contacto, por primera vez en la mayor parte de los casos, con transistores bipolares, y que realice

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE Rectificación, es el proceso de convertir los voltajes o tensiones y corrientes alternas

Más detalles

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar Introducción a la Teoría de semiconductores y nivel de Fermi Trabajo compilado por Willie R. Córdova Eguívar Conducción en los semiconductores Los semiconductores son materiales que ocupan una posición

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRONICOS

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRONICOS SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRONICOS CÓDIGO: IEE303 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO : Ing. Electrónica e Informática 1.2. ESCUELA PROFESIONAL : Ingeniería Electrónica 1.3. CICLO

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

TECNOLOGÍA DE LOS SISTEMAS DIGITALES

TECNOLOGÍA DE LOS SISTEMAS DIGITALES TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas:

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas: JUNTURA METAL SEMICONDUCTOR: Diagrama de Banda de ambos materiales: E FM : Nivel de Fermi del metal. E FS : Nivel de Fermi del semiconductor. Observemos que sucede cuando juntamos el metal y el semiconductor

Más detalles

Transistor bipolar de unión: Polarización.

Transistor bipolar de unión: Polarización. lectrónica Analógica 4 Polarización del transistor bipolar 4.1 lección del punto de operación Q Transistor bipolar de unión: Polarización. l término polarización se refiere a la aplicación de tensiones

Más detalles

Física de los Dispositivos. 1. Estructura atómica y propiedades del Silicio (Si) y del Arseniuro de Galio (GaAs), (aplicación 1).

Física de los Dispositivos. 1. Estructura atómica y propiedades del Silicio (Si) y del Arseniuro de Galio (GaAs), (aplicación 1). Práctica I Práctica I - El Semiconductor 1. Estructura atómica y propiedades del Silicio (Si) y del Arseniuro de Galio (GaAs), (aplicación 1). 2. Diagrama de bandas en función de la composición material,

Más detalles

Diodos, Tipos y Aplicaciones

Diodos, Tipos y Aplicaciones Diodos, Tipos y Aplicaciones Andrés Morales, Camilo Hernández, David Diaz C El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido,

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos.

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos. 1 CAPITULO 1 SINOPSIS El propósito de este capítulo no es el de disminuir el entusiasmo del lector por leer el libro, delatando su contenido. En vez de eso se pretende que, mediante el uso de un circuito

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA Universidad de Burgos Departamento de Ingeniería Electromecánica TECNOLOGÍA ELECTRÓNICA Ingeniería Técnica en Informática de Gestión Curso 1º - Obligatoria - 2º Cuatrimestre Área de Tecnología Electrónica

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Libros de Cátedra Dispositivos Electrónicos Mónica Liliana González FACULTAD DE INGENIERÍA DISPOSITIVOS ELECTRÓNICOS Mónica Liliana González Facultad de Ingeniería 2 Índice PRESENTACIÓN 5 Capítulo 1: Diodo

Más detalles

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 15-12-2010 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

El modelo semiclásico de las propiedades de transporte: Objetivo

El modelo semiclásico de las propiedades de transporte: Objetivo El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.

Más detalles

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos

Más detalles

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS GRUPO 3 Rubén n Gutiérrez González María a Urdiales García María a Vizuete Medrano Índice Introducción Tipos de dispositivos Unión n tipo

Más detalles

Descarga Glow. Introducción. Características de la descarga glow

Descarga Glow. Introducción. Características de la descarga glow Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente

Más detalles

ε = = d σ (2) I. INTRODUCCIÓN

ε = = d σ (2) I. INTRODUCCIÓN Estudio del comportamiento de un material piezoeléctrico en un campo eléctrico alterno. Eduardo Misael Honoré, Pablo Daniel Mininni Laboratorio - Dpto. de Física -FCEyN- UBA-996. Un material piezoeléctrico

Más detalles

Resistencia eléctrica (parte 1)

Resistencia eléctrica (parte 1) Resistencia eléctrica (parte 1) En la práctica no existen conductores perfectos, es decir que no opongan ninguna resistencia al paso de la corriente eléctrica. Si tomamos varios conductores de iguales

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Configuraciones básicas del amplificador operacional Los amplificadores operacionales se pueden conectar según dos circuitos amplificadores básicos: las configuraciones (1)

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

EXTRACCIÓN DE PARÁMETROS Y MODELADO DE CARACTERÍSTICAS ELÉCTRICAS DE DIODO UNIÓN P-N

EXTRACCIÓN DE PARÁMETROS Y MODELADO DE CARACTERÍSTICAS ELÉCTRICAS DE DIODO UNIÓN P-N EXTRACCIÓN DE PARÁMETROS Y MODELADO DE CARACTERÍSTICAS ELÉCTRICAS DE DIODO UNIÓN P-N Dr. Rodolfo Zola García Lozano Centro Universitario UAEM Ecatepec. Ecatepec, Edo. de Méx.,México zolagarcia@yahoo.com

Más detalles

TEMA 2 CIRCUITOS CON DIODOS

TEMA 2 CIRCUITOS CON DIODOS TEMA 2 CIRCUITOS CON DIODOS Profesores: Germán Villalba Madrid Miguel A. Zamora Izquierdo 1 CONTENIDO Introducción Conceptos básicos de semiconductores. Unión pn. Diodo real. Ecuación del diodo. Recta

Más detalles

Electrónica. Transistores BIPOLARES. Tipos, Zonas de trabajo, Aplicaciones

Electrónica. Transistores BIPOLARES. Tipos, Zonas de trabajo, Aplicaciones Transistores BIPOLARES Tipos, Zonas de trabajo, Aplicaciones 4 B ELECTRÓNICA 2012 1- Principio de Funcionamiento de los Transistores Bipolares: Tanto en un transistor NPN o PNP su principio de funcionamiento

Más detalles

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES TEMA 7 PROBLEMA E LA ISIPACIÓN TÉRMICA EN COMPONENTES 1. GENERALIAES. 2 2. EVACUACIÓN EL CALOR PROUCIO. 3 2.1. Evolución de la T j con el tiempo. 3 2.2. Ley de Ohm térmica. 4 2.3. Circuitos térmicos en

Más detalles

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 8: APLICACIONES NO LINEALES DE LOS AMPLIFICADORES OPERACIONALES

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 8: APLICACIONES NO LINEALES DE LOS AMPLIFICADORES OPERACIONALES TEMA 8: APLICACIONES NO LINEALES DE LOS AMPLIFICADORES OPERACIONALES Francisco J. Franco Peláez Apuntes para uso en la asignatura Electrónica Analógica, impartida en la Ingeniería Superior Electrónica

Más detalles

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 13 de Agosto de 2009

Más detalles

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es. El Transistor MOSFET según SPICE

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es. El Transistor MOSFET según SPICE El Transistor MOSFET según SPICE Germán González Díaz e Ignacio Mártil de la Plaza Adaptado, ampliado y formateado por Francisco J. Franco El modelado realista de los transistores MOS no ha sido nada fácil

Más detalles

Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I

Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I 1 Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I En el campo de la Ingeniería en Automatización y Control, es común el desarrollo

Más detalles

166 Modelización por circuitos lineales a tramos. at 2. ) no aparecen puesto que la intensidad en ellos es nula.

166 Modelización por circuitos lineales a tramos. at 2. ) no aparecen puesto que la intensidad en ellos es nula. 166 Modelización por circuitos lineales a tramos donde Separando los tramos de la función donde los términos correspondientes a los tramos 1 (t 1 at 2 )y3(t 3 at 4 ) no aparecen puesto que la intensidad

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

Universidad Complutense de Madrid. Para uso de alumnos de la. El Transistor Bipolar según SPICE. 1.

Universidad Complutense de Madrid. Para uso de alumnos de la.  El Transistor Bipolar según SPICE. 1. El ransistor Bipolar según SPICE Germán González Díaz e Ignacio Mártil de la Plaza Adaptado y formateado por Francisco J. Franco Para modelar adecuadamente el comportamiento del transistor, el programa

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRÓNICOS

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRÓNICOS SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRÓNICOS CÓDIGO: 8F0110 1. DATOS GENERALES: 1.1 DEPARTAMENTO ACADÉMICO : INGENIERÍA ELECTRÓNICA E INFORMÁTICA 1.2 ESCUELA PROFESIONAL : INGENIERÍA MECATRÓNICA 1.3 CICLO

Más detalles

Prueba experimental. Constante de Planck y comportamiento de un LED

Prueba experimental. Constante de Planck y comportamiento de un LED Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante

Más detalles

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

Teoría de Circuitos: amplicadores operacionales

Teoría de Circuitos: amplicadores operacionales Teoría de Circuitos: amplicadores operacionales Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Primer semestre - 2016 Contenido 1 El amplicador

Más detalles

Dispositivos de las tecnologías CMOS

Dispositivos de las tecnologías CMOS Dispositivos de las tecnologías CMOS MOSFET: canal N y canal P (únicos dispositivos en chips digitales) BJT: PNP de mala calidad (dispositivos parásitos. Se usan como diodos) Resistencias Condensadores

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

Diodos: caracterización y aplicación en circuitos rectificadores

Diodos: caracterización y aplicación en circuitos rectificadores Diodos: caracterización y aplicación en circuitos rectificadores E. de Barbará, G. C. García *, M. Real y B. Wundheiler ** Laboratorio de Electrónica - Facultad de Ciencias Exactas y Naturales Departamento

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Circuitos RC y RL. Circuitos de Segundo Orden. Capacitores y Circuitos RC. El Capacitor. El capacitor es un elemento pasivo capaz de almacenar y suministrar cantidades finitas

Más detalles

Resistencias Variables

Resistencias Variables Resistencias Variables Estos tipos de resistencias se denominan potenciómetros, siendo posible modificar el valor óhmico mediante un dispositivo móvil llamado cursor. Estos valores varían entre cero y

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

Respuesta libre en circuitos de primer orden

Respuesta libre en circuitos de primer orden espuesta libre en circuitos de primer orden Objetivos a) Establecer los conceptos más generales sobre los procesos que ocurren en los circuitos dinámicos, utilizando los criterios dados en el texto y en

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

Laboratorio Nº3. Procesamiento de señales con transistores

Laboratorio Nº3. Procesamiento de señales con transistores Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,

Más detalles

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( )

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( ) 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 2 42 299 Número de solicitud: 12273 1 Int. CI.: G01K 7/01 (06.01) 12 PATENTE DE INVENCIÓN B1 22 Fecha de presentación: 23.02.12

Más detalles

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente...

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente... Índice general 1. Principios fundamentales de la electricidad...1 1.1 Introducción...1 1.2 Principios fundamentales de la electricidad...1 1.2.1 Moléculas, átomos y electrones...2 1.3 Estructura del átomo...3

Más detalles

COMPORTAMIENTO DE LOS CIRCUITOS EN CORRIENTE CONTINUA Como Corriente Continua se define una corriente que no varía en el tiempo ni de magnitud ni de sentido. Siempre que la carga insertada en el circuito

Más detalles

Experimento 5: Transistores BJT como interruptores: Multivibradores

Experimento 5: Transistores BJT como interruptores: Multivibradores Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles