PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar"

Transcripción

1 Propiedades termodinámicas de los fluidos La energía interna es bar 32 J Estos resultados concuerdan mucho más con los valores experimentales que los del supuesto caso del vapor de l-buteno considerado como un gas ideal. PROBLEMAS Partiendo de la ecuación demuestre que las isobaras en la región de vapor de un diagrama de Mollier deben tener una pendiente y curvatura positivas. Utilice el hecho de que la ecuación (6.20) es una expresión diferencial exacta para demostrar que 6.3. es el resultado de aplicar esta ecuación a un gas ideal? Estime los cambios de entalpía y entropía cuando el amoniaco líquido a 270 K se comprime desde su presión de saturación de 381 hasta 1200 Para el amoniaco líquido saturado a 270 K, = X y = X El isobutano líquido es estrangulado por una válvula desde un estado inicial de 360 K y hasta una presión final de Estime el cambio de temperatura y el cambio de entropía del isobutano. El calor específico del isobutano líquido a 360 K es 2.78 J Las estimaciones de V y pueden encontrarse mediante la ecuación (3.52). Se llena un recipiente rígido con agua líquida a 25 C y 1 bar. Si se añade calor al agua hasta que su temperatura llega a es la presión desarrollada? El valor promedio de entre 25 y 50 C es 36.2 X El valor de K a 1 bar y es 4.42 X bar- y puede suponerse independiente de P. El volumen específico del agua líquida a es Estime el cambio de entropía en la vaporización del benceno a La presión de vapor del benceno está dada por la ecuación: c Utilice la ecuación (6.53) con un valor estimado de AV Utilice la ecuación de del ejemplo 6.4. Un flujo de gas propano se parcialmente mediante estrangulamiento, desde 200 bar y 370 K hasta 1 bar. fracción del gas se licua en este proceso? La presión de vapor del propano está dada por la ecuación (6.56) con parámetros: , B = , = ,

2 Problemas El estado de de vapor de agua cambia de vapor saturado a a vapor sobrecalentado a y 1 son los cambios de entalpía y entropía del vapor? serían los cambios de entalpía y entropía si el vapor de agua fuese un gas ideal? 6.9. El agua líquida muy pura puede subenfriarse a presión atmosférica hasta temperaturas muy por debajo de 0 C. Suponga que 1 kg de agua ha sido enfriado como un líquido hasta -6 C. Ahora se añade un pequeño cristal de hielo (de masa despreciable) como semilla al líquido subenfriado. Si los cambios subsecuentes ocurren adiabáticamente a presión atmosférica, fracción del sistema se congela y cuál es su temperatura final? es el valor de AS para el proceso y cuál es su característica irreversible? El calor latente de fusión del agua a 0 C es J y el calor específico del agua líquida subenfriada es J Un sistema de dos fases de agua líquida y vapor de agua que se encuentra en equilibrio a contiene volúmenes iguales de líquido y vapor. Si el volumen total 0.15 es el valor de la entalpía total y de la entropía total Un recipiente contiene 1 kg de que existe como vapor y líquido en equilibrio a Si el vapor ocupa 70 por ciento del volumen del recipiente, determine y para 1 kg de Un recipiente a presión contiene agua líquida y vapor de agua en el equilibrio a La masa total del líquido y el vapor es 3 (Ib,). Si el volumen de vapor es 50 veces el del líquido, es la entalpía total del contenido del recipiente? El vapor húmedo a tiene una densidad de g Determine H y Un recipiente con un volumen de 0.15 contiene vapor de agua saturado a el cual se enfría hasta Determine el volumen y la masa final del agua en el recipiente Se expande vapor húmedo a a entalpía constante (al igual que en un proceso de estrangulamiento) hasta llegar a donde su temperatura es de es la calidad del vapor en su estado inicial? Se expande vapor a y a entalpía constante (al igual que en un proceso de estrangulamiento) hasta 125 es la temperatura del vapor en su estado final y cuál es su cambio de entropía? Si el vapor de agua fuese un gas ideal, sería su temperatura final y su cambio de entropía? Se tiene vapor en un estado inicial de 300 y que se expande a entalpía constante (al igual que en un proceso de estrangulamiento) hasta es la temperatura del vapor en su estado final y cuál es su cambio de entropía? Si el vapor de agua fuese un gas ideal, sería su temperatura final y su cambio de entropía? Se tiene vapor sobrecalentado que se expande isentrópicamente desde 500 y 300 C hasta 50 es su entalpía Un recipiente rígido contiene de vapor de agua saturado en equilibrio con de agua líquida saturada a 100 C. Se transfiere calor al recipiente hasta que desaparece una fase, quedando entonces sólo una de ellas. fase (líquido o vapor) es la que permanece y cuál es su temperatura y presión? calor se transfiere en el proceso?

3 244 CAPÍTULO 6. Propiedades temodinámicas de los fluidos es la fracción molar de vapor de agua en el aire que se satura con agua a 25 C y C y recipiente con una capacidad de 0.25 se llena con vapor de agua saturado a Si el recipiente se enfría hasta que el 25 por ciento del vapor se condensa, calor se transfiere y cuál es la presión final? Un recipiente con una capacidad de 2 contiene 0.02 de agua líquida y 1.98 de vapor de agua a calor debe añadirse al contenido del recipiente para que se evapore toda el agua líquida? Un recipiente rígido de 0.4 se llena con vapor a 800 y calor debe transferirse del vapor para llevar su temperatura a Un dispositivo contiene un kilogramo de vapor de agua a 800 y Si el vapor experimenta una expansión isotérmica y mecánicamente reversible hasta alcanzar 150 calor debe absorber? Si el vapor experimenta una expansión adiabática reversible hasta 150 es su temperatura y cuánto trabajo realiza? Se tiene vapor de agua a con una humedad del 6 por ciento. El vapor se calienta a presión constante hasta 575 C. calor se requiere por kilogramo? Se tiene vapor de agua a con una calidad de El vapor experimenta una expansión adiabática reversible, en un proceso donde no hay flujo, hasta 400 Luego se añade calor a volumen constante hasta que se convierte en vapor saturado. Determine Q y W para el proceso Un conjunto contiene cuatro kilogramos de vapor de agua a 400 y 175 C. El vapor experimenta una compresión isotérmica y mecánicamente reversible hasta alcanzar tal presión final como para quedar saturado. Determine Q y W del proceso Un dispositivo contiene un kilogramo de agua a y 1 bar. El agua se comprime mediante un proceso isotérmico y mecánicamente reversible hasta una presión de bar. Determine Q, W, AH y AS dados = 250 x y K = 45 X bar Un dispositivo trabaja en un ciclo con vapor de agua como fluido de trabajo y ejecuta las siguientes etapas: El vapor a 550 y se calienta a volumen constante hasta alcanzar una presión de 800 A continuación el vapor se expande, reversible y adiabáticamente, hasta la temperatura inicial de Finalmente, el vapor se comprime mediante un proceso isotérmico y mecánicamente reversible, hasta llegar a la presión inicial de 550 es la eficiencia térmica del ciclo? Un dispositivo trabaja en un ciclo con vapor como fluido de trabajo y lleva a cabo las etapas siguientes:

4 Problemas 245 El vapor saturado a se calienta a presión constante hasta A continuación el vapor se expande, adiabática y reversiblemente, hasta la temperatura inicial, que es de Finalmente, el vapor se comprime mediante un proceso isotérmico mecánicamente reversible hasta llegar al estado inicial. es la eficiencia térmica del ciclo? En una turbina se expande vapor de agua de manera adiabática y reversible. El vapor entra a la turbina a y qué presión de descarga el chorro de salida de la turbina es vapor saturado? qué presión de descarga el chorro de salida es vapor húmedo con una calidad de Una turbina de vapor, que funciona reversible y adiabáticamente, toma vapor sobrecalentado a y lo descarga a 50 es el sobrecalentamiento mínimo necesario para que no exista humedad en la salida? es la potencia de salida de la turbina si ésta trabaja bajo estas condiciones y la rapidez de flujo de vapor es de 5 kg La prueba de operación de una turbina de vapor produce los siguientes resultados. Cuando se alimenta vapor a la turbina a 1350 y la salida de la turbina a 10 es vapor saturado. Si se supone que la operación es adiabática y que los cambios en las energías cinética y potencial son despreciables, determine la eficiencia de la turbina, esto es, el cociente del trabajo real efectuado por la turbina y el trabajo de una turbina que trabaja isentrópicamente a partir de las mismas condiciones iniciales hasta la misma presión de salida Una. turbina de vapor funciona adiabáticamente con una rapidez de flujo de vapor de 25 kg El vapor es alimentado a y y se descarga a 40 y 100 C. Determine la potencia de salida de la turbina y la eficiencia de su operación en comparación con la de una turbina que trabaja de manera reversible y adiabática a partir de las mismas condiciones iniciales hasta la misma presión final Sean y los valores de la presión de vapor de saturación de un líquido puro a las temperaturas absolutas y Justifique la siguiente fórmula de interpolación para la estimación de la presión de vapor a un temperatura intermedia T: Suponiendo que la ecuación (6.54) es válida, deduzca de Edmister para la estimación del factor acéntrico: e 1 donde es el punto normal de ebullición y está en (atm).

5 Propiedades termodinámicas de los fluidos A partir de datos de tablas de vapor, estime los valores de las propiedades residuales y para el vapor a y y compárelos con los obtenidos mediante una correlación generalizada adecuada A partir de los datos contenidos en las tablas de vapor: Determine valores numéricos de y para el líquido y vapor saturados a valores deben ser iguales? Determine los valores numéricos de y a Estos valores, ser iguales? c) Encuentre los valores numéricos de y para el vapor saturado a 1000 Estime un valor para a y aplique la ecuación de Clapeyron para evaluar a qué medida concuerda este resultado con el que aparece en las tablas de vapor? Aplique las correlaciones generalizadas apropiadas para la evaluación de y para el vapor saturado a qué medida se comparan estos resultados con los obtenidos en c) A partir de los datos de las tablas de vapor: Determine valores numéricos de y para el líquido y vapor saturados a 150 Estos valores, ser los mismos? Determine valores numéricos de y a Estos valores, ben ser iguales? c) Encuentre valores numéricos de y para el vapor saturado a d) Estime un valor de a y aplique la ecuación de Clapeyron para evaluar a qué medida concuerda este resultado con el valor que aparece en las tablas de vapor? Aplique las correlaciones generalizadas apropiadas para la evaluación de y del vapor saturado a qué medida se comparan estos resultados con los obtenidos en c)? Estime y para el 1,3-butadieno a 500 Ky 21 bar mediante las correlaciones generalizadas que considere apropiadas Estime para el dióxido de carbono a 400 Ky 200 bar mediante el empleo de las correlaciones generalizadas que considere apropiadas Estime y para el dióxido de azufre a 450 K y 35 bar mediante el empleo de las correlaciones generalizadas que considere apropiadas Se tiene vapor que experimenta un cambio desde un estado inicial a y hasta uno final de 140 C y 235 Determine y A partir de los datos de las tablas de vapor. 6) Mediante las ecuaciones para un gas ideal. c) Mediante correlaciones generalizadas apropiadas.

6 Problemas Se tiene gas propano a 1 bar y El gas se comprime hasta llevarlo a un estado final de 135 bar y 195 C. Estime el volumen molar del propano en el estado final y los cambios de entalpía y entropía del proceso. En su estado inicial, el propano puede suponerse como un gas ideal Se tiene propano a 70 C y El propano se comprime isotérmicamente hasta una presión de Estime, para el proceso, AH y AS mediante el empleo de correlaciones generalizadas apropiadas Estime el volumen molar, la entalpía y la entropía del como vapor saturado y como líquido saturado a 380 K. La entalpía y la entropía se hacen igual a cero para el estado de gas ideal a y 0 C. La presión de vapor del butadieno a 380 K es Estime el volumen molar, la entalpía y la entropía como vapor saturado y como líquido saturado a 370 K. La entropía y la entalpía se hacen igual a cero para el estado de gas ideal a y K. La presión de vapor del n-butano a 370 K es Cinco moles de cloruro de calcio se combinan con 10 moles de agua líquida en un recipiente cerrado y rígido, de alta presión, con una capacidad de 750 El acetileno gaseoso se produce mediante la reacción + + Las condiciones iniciales son y 1 bar, y la reacción es completa. Para una temperatura final de determine: La presión final. El calor transferido. A el volumen molar del es 33.0 Ignore el efecto de cualquier gas presente al inicio en el tanque Se estrangula gas propileno a 127 C y 38 bar en un proceso de flujo en estado estable hasta alcanzar 1 bar, donde el gas puede suponerse como ideal. Estime la temperatura final del propileno y su cambio de entropía Se estrangula gas propano a 22 bar y 423 K en un proceso de flujo en estado estable hasta alcanzar una presión de 1 bar. Estime el cambio de entropía del propano provocado por este proceso. En su estado final, el propano puede suponerse como un gas ideal Se comprime isotérmicamente gas propano a 100 C desde una presión inicial de 1 bar hasta una presión final de 10 bar. Estime AH y AS Se comprime gas de sulfuro de hidrógeno desde un estado inicial de 400 K y 5 bar hasta un estado de 600 K y 25 bar. Estime AH y AS Se expande dióxido de carbono a entalpía constante (al igual que en un proceso de estrangulamiento) desde y hasta Estime AS del proceso Un flujo de gas de etileno a 250 C y se expande isentrópicamente en una turbina hasta 120 Determine la temperatura del gas expandido y el trabajo producido si las propiedades del etileno se calculan por

7 248 CAPÍTULO 6. Propiedades termodinámicas de los fluidos Ecuaciones de un gas ideal. Correlaciones generalizadas apropiadas Un flujo de etano gaseoso a y 30 bar se expande isentrópicamente en una turbina hasta 2.6 bar. Determine la temperatura del gas expandido y el trabajo producido si las propiedades del etano se calculan por Ecuaciones de un gas ideal. Correlaciones generalizadas apropiadas Estime la temperatura final y el trabajo requerido cuando se comprime trópicamente 1 mol de n-butano en un proceso de flujo estable desde 1 bar y 50 C hasta 7.8 bar.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Cuestión 1. (10 puntos)

Cuestión 1. (10 puntos) ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA 2º eoría (30 puntos) IEMPO: 45 minutos FECHA DAA + + = Cuestión 1. (10 puntos) Lea las 15 cuestiones y escriba dentro de la casilla a la derecha de cada cuestión

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Práctica No 13. Determinación de la calidad de vapor

Práctica No 13. Determinación de la calidad de vapor Práctica No 13 Determinación de la calidad de vapor 1. Objetivo general: Determinar la cantidad de vapor húmedo generado a presión atmosférica. 2. Marco teórico: Entalpía del sistema: Si un sistema consiste

Más detalles

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta:

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta: Guía de Trabajo Procesos Termodinámicos Nombre: No. Cuenta: Resolver cada uno de los ejercicios de manera clara y ordenada en hojas blancas para entregar. 1._a) Determine el trabajo realizado por un fluido

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Propiedades del agua saturada (líquido-vapor): Tabla de presiones

Propiedades del agua saturada (líquido-vapor): Tabla de presiones Propiedades del agua saturada (líquido-vapor): Tabla de presiones Volumen especifico Energía interna Entalpía Entropía m 3 / kg kj / kg kj / kg kj / kg, K Liquido Vapor Liquido Vapor Liquido Vapor Vapor

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

Máquinas térmicas y Entropía

Máquinas térmicas y Entropía Física 2 (Biólogos y Geólogos) SERIE 10 Máquinas térmicas y Entropía 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA GUIA DE CICLOS DE POTENCIA DE VAPOR Ejercicios resueltos

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía.

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. 1. Demostrar que: (a) Los postulados del segundo principio de Clausius

Más detalles

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro.

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro. 5.9 * El agua en un depósito rígido cerrado de 50 lt se encuentra a 00 ºC con 90% de calidad. El depósito se enfría a -0 ºC. Calcule la transferencia de calor durante el proceso. 5.4 * Considere un Dewar

Más detalles

CRITERIOS DE ESPONTANEIDAD

CRITERIOS DE ESPONTANEIDAD CRITERIOS DE ESPONTANEIDAD Con ayuda de la Primera Ley de la Termodinámica podemos considerar el equilibrio de la energía y con La Segunda Ley podemos decidir que procesos pueden ocurrir de manera espontanea,

Más detalles

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible.

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible. TEORÍA (35 % de la nota) Tiempo máximo: 40 minutos 1. Enuncie la Primera Ley de la Termodinámica. 2. Represente esquemáticamente el diagrama de fases (P T) del agua; indique la posición del punto crítico,

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada

Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada CATEDRA DE TERMODINAMICA AÑO 2013 INGENIERIA QUÍMICA Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada 1. Una resistencia eléctrica entrega 473 kj a un sistema constituido

Más detalles

al volume n molar V cuando se expande según un proceso isotérmico reversible, desde el volumen molar, V

al volume n molar V cuando se expande según un proceso isotérmico reversible, desde el volumen molar, V 9.- Un sistema cerrado inicialmente en reposo sobre la tierra es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. durante este proceso hay una transferencia

Más detalles

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

Tema 4. Máquinas Térmicas III

Tema 4. Máquinas Térmicas III Asignatura: Tema 4. Máquinas Térmicas III 1. Máquinas Frigoríficas 2. Ciclo de refrigeración por compresión de vapor 3. Ciclo de refrigeración por absorción 4. Ciclo de refrigeración por compresión de

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP Indice1 Cap.1 Energía INTRODUCCIÓN... 1 La Energía en el Tiempo... 2 1.1 Energía... 5 1.2 Principio de conservación de energía... 5 1.3 Formas de energía... 7 1.4 Transformación de energía... 9 1.5 Unidades

Más detalles

CALORIMETRIA DEL VAPOR DE AGUA

CALORIMETRIA DEL VAPOR DE AGUA CAPITULO I.- CALORIMETRIA DEL VAPOR DE AGUA GENERACIÓN DE VAPOR DE AGUA. Cuando al agua se le agrega energía calorífica, varían su entalpía y su estado físico. A medida que tiene lugar el calentamiento,

Más detalles

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v FÍSICA 4 SEGUNDO CUARIMESRE DE 2009 GUÍA 3: OENCIALES ERMODINÁMICOS, CAMBIOS DE FASE 1. Sean x,, z cantidades que satisfacen una relación funcional f(x,, z) = 0. Sea w una función de cualquier par de variables

Más detalles

Guía de Ejercicios Unidad IV. Balances de Energía Prof. Juan Rodríguez Estado T (ºF) P (Psia) (ft3/lbm) Ĥ (Btu/lbm)

Guía de Ejercicios Unidad IV. Balances de Energía Prof. Juan Rodríguez Estado T (ºF) P (Psia) (ft3/lbm) Ĥ (Btu/lbm) Universidad Nacional Experimental Politécnica Antonio José de Sucre Vicerrectorado Barquisimeto Departamento de Ingeniería Química Ingeniería Química Guía de Ejercicios Unidad IV. Balances de Energía Prof.

Más detalles

PROGRAMA DE CURSO PROPÓSITO DEL CURSO

PROGRAMA DE CURSO PROPÓSITO DEL CURSO PROGRAMA DE CURSO CÓDIGO IQ3201 NOMBRE DEL CURSO Termodinámica Aplicada HORAS DE NÚMERO DE UNIDADES HORAS DE CÁTEDRA DOCENCIA DOCENTES AUXILIAR 10 3 1,5 5,5 REQUISITOS CM2004, EI2001 REQUISITOS DE ESPECÏFICOS

Más detalles

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano Capítulo 4 Ciclos Termodinámicos Objetivo El alumno conocerá los ciclos termodinámicos fundamentales empleados en la transformación de la energía. Contenido Ciclos de generación de potencia mecánica. Ciclos

Más detalles

Ejemplos del temas VII

Ejemplos del temas VII 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase

Más detalles

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura:

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura: FÍSICA 4 PRIMER CUARIMESRE DE 05 GUÍA : SEGUNDO PRINCIPIO, MÁUINAS ÉRMICAS. Demostrar que: (a) Los postulados del segundo principio de Clausius y de Kelvin son equivalentes (b) Ninguna máquina cíclica

Más detalles

Unidad 7: Equilibrio químico

Unidad 7: Equilibrio químico Unidad 7: Equilibrio químico 1. INTRODUCCIÓN Una reacción reversible es aquella en la cual los productos vuelven a combinarse para generar los reactivos. En estos procesos ocurren simultáneamente dos reacciones:

Más detalles

Unidad Propiedades de las sustancias puras

Unidad Propiedades de las sustancias puras Unidad 2 2.1.- Propiedades de las sustancias puras 2.1.1.- Sustancias puras PLANIFICACIÓN Certámenes: Certamen 1 15 de mayo Certamen 2 12 de junio. Certamen 3 6 de julio 2.1.- Propiedades de las sustancias

Más detalles

Ciclo de refrigeración por la compresión de un vapor

Ciclo de refrigeración por la compresión de un vapor Facultad de Ingeniería. División de Ciencias Básicas Ciclo de refrigeración por la compresión de un vapor Rigel Gámez Leal Introducción El campo de la refrigeración incluye los refrigeradores domésticos,

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO Contenido Sustancia pura Fase Curvas del agua Curvas del agua: Tv, Pv,PT Calor sensible

Más detalles

Planificaciones TERMODINAMICA. Docente responsable: MILANO ALFREDO CAYETANO. 1 de 5

Planificaciones TERMODINAMICA. Docente responsable: MILANO ALFREDO CAYETANO. 1 de 5 Planificaciones 8714 - TERMODINAMICA Docente responsable: MILANO ALFREDO CAYETANO 1 de 5 OBJETIVOS Que el alumno adquiera los conocimientos básicos de latermodinámica no solamente desde el punto de vista

Más detalles

2. Termodinámica macroscópica de gases

2. Termodinámica macroscópica de gases . Termodinámica macroscópica de gases Sugerencias para el trabajo en clase: Los siguientes problemas están pensados para abordar algunos aspectos particulares de la termodinámica de gases ideales y reales.

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

TERMODINÁMICA - PREGUNTAS DE TEST

TERMODINÁMICA - PREGUNTAS DE TEST TERMODINÁMICA - PREGUNTAS DE TEST Grupo A: DEFINICIONES DE VARIABLES. CONCEPTOS GENERALES Grupo B: MAQUINAS TÉRMICAS: Grupo C: PRIMER PRINCIPIO: Grupo D: SEGUNDO PRINCIPIO: Grupo E: ESPONTANEIDAD DE LAS

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

FISICOQUÍMICA MÓDULO I: TERMODINÁMICA SEMINARIO 1

FISICOQUÍMICA MÓDULO I: TERMODINÁMICA SEMINARIO 1 FISICOQUÍMICA - 008 MÓDULO I: TERMODINÁMICA SEMINARIO 1 Conceptos Importantes Sistema, alrededores y paredes. Relación entre el tipo de paredes y los procesos que puede sufrir un sistema. Estados de equilibrio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Reserva 1, Ejercicio 5, Opción A Reserva 1, Ejercicio, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

= 3 112.5 = 388.61 = 2 945.7 667.75

= 3 112.5 = 388.61 = 2 945.7 667.75 56 2. Primera ley y otros conceptos básicos 2.10. 2.11. temperatura? Suponga que para el nitrógeno es constante, = y (Los valores de R aparecen en el apéndice A.) En una tubería horizontal recta fluye

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: EQUILIBRIO QUÍMICO HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) En un experimento se miden los puntos de ebullición del tolueno a diversas presiones obteniendose los siguientes resultados P (mm Hg) T (

Más detalles

VI. Segunda ley de la termodinámica

VI. Segunda ley de la termodinámica Objetivos: 1. Introducir la segunda ley de la. 2. Identificar los procesos validos como aquellos que satisfacen tanto la primera ley como la segunda ley de la. 3. Discutir fuentes y sumideros de energía

Más detalles

REALIZADO POR. INGENIERO. JOAN RODRIGUEZ.

REALIZADO POR. INGENIERO. JOAN RODRIGUEZ. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR. INGENIERO.

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: TERMODINÁMICA HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Discuta la veracidad o falsedad de las siguientes afirmaciones: a) Cuando un sistema termodinámico abierto experimenta un ciclo termodinámico

Más detalles

Termodinámica. Carrera: QUC 0535

Termodinámica. Carrera: QUC 0535 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Termodinámica Ingeniería Química QUC 0535 4 2 10 2. HISTORIA DEL PROGRAMA Lugar

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T. (CLAVE 1212) UNIDAD 1. INTRODUCCIÓN A LA TERMODINÁMICA 1.1 Definición, campo

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

III. Propiedades de una sustancia pura

III. Propiedades de una sustancia pura Objetivos: 1. Introducir el concepto de una sustancia. 2. Discutir brevemente la física de los procesos de cambio de fase. 3. Ilustrar los diagramas de fase de las sustancias s. 4. Demostrar los procedimientos

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA

Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA Asignatura: Termodinámica y Máquinas Térmicas Carrera: Ingeniería Industrial Profesor Titular: MAMANI, Manuel Año: 2010 Semestre:

Más detalles

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras.

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras. TERMODINÁMICA II Unidad : Ciclos de potencia y refrigeración Objetivo: Estudiar los ciclos termodinámicos de potencia de vapor UNEFA Ext. La Isabelica Ing. Petroquímica 5to Semestre Materia: Termodinámica

Más detalles

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ]

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ] ESCUELA SUPERIOR DE INGENIEROS INDUSRIALES Universidad de Navarra Examen de ERMODINÁMICA I Curso 996-97 roncal - 4,5 créditos 7 de enero de 997 PROBLEMAS RESUELOS Problema (obligatorio; puntos) Para el

Más detalles

1 Estados de la materia

1 Estados de la materia 1 Estados de la materia En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados

Más detalles

Cuestiones de Termodinámica

Cuestiones de Termodinámica Cuestiones de Termodinámica 1. Llamamos alrededores a a. La parte del universo que está cerca del nuestro objeto de estudio. b. La parte del universo que no es nuestro objeto de estudio. c. La parte del

Más detalles

TEMA III Primera Ley de la Termodinámica

TEMA III Primera Ley de la Termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TERMODIMANICA BASICA Primera Ley de la Termodinámica Profesor: Ing. Isaac Hernández

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA Tema 2 SEGUNDA EY DE A TERMODINÁMICA ING. JOANNA KRIJNEN CONTENIDO 1. Introducción a la segunda ley de la termodinámica. 2. Máquinas térmicas (MT) Concepto Descripción del ciclo termodinámico. Eficiencia

Más detalles

Planificaciones Termodinámica I A. Docente responsable: MOSCARDI MARIO ALBERTO. 1 de 6

Planificaciones Termodinámica I A. Docente responsable: MOSCARDI MARIO ALBERTO. 1 de 6 Planificaciones 6704 - Termodinámica I A Docente responsable: MOSCARDI MARIO ALBERTO 1 de 6 OBJETIVOS Que el alumno adquiera los conocimientos básicos de la Termodinámica no solamente desde el punto de

Más detalles

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos)

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos) Teoría (30 puntos) TIEMPO: 50 minutos (9:00-9:50). El examen continúa a las 10:10. UTILICE LA ÚLTIMA HOJA COMO BORRADOR. Conteste brevemente a las siguientes cuestiones. Justifique sus respuestas, si es

Más detalles

Propiedades de sustancias

Propiedades de sustancias Propiedades de sustancias Objetivos Entender conceptos clave... como fase y sustancia pura, principio de estado para sistemas simples compresibles, superfice p-v-t, temperatura de saturación y presión

Más detalles

Limitaciones de la 1ra. ley de la termodinámica

Limitaciones de la 1ra. ley de la termodinámica Termodinámica Tema 9 (segunda parte) Química General e Inorgánica A Limitaciones de la 1ra. ley de la termodinámica Procesos espontáneos o irreversibles Una cascada corre cuesta abajo Un terrón de azúcar

Más detalles

TEMA 13: Termodinámica

TEMA 13: Termodinámica QUÍMICA I TEMA 13: Termodinámica Tecnólogo Minero Temario ü Procesos espontáneos ü Entropía ü Segunda Ley de la Termodinámica ü Energía libre de Gibbs ü Energía libre y equilibrio químico Procesos espontáneos

Más detalles

M del Carmen Maldonado Susano M del Carmen Maldonado Susano

M del Carmen Maldonado Susano M del Carmen Maldonado Susano Antecedentes Temperatura Es una propiedad de la materia que nos indica la energía molecular de un cuerpo. Energía Es la capacidad latente o aparente que poseen los cuerpos para producir cambios en ellos

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

QUÍMICA de 2º de BACHILLERATO TERMOQUÍMICA

QUÍMICA de 2º de BACHILLERATO TERMOQUÍMICA QUÍMICA de 2º de BACHILLERATO TERMOQUÍMICA PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 21) VOLUMEN I DOMINGO

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

FyQ Rev 01. IES de Castuera. 1 Introducción. 2 Clasificación de los Sistemas Materiales. 3 Las Variables Termodinámicas

FyQ Rev 01. IES de Castuera. 1 Introducción. 2 Clasificación de los Sistemas Materiales. 3 Las Variables Termodinámicas Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 6 Termoquímica FyQ 1 2015 2016 Rev 01 1 Introducción 2 Clasificación de los Sistemas Materiales 3 Las Variables Termodinámicas 4 Primer Principio

Más detalles

MEZCLAS NO REACTIVAS

MEZCLAS NO REACTIVAS 1 UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA MEZCLAS NO REACTIVAS En los estudios previos en termodinámica se han centrado en sustancias constituidas por una sola especie

Más detalles

Tema 3: Termoquímica. Termoquímica Conceptos básicos Primer principio Entalpía Ley de Hess Segundo principio

Tema 3: Termoquímica. Termoquímica Conceptos básicos Primer principio Entalpía Ley de Hess Segundo principio Tema 3: Termoquímica Objetivos. Principios y conceptos básicos. Primera ley de la termodinámica. Energía interna y entalpía. Calores de reacción. Ley de Hess. Segunda ley de la termodinámica. Entropía.

Más detalles

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado.

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado. Función de estado Una función de estado es una propiedad de un sistema termodinámico que depende sólo del estado del sistema, y no de la forma en que el sistema llegó a dicho estado. Por ejemplo, la energía

Más detalles

Unidad 1: TERMODINÁMICA

Unidad 1: TERMODINÁMICA Unidad 1: TERMODINÁMICA Sistemas termodinámicos. Propiedades. Equilibrio térmico. Escalas de temperatura. Calorimetría. Capacidades caloríficas. Formas de transmisión del calor. Primer principio de la

Más detalles

Tema Las Variables Termodinámicas y sus Relaciones

Tema Las Variables Termodinámicas y sus Relaciones Tema 2 2. Relaciones Termodinámicas Ecuaciones fundamentales de la termodinámica: energías libre. Relaciones de Maxwell. Estrategias generales para la obtención de relaciones termodinámicas. Aplicaciones

Más detalles

TEMA 9. CICLOS DE POTENCIA DE VAPOR

TEMA 9. CICLOS DE POTENCIA DE VAPOR Termodinámica Aplicada Ingeniería Química TEMA 9. CICLOS DE POTENCIA DE VAPOR TEMA 9: CICLOS DE POTENCIA DE VAPOR BLOQUE II. Análisis termodinámico de procesos industriales ANÁLISIS PROCESOS CALOR GENERALIDADES

Más detalles

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo 60 5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo Brayton para el cual se hicieron algunas simplificaciones que se especifican

Más detalles

CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED

CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED http://louyauns.blogspot.com/ E-mail: williamsscm@hotmail.com louyauns@yahoo.es CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED CONDICIONES DE FRONTERA Distribución de la concentración

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

RESUMEN TERMO 2A_1C 2016

RESUMEN TERMO 2A_1C 2016 RESUMEN TERMO 2A_1C 2016 entorno o exterior sistema Universo sistema abierto cerrado aislado materia y energía energía nada Olla con agua sobre una hornalla Agua en un termo perfecto Persona o cualquier

Más detalles

TEMA II.4. Propiedad de los Fluidos. Dr. Juan Pablo Torres-Papaqui

TEMA II.4. Propiedad de los Fluidos. Dr. Juan Pablo Torres-Papaqui TEMA II.4 Propiedad de los Fluidos Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS FUNDAMENOS DE ERMODINÁMICA ROBLEMAS 1.- Clasifique cada propiedad como extensiva o intensiva: a) temperatura, b) masa, c) densidad, d) intensidad del campo eléctrico, e) coeficiente de dilatación térmica,

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO 1. OBJETIVO Determinar la calidad de un vapor húmedo 2. MATERIAL - Calderín para producir el vapor (p atmosférica = constante) - Calorímetro

Más detalles

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm. 1) Dada la siguiente reacción química: 2 AgNO3 + Cl2 N2O5 + 2 AgCl + ½ O2. a) Calcule los moles de N2O5 que se obtienen a partir de 20 g de AgNO3. b) Calcule el volumen de O2 obtenido, medido a 20 ºC y

Más detalles

PROBLEMAS DE ESTEQUIOMETRÍA SEPTIEMBRE 2012

PROBLEMAS DE ESTEQUIOMETRÍA SEPTIEMBRE 2012 PROBLEMAS DE ESTEQUIOMETRÍA SEPTIEMBRE 2012 1- Una muestra de 15 g de calcita, que contiene un 98 % en peso de carbonato de calcio puro, se hace reaccionar con ácido sulfúrico del 96% y densidad 1,84 g.cm

Más detalles

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una Capítulo 0: ciclos de refrigeración El ciclo de refrigeración por compresión es un método común de transferencia de calor de una temperatura baja a una alta. ENTRA IMAGEN capítulo 0-.- CAOR ambiente 2.-

Más detalles