DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA EN REDUCTORES DE ENGRANAJES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA EN REDUCTORES DE ENGRANAJES"

Transcripción

1 DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA EN REDUCTORES DE ENGRANAJES Moya Rodríguez J. L*, Goytisolo Espinosa R. A, Rivera Báez V, Machado Rodríguez A. S.* * Facultad de Ingeniería Mecánica, Universidad Central Marta Abreu de Las Villas. Cuba, Facultad de Ingeniería Mecánica, Universidad Carlos Rafael Rodríguez de Cienfuegos. Cuba, Facultad de Ingeniería Mecánica-Eléctrica, Universidad Veracruzana. México Facultad de Ingeniería Mecánica, Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní, Km 5, CP 54830, Santa Clara, Villa Clara, Cuba. jorgemoyar@gmail.com Área Temática: Diseño de Elementos de Máquinas. RESUMEN Junto a la durabilidad, la eficiencia es uno de los aspectos más importantes a valorar en un reductor de engranajes. Sobre la eficiencia influyen una serie de parámetros como son: potencia a transmitir, velocidad angular de las ruedas, aceite empleado, tipo de engranaje, grado de precisión, geometría del diente, etc. Normalmente la eficiencia es un parámetro que generalmente se asume a la hora de proyectar o seleccionar un reductor de velocidad, sin embargo muchas veces el comportamiento del reductor durante el trabajo es diferente en cuanto a eficiencia se refiere, de lo estimado o estipulado en el catalogo de selección y muchas veces se hace necesario medir in sito la eficiencia del reductor. En el presente trabajo se analizan los diferentes métodos existentes para determinar la eficiencia en reductores de engranajes. Se comparan los mismos y se aplican a un banco de potencia circulante para evaluar reductores de velocidad de varias etapas. Se evalúa la eficiencia para diferentes tipos de aceites y cargas de operación para un reductor de fabricación nacional. PALABRAS CLAVE: Engranajes, reductores, eficiencia Código 195

2 INTRODUCCIÓN Para una potencia dada de salida de una transmisión no es especialmente importante la potencia del motor, ya que la diferencia entre ambas será pequeña. Sin embargo, estos índices tienen importancia porque representan el consumo improductivo industrial. Además, reflejan la cantidad de calor que se genera al operarlas e indirectamente caracterizan el desgaste. Una reducción de la eficiencia del 99 al 98% puede parecer insignificante, pero su efecto real es duplicar la razón del desgaste y la cantidad de calor generado que debe ser extraído por los medios refrigerantes. INSTALACIÓN EXPERIMENTAL. Existen múltiples instalaciones para determinar la eficiencia y evaluar el comportamiento en reductores de engranajes, pero sin lugar a dudas la más comúnmente usada son los bancos de potencia circulante, ya que en estas instalaciones es muy fácil aplicar carga a los reductores a evaluar. En la figura 1 se muestra el sistema de aplicación de la carga, el cual consta de un acoplamiento especial (1) con tornillos que se deslizan por ranuras circulares y se pueden aflojar en el momento de aplicación de la carga, manteniendo inmóvil una de las mitades del acoplamiento. Esto es posible mediante el uso de la palanca (2), la que además facilita que la palanca de carga (3), de 50 cm de longitud, se mantenga horizontal y no se alteren los valores en el momento de la aplicación de la carga en el gancho (4) Figura 1. Dispositivo para la aplicación de la carga Las cargas, momentos y potencias utilizados en los ensayos para evaluar la eficiencia del reductor PM-400 de fabricación nacional aparecen reflejados, en la tabla 1 para un brazo de palanca de 50 cm. y una velocidad del motor n=1720 r.p.m Tabla 1. Cargas de ensayo Número de la carga Carga aplicada, Kp. 5,1 7,1 9,1 11,1 13,1 Momento de carga, Kp-cm Potencia de carga Nc C.V. 6,1 8,5 10,9 13,3 15,7 Este rango de carga barre totalmente la gama de potencias nominales en el reductor PM-400 [2]. MÉTODOS UTILIZADOS EN LA MEDICIÓN DE LAS PÉRDIDAS EN EL BANCO. Método Mecánico.

3 Del análisis de esquema cinemática del reductor y de la relación entre las cargas actuantes en la misma, se llega a la expresión para la determinación de la eficiencia. [( Mc Mm) / Mc) ] 1/ 2 η = (1) donde: Mc Torque aplicado al acoplamiento Mm Torque reactivo El torque reactivo se determinó gracias a que el motor fue montado libremente en rodamientos, para de esa manera poder medir dicho torque en una balanza gracias a u brazo de palanca acoplado al motor. Método eléctrico. Consiste en determinar mediante mediciones eléctricas la potencia entregada por el motor N, igual a las pérdidas en el banco. N 2 3If. Rf = Wi ( Wo + Kw (2) 1000 Las pérdidas en uno de los reductores del banco serán: P = Nm/2 y la eficiencia: Nc η =.100% (3) Nc + P Para la determinación de la potencia en vacío (Wo) y la resistencia promedio por fase (Rf), se sometió el motor a las pruebas de laboratorio del rotor trancado y rotor libre y se obtuvieron los siguientes valores: Wo = 0,26Kw y Rf = 0, 34 Ω Los valores de Wi (potencia consumida de la línea) e If (intensidad de la corriente en cada fase) se determinaron durante las pruebas mediante el conjunto medidor K5 IT para cada valor de la carga en el banco, con apreciaciones en las escalas de 0,01 Kw y 0,1 amp., respectivamente. Método térmico. Las pérdidas de potencia en un reductor de velocidad se transforman en calor. Esta cantidad de calor que se genera en el interior del reductor aumenta la temperatura de sus diferentes componentes. A medida que esto sucede, se establece un gradiente ΔTe correspondiente al estado de equilibrio térmico, capaz de transferir al exterior todo el calor generado. Este gradiente se produce a la temperatura Te expresado por Donde Ta es la temperatura ambiente. Δ Te = Te Ta (4) Si las pérdidas de potencia en el reductor se producen a una razón constante (potencia constante), una vez alcanzado el estado de equilibrio térmico, la razón de disipación de calor también será constante. Esta depende del área de transferencia de calor, del coeficiente de transferencia y la de diferencia de temperatura y se puede calcular por la siguiente expresión: Hg = C.A. (ΔTe + 16,5) (5)

4 El coeficiente de transferencia de calor C varía entre los límites de a 0,0275; los valores más altos se aplican a los reductores rápidos y los más bajos se aplican a los reductores sinfín de baja velocidad. En las pruebas se tomó el valor recomendado C = 0,02 Cv/m 2 - ºC. El área de transferencia de reductor PM 400 es: A = 0,6213 m 2 El gradiente de temperatura Te se determinó a partir del carácter newtoniano que sigue el incremento de la temperatura con el tiempo (figura 2). La temperatura de equilibrio puede ser predicha midiéndola antes de que la condición de equilibrio sea alcanzada. Si se toma la temperatura en tres instantes, igualmente espaciado el tiempo, los incrementos durante los dos períodos intermedios de tiempo serán: y la temperatura de equilibrio será: R 1 = T 2 T 1 (6) R 2 = T 3 T 2 (7) 2 R2 Te = T3 + (8) R R 1 2 Figura 2. Método térmico La eficiencia se determina entonces por la expresión: Nc η = (9) Nc + Hg RESULTADOS OBTENIDOS Siguiendo los tres procedimientos anteriormente descritos, se determinaron experimentalmente las eficiencias para las distintas cargas de ensayos y tres aceites de circulación ICP diferentes, utilizables en dicho reductor con el objetivo de analizar la influencia de la viscosidad en la eficiencia. Con el objetivo de obtener las eficiencias promedio de reductor PM-400 los resultados se valoran estadísticamente siguiendo la metodología propuesta en la referencia [4].

5 Para poder comparar los valores experimentales obtenidos, se calcularon las eficiencias teóricas del reductor mediante un programa de computación [5] y se calcularon además las diferentes pérdidas en el reductor teniendo en cuenta lo establecido en la referencia [6]. Los valores medios de las eficiencias obtenidas del procesamiento estadístico se plotearon junto con los teóricos calculados en la figura 3. Analizando los resultados obtenidos, se observa, en general un comportamiento lógico de las eficiencias en función de las potencias de cargas, o sea, la eficiencia aumenta con la carga, comportamiento este típico de las transmisiones por engranajes. Se observa además una disminución de la eficiencia con el aumento de la viscosidad del aceite, que era de esperar sin embargo, es de destacar que la reducción de la eficiencia al aumentar la viscosidad de 47,5 cs. aceite circulación 47 a 1119,3 cs aceite circulación 65- es sólo de 0,4 a 0,6 %. No se hacen recomendaciones específicas sobre el aceite, ya que en esta decisión influyen otros parámetros que no son el objetivo de este trabajo. Los valores de eficiencia obtenidos de este trabajo, dos son muy aproximados a los predichos por la teoría, lo que demuestra su validez. Por otra parte, el error de los valores de eficiencia, producto de procesamiento estadístico, no excede en ningún caso a 0,6 precisión aceptable en las mediciones. En sentido general la precisión en los métodos es mayor a medida que aumenta la carga de ensayo, ya que los errores de apreciación en los instrumentos (que se pueden considerar constantes), tienen una menor influencia a medida que aumenta la potencia. Los métodos analizados tienen el inconveniente de que ninguno como tal es posible utilizarlos en condiciones de trabajo industrial, De aquí que nosotros recomendamos para estos fines un método combinado que consiste en determinar la potencia que consume el reductor por el método eléctrico y las pérdidas por el método térmico. Figura 3 Influencia de la viscosidad del aceite en la eficiencia del reductor REFERENCIAS 1. Merrit, H. E. Gear Engineering, Editorial Pitman Publis-ing Londres. 2. Krause y otros Reductori Mashinoastroienie, 1965, Moscú. 3. Radzimovsky, E. I., A. Mirarefi, W. E. Broom. Instantaneus Efficiency and Coefficient of Friction of an involute gear drive Rev. Journal of Eng. for Industry. Trans. A.S.M.E., Nov. 1973, Págs Alaferdov, O. Metodología y organización de la investigación experimental Univ. Central de Las Villas, Banco universal de ensayos de potencia circulante. Trabajo de Diploma. Univ. Central de Las Villas, Wilcoak, D.E. y Booser, E. R. Bearing Desing and application. Editorial Mc. Graw Hill, Londres.

6 7. Otarov, A. A., Goytizolo, R. y López, D. Incremento de la capacidad de carga en reductores helicoidales mediante la corrección. Tecnología. Serie Ing. Mecánica No. 3 Enero-Dic UNIDADES Y NOMENCLATURA η Eficiencia (adimensional) Mc Torque aplicado al acoplamiento (N-m) Mm Torque reactivo (N-m) If Intensidad de la corriente en cada fase (amperes) Rf Resistencia promedio por fase (ohmios) Wi Potencia consumida de la línea (Kw) Wo Potencia en vacío (Kw) N Potencia entregada por el motor eléctrico (Kw) P Pérdidas en uno de los reductores del banco (Kw) Nm Potencia del torque reactivo (Kw) Nc Potencia de carga (Kw) Δ Te Gradiente de temperatura (ºC) Te Temperatura de equilibrio (ºC) Ta Temperatura ambiente (ºC) Hg Potencia disipada en calor (CV) C Coeficiente de transferencia de calor (Cv/m 2 - ºC) A Área de transferencia de calor del reductor (m 2 )

UNIVERSIDAD TECNOLÓGICA NACIONAL-

UNIVERSIDAD TECNOLÓGICA NACIONAL- UNIVERSIDAD TECNOLÓGICA NACIONAL- Facultad Regional Bahía Blanca CÁTEDRA: ELEMENTOS DE MAQUINA Trabajo Práctico N 14 Unidad: Análisis de Elementos de Transmisión (Capítulos 8 y 9). Tema: Cálculo de engranajes,

Más detalles

DISEÑO DE UNA TRANSMISIÓN Y SISTEMA DE FRENADO PARA UNA CARRETILLA TELESCÓPICA DE KG 8. RESUMEN

DISEÑO DE UNA TRANSMISIÓN Y SISTEMA DE FRENADO PARA UNA CARRETILLA TELESCÓPICA DE KG 8. RESUMEN eman ta zabal zazu ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BILBAO GRADO EN INGENIERÍA MECÁNICA TRABAJO FIN DE GRADO 2014 / 2015 DISEÑO DE UNA TRANSMISIÓN Y SISTEMA DE FRENADO DATOS DE

Más detalles

PROGRAMA INSTRUCCIONAL ELEMENTOS DE MAQUINAS II

PROGRAMA INSTRUCCIONAL ELEMENTOS DE MAQUINAS II UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE MANTENIMIENTO MECÁNICO PROGRAMA INSTRUCCIONAL ELEMENTOS DE MAQUINAS II CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA

Más detalles

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON)

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON) UNIVERSIDAD NACIONAL EXPERIMENTAL ``FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA INDUSTRIAL, MECÁNICA LABORATORIO DE TERMODINÁMICA APLICADA. LABORATORIO DE CONVERSIÓN DE ENERGÍA PRÁCTICA

Más detalles

Fecha de Entrega: 20/8/2013. Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56. Índice

Fecha de Entrega: 20/8/2013. Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56. Índice Gabinete Tema 1: Definiciones Básicas de Corriente Fecha de Entrega: 20/8/2013 Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56 Índice 1 Definiciones Básicas...

Más detalles

C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S

C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S Reductores y Motorreductores MOTORREDUCTOR DE EJES A 90º REDUCTOR DE EJES A 90º MOTORREDUCTOR DE EJES COLINEALES REDUCTOR DE EJESCOLINEALES

Más detalles

TEORÍA DE MECANISMOS Y MÁQUINAS. EJERCICIOS DE ENGRANAJES.

TEORÍA DE MECANISMOS Y MÁQUINAS. EJERCICIOS DE ENGRANAJES. 1. Realice un boceto de cada uno de los elementos siguientes: a. Engranaje helicoidal paralelo, con ángulo de hélice de 30º y relación e = 1/3. b. Engranaje de tornillo sinfín, con ángulo de hélice de

Más detalles

CRONOGRAMA DE MATERIA TEL: E. MAIL: PRE-REQUISITOS

CRONOGRAMA DE MATERIA TEL: E. MAIL: PRE-REQUISITOS 1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: Ingeniería Mecánica Eléctrica MATERIA: Diseño

Más detalles

CENTRALES ELECTRICAS I

CENTRALES ELECTRICAS I MANTENIMIENTO PREDICTIVO DE GENERADORES SINCRONOS CENTRALES ELECTRICAS I ROBERTO URBINA MARTIN SARMIENTO JOSE CASTRO OBJETIVO El presente trabajo cumple con el objetivo principal de disminuir los costos

Más detalles

INFLUENCIA DE LA CORRECCIÓN DEL DENTADO EN LA RESISTENCIA A LA PICADURA DE LOS ENGRANAJES CILÍNDRICOS DE DIENTES RECTOS EXTERIORES.

INFLUENCIA DE LA CORRECCIÓN DEL DENTADO EN LA RESISTENCIA A LA PICADURA DE LOS ENGRANAJES CILÍNDRICOS DE DIENTES RECTOS EXTERIORES. INFLUENCIA DE LA CORRECCIÓN DEL DENTADO EN LA RESISTENCIA A LA PICADURA DE LOS ENGRANAJES CILÍNDRICOS DE DIENTES RECTOS EXTERIORES. Moya Rodríguez J. L. *, Huapaya Bautista A.**, Goytisolo Espinosa R.

Más detalles

Motores eléctricos de corriente continua:

Motores eléctricos de corriente continua: Motores eléctricos de corriente continua: 30.- Septiembre 2003 Un motor eléctrico de cc se conecta a una línea de 220V y 35A. Este motor eleva un ascensor de 2500Kg a una altura de 21m en 180s. a) trabajo

Más detalles

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?.

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?. PROBLEMAS DE MÁQUINAS Y MECANISMOS LA PALANCA 1. Indica el tipo de palanca en cada uno de los casos siguientes: 2. A qué distancia del eje de un balancín se tendrá que sentar un niño de 30 kg para que

Más detalles

COMPRESORES DE TORNILLO SERIE ER

COMPRESORES DE TORNILLO SERIE ER R COMPRESORES DE TORNILLO SERIE ER Diseño innovador Esquema de montaje ER 4/5/11p -7/11/15/VF 1.Rotor del motor. 2.Estator del motor. 3.Rotor. 4.Eje del rotor. 5.Ventilador del motor. 6.Depósito separador.

Más detalles

INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911

INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911 INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911 FUERZA DE CORTE EN EL TORNEADO HORARIO: VIERNES 19:00 A 21:30 HORAS 1 1.- OBJETIVOS

Más detalles

APARATO UTILIZADO PARA DETERMINAR EL CALOR ESPECIFICO DE UN CUERPO, ASI COMO PARA MEDIR LAS CANTIDADES DE CALOR QUE LIBERAN O ABSORBEN LOS CUERPOS.

APARATO UTILIZADO PARA DETERMINAR EL CALOR ESPECIFICO DE UN CUERPO, ASI COMO PARA MEDIR LAS CANTIDADES DE CALOR QUE LIBERAN O ABSORBEN LOS CUERPOS. QUE ES UN CALORIMETRO? APARATO UTILIZADO PARA DETERMINAR EL CALOR ESPECIFICO DE UN CUERPO, ASI COMO PARA MEDIR LAS CANTIDADES DE CALOR QUE LIBERAN O ABSORBEN LOS CUERPOS. CARACTERISTICAS UN CALORIMETRO

Más detalles

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena.

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena. Mecanismos 2. Mecanismos que transforman movimientos: Rotación en rotación. Poleas y engranajes Transmisión por cadena. Rotación en traslación y viceversa : Piñón Cremallera. Rotación en alternativo regular

Más detalles

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca:

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca: OBLIGATORIO: Realiza en todos los ejercicios un esquema del sistema. En él deben aparecer reflejados todos los datos del ejercicio. Palancas NOTA: En los siguientes ejercicios, si no pone nada, entenderemos

Más detalles

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO 0.- INTRODUCCIÓN. En general, todas las máquinas se componen de mecanismos; gracias a ellos, el impulso que proviene del esfuerzo muscular o de un motor se traduce en el tipo de movimiento y la fuerza

Más detalles

PROYECTO: CÁLCULO Y DISEÑO DE LA TRANSMISIÓN DE UN 8. RESUMEN ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BILBAO COCHE

PROYECTO: CÁLCULO Y DISEÑO DE LA TRANSMISIÓN DE UN 8. RESUMEN ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BILBAO COCHE eman ta zabal zazu ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BILBAO GRADO EN INGENIERÍA MECÁNICA TRABAJO FIN DE GRADO 2015 / 2016 PROYECTO: CÁLCULO Y DISEÑO DE LA TRANSMISIÓN DE UN COCHE

Más detalles

Tecnología Industrial I

Tecnología Industrial I Tecnología Industrial I Máquinas y Mecanismos Ejercicios de repaso 1. A qué distancia del punto de apoyo deberá colocarse Ana para equilibrar el balancín con su hermano Javier? sol. 3m 2. A qué distancia

Más detalles

PRINCIPIOS DEL TREN DE FUERZA FUNCIONES DEL TREN DE FUERZA 19/07/2014. qué es Tren de fuerza?

PRINCIPIOS DEL TREN DE FUERZA FUNCIONES DEL TREN DE FUERZA 19/07/2014. qué es Tren de fuerza? qué es Tren de fuerza? Es un grupo de componentes que trabajan juntos para transferir energía desde la fuente donde se produce la energía al punto donde se requiere realizar un trabajo. FUNCIONES DEL TREN

Más detalles

2. El conmutador bajo carga

2. El conmutador bajo carga 2. El conmutador bajo carga La función principal de un Conmutador Bajo Carga (OLTC) es modificar la relación de transformación de los transformadores de potencia, en respuesta a un cambio de carga en el

Más detalles

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Panasonic Electric Works España Motion Control Agenda Definición de inercia y ejemplos

Más detalles

EXPERIENCIA C915 "LABORATORIO DE TURBINA PELTON"

EXPERIENCIA C915 LABORATORIO DE TURBINA PELTON INGENIERIA CIVIL EN MECANICA PROGRAMA DE PROSECUCIÓN DE ESTUDIOS GUIA DE LABORATORIO ASIGNATURA "LABORATORIO DE MÁQUINAS HIDRÁULICAS" CÓDIGO 9517 NIVEL 04 EXPERIENCIA C915 "LABORATORIO DE TURBINA PELTON"

Más detalles

Ejercicios y Problemas de Fatiga

Ejercicios y Problemas de Fatiga UNIVERSIDAD SIMON BOLIVAR División de Física y Matemáticas Departamento de Mecánica MC2143-Mecánica de Materiales III Ejercicios y Problemas de Fatiga Problema No. 1 En la Fig. 1a se muestra el esquema

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt INGENIERIA CIVIL EN MECANICA 15030 LABORATORIO GENERAL II NIVEL 11 GUIA DE LABORATORIO EXPERIENCIA C223 CURVAS CARACTERÍSTICA DE UNA BOMBA CENTRÍFUGA LABORATORIO DE BOMBA CENTRÍFUGA 1. OBJETIVO GENERAL

Más detalles

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso)

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) EXAMEN: 31 de ENERO de 2009 Nombre y Apellidos:.. Una lavadora de uso doméstico, de carga frontal, presenta sólo un programa de lavado. El proceso completo

Más detalles

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor.

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Finalidad: - Permiten realizar trabajos con mayor comodidad

Más detalles

TECNOLOGICO NACIONAL DE MEXICO

TECNOLOGICO NACIONAL DE MEXICO TECNOLOGICO NACIONAL DE MEXICO INSTITUTO TECNOLOGICO DE VERACRUZ ROBOTICA CLAVE 9F1A DR. JOSE ANTONIO GARRIDO NATAREN ING. MECATRONICA EQUIPO I UNIDAD I MORFOLOGIA DEL ROBOT 1.3 TRANSMISIONES Y REDUCCIONES

Más detalles

CATEDRA: TCDM UNIDAD 4: TRANSMISIONES FLEXIBLES TEMA : CADENAS Ejercicio 1B:

CATEDRA: TCDM UNIDAD 4: TRANSMISIONES FLEXIBLES TEMA : CADENAS Ejercicio 1B: Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS CATEDRA: TCDM UNIDAD 4: TRANSMISIONES FLEXIBLES TEMA : CADENAS Ejercicio 1B: TRANSMISION DE MOVIMIENTO POR CADENAS Para la resolución se utiliza el libro

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt INGENIERIA CIVIL EN MECANICA 15030 LABORATORIO GENERAL II NIVEL 11 GUIA DE LABORATORIO EXPERIENCIA C224 CURVAS CARACTERÍSTICA DE UNA TURBINA PELTON LABORATORIO DE TURBINA PELTON 1. OBJETIVO GENERAL Observar

Más detalles

Ing. Automotriz. Curso: Introducción a la Ingeniería Automotriz. Sesión Nº 10: Análisis dinámico de la transmisión.

Ing. Automotriz. Curso: Introducción a la Ingeniería Automotriz. Sesión Nº 10: Análisis dinámico de la transmisión. UTP FIMAAS Sesión Nº 10: Ing. Automotriz Curso: Introducción a la Ingeniería Automotriz Análisis dinámico de la transmisión. Profesor: Carlos Alvarado de la Portilla 1 Bibliografía. http://www.mecanicavirtual.org/cajacambios3.htm

Más detalles

FACTOR DE SERVICIO, FACTOR DE SEGURIDAD y FACTOR DE DISEÑO Y

FACTOR DE SERVICIO, FACTOR DE SEGURIDAD y FACTOR DE DISEÑO Y FACTOR DE SERVICIO, FACTOR DE SEGURIDAD y FACTOR DE DISEÑO Y Presentado Por: Danilo José Guerrero Ch. Presentado A: Ing. José Manuel Ramírez Q. Grupo Resistencia de Materiales II IMPORTANCIA DE LOS FACTORES

Más detalles

4º. En el sistema de poleas del dibujo calcula las velocidades de giro de cada polea y las relaciones de transmisión. (2 punto)

4º. En el sistema de poleas del dibujo calcula las velocidades de giro de cada polea y las relaciones de transmisión. (2 punto) TECNOLOGÍA. 3º ESO Mecanismos Fecha: 13-XI-07 Nombre: Grupo: Nota: 1º. Tipos de palancas. (1,5 puntos) 2º. En el mecanismo propuesto, indica que tipo de palancas intervienen y la distancia a la que se

Más detalles

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento.

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. MECANISMOS 2º ESO A. Introducción. Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. Elemento motriz Elemento

Más detalles

DIÁMETROS NORMALIZADOS

DIÁMETROS NORMALIZADOS EJES Y ÁRBOLES EJES Son elementos destinados a que una o más ruedas puedan girar libremente, como es el caso de ejes de vagones de ferrocarril y los ejes delanteros de automóviles de tracción a las ruedas

Más detalles

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I 1. LA PALANCA 1.1 En una palanca de primer género colocamos en uno de sus extremos un peso de 10 N. Si la palanca tiene una longitud de 4 m y el punto de apoyo se encuentra en el punto medio, calcular

Más detalles

SISTEMA DE TRANSMISIÓN PARA VEHÍCULO CON TRACCIÓN TRASERA Y MOTOR DELANTERO DOCUMENTO 8: RESUMEN

SISTEMA DE TRANSMISIÓN PARA VEHÍCULO CON TRACCIÓN TRASERA Y MOTOR DELANTERO DOCUMENTO 8: RESUMEN eman ta zabal zazu ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BILBAO GRADO EN MECÁNICA TRABAJO FIN DE GRADO 2014 / 2015 SISTEMA DE TRANSMISIÓN PARA VEHÍCULO CON TRACCIÓN TRASERA Y MOTOR

Más detalles

N = γ net (N / V) (u av / 4) (2πrl)

N = γ net (N / V) (u av / 4) (2πrl) Anexo III III- Teoría de los reactores tubulares de flujo Según la teoría cinética molecular, el número de colisiones por segundo, J s, de moléculas en fase gaseosa sobre una superficie de área A s se

Más detalles

La placa con los datos característicos nos da toda la información correspondiente al motor.

La placa con los datos característicos nos da toda la información correspondiente al motor. DATOS DE PLACA DE UN MOTOR La placa con los datos característicos nos da toda la información correspondiente al motor. PARÁMETROS ELÉCTRICOS Tipo de motor Potencia Voltaje nominal Tipo de conexión 3 (Trifásico)

Más detalles

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas.

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas. 1 12.7. Cadenas cinemáticas A Representación gráfica Cadenas cinemáticas. 2 B Cálculos 3 C Caja de velocidades Ejemplo 7: caja de velocidades con engranajes desplazables. Ejemplo 8: caja de velocidades

Más detalles

6.1. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN A SIMULAR

6.1. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN A SIMULAR 6. EJEMPLO DE APLICACIÓN 6.1. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN A SIMULAR En el presente apartado, se va a realizar una descripción de los componentes y el modo de funcionamiento del sistema de

Más detalles

Actividades Recuperación septiembre 2º ESO

Actividades Recuperación septiembre 2º ESO Actividades Recuperación septiembre 2º ESO Alumno:.. Grupo:. 1ª Evaluación Escala: 1cuadro = 5 mm Se debe de realizar en láminas de dibujo con cajetín delineadas a lápiz con escuadra y cartabón Lámina

Más detalles

4. Adquisición de datos

4. Adquisición de datos 4. Adquisición de datos 4.1. Introducción El problema de la determinación de los parámetros de un modelo de circuito del motor de inducción puede resolverse de diferentes formas. Por una parte, es posible

Más detalles

Recientes desarrollos en el diseño de Cristalizador Vertical. XXXIV Convención ATAM Sergio Villa Godoy 31/07-3/ , Boca del Río, Veracruz

Recientes desarrollos en el diseño de Cristalizador Vertical. XXXIV Convención ATAM Sergio Villa Godoy 31/07-3/ , Boca del Río, Veracruz Recientes desarrollos en el diseño de Cristalizador Vertical 31/07-3/08 2012, Boca del Río, Veracruz 31/07-3/08 2012 Beneficios de los cristalizadores verticales Comparados con los cristalizadores horizontales:

Más detalles

LUBRICACIÓN DE ENGRANES INDUSTRIALES.

LUBRICACIÓN DE ENGRANES INDUSTRIALES. LUBRICACIÓN DE ENGRANES INDUSTRIALES. MACRO DISTRIBUIDOR MERDIZ. Use this area for cover image (height 6.5cm, width 8cm) Shell Lubricants Ing. Oscar Chávez Rentería Gerente Técnico Merdiz. 1 TEMA DE SEGURIDAD:

Más detalles

9. PRUEBAS DE LABORATORIO

9. PRUEBAS DE LABORATORIO 9. PRUEBAS DE LABORATORIO Las pruebas de laboratorio se han realizado con la finalidad de reproducir las formas de onda de tensión moduladas en amplitud y frecuencia típicas de los sistemas undimotrices

Más detalles

TRENES DE ENGRANES. Academia de Análisis Mecánico, DSM-DIM

TRENES DE ENGRANES. Academia de Análisis Mecánico, DSM-DIM TRENES DE ENGRANES Engranes Rectos. (Spur Gear Drive) Engranes Helicoidales. Helical Gear Drive. Engranajes Cónicos Rectos (Straight Tooth Bevel Gear Drive) Engranes de Gusano (Sin fin) Worm Gear Drive

Más detalles

SDF ENERGIA S.A.C. INFORME FINAL

SDF ENERGIA S.A.C. INFORME FINAL DELAMBIENTE CENTRO DE CONSERVACIÓN DE ENERGÍA Y DEL AMBIENTE DETERMINACIÓN DE LA POTENCIA EFECTIVA Y RENDIMIENTO DE LA UNIDAD TG 1 DE LA CENTRAL TÉRMICA OQUENDO OPERANDO EN CICLO SIMPLE CON GAS NATURAL

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

Mecanismos y Elementos de Máquinas

Mecanismos y Elementos de Máquinas Mecanismos y Elementos de Máquinas Página 1 de 5 Programa de: Mecanismos y Elementos de Máquinas UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Código:

Más detalles

ASIGNATURA: TECNOLOGÍA DE FABRICACIÓN Y TECNOLOGÍA DE MÁQUINAS

ASIGNATURA: TECNOLOGÍA DE FABRICACIÓN Y TECNOLOGÍA DE MÁQUINAS ASIGNATURA: TECNOLOGÍA DE FABRICACIÓN Y TECNOLOGÍA DE MÁQUINAS Código: 141214010 Titulación: INGENIERO INDUSTRIAL Curso: 4º Profesor(es) responsable(s): - CARLOS GARCÍA MASIÁ - Departamento: INGENIERÍA

Más detalles

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión

Más detalles

"MEDIDA DEL COEFICIENTE LINEAL DE EXPANSIÓN TÉRMICA"

MEDIDA DEL COEFICIENTE LINEAL DE EXPANSIÓN TÉRMICA EXPERIMENTO IFA3 LABORATORIO DE FÍSICA AMBIENTAL "MEDIDA DEL COEFICIENTE LINEAL DE EXPANSIÓN TÉRMICA" MATERIAL: 1 (1) BANCO DE MEDIDA DE 70 CM DE LONGITUD DOTADO DE DIAL MICROMÉTRICO Y TERMISTOR. 2 (1)

Más detalles

Universidad de Valladolid. Control y Programación de Robots. Morfología del robot: E.T.S. de Ingenieros Industriales. Estructura mecánica

Universidad de Valladolid. Control y Programación de Robots. Morfología del robot: E.T.S. de Ingenieros Industriales. Estructura mecánica Universidad de Valladolid E.T.S. de Ingenieros Industriales Control y Programación de Robots Morfología del robot: Estructura mecánica Morfología del robot Un robot está formado por los siguientes elementos:

Más detalles

Ejercicios de Transmisión por Correa

Ejercicios de Transmisión por Correa Ejercicios de Transmisión por Correa 1. En un sistema de transmisión por correa la polea motriz tiene un diámetro de 10 mm y la conducida de 40 mm. Si la velocidad angular del eje motriz es de 100 rpm

Más detalles

Teoría. 1) Deducir a partir de la figura la expresión del caudal lateral Q s que se consigue alimentando a presión un cojinete hidrodinámico.

Teoría. 1) Deducir a partir de la figura la expresión del caudal lateral Q s que se consigue alimentando a presión un cojinete hidrodinámico. ASIGNATURA GAIA ELEMENTOS DE MÁQUINAS - TECNOLOGÍA DE MÁQUINAS I Septiembre 2004 CURSO KURTSOA 4º Teoría NOMBRE IZENA FECHA DATA 02/09/2004 1) Deducir a partir de la figura la expresión del caudal lateral

Más detalles

INDICE Parte I. Principios de diseño y análisis de esfuerzos 1. La naturaleza del diseño mecánico Referencias Sitios de Internet Problemas

INDICE Parte I. Principios de diseño y análisis de esfuerzos 1. La naturaleza del diseño mecánico Referencias Sitios de Internet Problemas INDICE Parte I. Principios de diseño y análisis de esfuerzos 1 1. La naturaleza del diseño mecánico 2 Panorama 3 1-1. objetivos de este capitulo 9 1-2. el proceso del diseño mecánico 1-3. conocimientos

Más detalles

INGENIERÍA CIVIL MECÁNICA PLAN 2012 GUÍA DE LABORATORIO

INGENIERÍA CIVIL MECÁNICA PLAN 2012 GUÍA DE LABORATORIO INGENIERÍA CIVIL MECÁNICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA SISTEMAS TÉRMICOS CÓDIGO 15158 NIVEL 07 EXPERIENCIA C- 582 CICLOS TERMODINÁMICOS OBJETIVO GENERAL: Familiarizar al alumno con el análisis,

Más detalles

4._Embragues: Problema 16

4._Embragues: Problema 16 4._mbragues: Problema 16 n el sistema indicado el motor () se enciende para el instante t = 0 s., con el embrague desacoplado y la carga (C) en reposo. Una vez que dicho motor ha alcanzado el 95% de su

Más detalles

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9)

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9) MM01 - KIT DE MONTAJE: GRIFO DE BOLA Y VÁLVULA DE CIERRE (pag. N - 1) MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM03 - MONTAJE Y MANTENIMIENTO: BOMBA CENTRÍFUGA MULTIETAPA (pag. N - 5) MM04

Más detalles

Por Ing. Claudio Picotti de Solución Hidráulica - Parte 4 del Indice de Temas

Por Ing. Claudio Picotti de Solución Hidráulica - Parte 4 del Indice de Temas ARTICULO TECNICO Selección de componentes en un circuito hidráulico SELECCION DE LA BOMBA Por Ing. Claudio Picotti de Solución Hidráulica - Parte 4 del Indice de Temas Indice de Temas: 1. Elección del

Más detalles

EXAMEN DE SISTEMAS ELÉCTRICOS

EXAMEN DE SISTEMAS ELÉCTRICOS NOMBRE: TEST DE TRANSFORMADORES Y MÁQUINAS 1ª PREGUNTA RESPUESTA A 50 Hz, un transformador tiene unas pérdidas por histéresis de 3 kw siendo las pérdidas totales en el hierro de 5 kw. Si la frecuencia

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... El eje de la figura recibe la potencia procedente del motor a través del engranaje cilíndrico recto que lleva montado, y se acopla a la carga por

Más detalles

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA FISICA I (FIS- 100) ASIGNATURA:. Física I SIGLA Y CODIGO:... FIS 100 CURSO:.. Primer Semestre PREREQUISITOS: Ninguno HORAS SEMANAS:... 4 Teóricas y 4

Más detalles

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS 1 Mecanismos y sistemas mecánicos Mecanismo Conjunto de elementos conectados entre sí por medio de articulaciones móviles cuya misión es: transformar una

Más detalles

MACKINA-WESTFALIA, S.A.

MACKINA-WESTFALIA, S.A. Carretera M-300 Km.29,5 28802 Alcalá de Henares MADRID ESPAÑA Tel. 00 34 91 889 44 12 Fax. 00 34 91 883 21 74 Email. mackwest@mackina-westfalia.com Web. www.mackina-westfalia.com c TRANSPORTADORES DOBLE

Más detalles

Programa Regular. Curso: Mecanismos y Elementos de Máquinas. Carrera: Ingeniería Electromecánica. Carga horaria: 6hs.

Programa Regular. Curso: Mecanismos y Elementos de Máquinas. Carrera: Ingeniería Electromecánica. Carga horaria: 6hs. Programa Regular Curso: Mecanismos y Elementos de Máquinas Carrera: Ingeniería Electromecánica Carga horaria: 6hs. Modalidad de la Asignatura: Teórico-práctica. Objetivos: El objetivo de esta materia es

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Mecanismos y Elementos de Máquinas

Mecanismos y Elementos de Máquinas Mecanismos y Elementos de Máquinas (I.A.) Página 1 de 1 Programa de: Mecanismos y Elementos de Máquinas UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina

Más detalles

12. Transmisiones mecánicas

12. Transmisiones mecánicas 12. Transmisiones mecánicas Anibal T. De Almeida Día 2 1 Temario Eficiencia energética de: engranajes correas ISR-Universidad de Coímbra 2 Transmisiones mecánicas Los equipos de transmisión como ejes,

Más detalles

CASO DE ESTUDIO N 11. Metodología de selección de correas en V

CASO DE ESTUDIO N 11. Metodología de selección de correas en V CAPITULO 6 PROYECTO E ELEMENTOS E TRANSMISIÓN FLEXIBLES CASO E ESTUIO N 11 Metodología de selección de correas en V 1. Introducción Las correas en V son los dispositivos de transmisión flexibles más utilizados

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

2008/ DISEÑO DE MÁQUINAS - II. Tipo: OPT Curso: 3 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS PROGRAMA RESUMIDO PROGRAMA DETALLADO

2008/ DISEÑO DE MÁQUINAS - II. Tipo: OPT Curso: 3 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS PROGRAMA RESUMIDO PROGRAMA DETALLADO 2008/2009 Tipo: OPT Curso: 3 Semestre: B CREDITOS Totales TA TS AT AP PA 9 1,5 3 0 0 1 PI 0 PL 3,5 PC 0 OBJETIVOS Selección de los diversos subsistemas que conforman una máquina. Se ha de llegar al diseño

Más detalles

9.3. Turbinas a gas y sus sistemas de regulación de velocidad. Los controles de arranque y parada, sólo toman el control en esas etapas.

9.3. Turbinas a gas y sus sistemas de regulación de velocidad. Los controles de arranque y parada, sólo toman el control en esas etapas. 9.3. Turbinas a gas y sus sistemas de regulación de velocidad En las unidades con turbinas a gas las acciones de control son realizadas por 4 sistemas de control que compiten por el manejo de la válvula

Más detalles

CATÁLOGO DE PRODUCTOS

CATÁLOGO DE PRODUCTOS CATÁLOGO DE PRODUCTOS Sinfín Corona TIPOS DE REDUCTORES Y MOTOR REDUCTORES MESBO Características: * Corona Bronce SAE 430 * Sinfín Acero 8620 cementado * Ejes a 90 grados * Alto par de resistencia * Rodamientos

Más detalles

1.- CONSIDERACIONES PREVIAS

1.- CONSIDERACIONES PREVIAS ACTIVIDADES DE RECUPERACIÓN TECNOLOGIA INDUSTRIAL-I 1º BTO JUNIO 2016 ALUMNO: 1º BTO RECUPERACIÓN SEPTIEMBRE ÁREA: TECNOLOGIA INDUSTRIAL -I 1.- CONSIDERACIONES PREVIAS El alumno/a debe estudiar de los

Más detalles

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, )

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, ) Tema 7.- MECANISMOS 1. Qué es una palanca? Mecanismos de transmisión lineal (PALANCAS, ) La palanca es una máquina simple, formada por una barra rígida que gira alrededor de un punto sobre el que se aplica

Más detalles

MOTORES ELÉCTRICOS. Bibliografía

MOTORES ELÉCTRICOS. Bibliografía MOTORES ELÉCTRICOS Bibliografía Handbook of Electric Motors. Hamid A. Toliyat y Gerald B. Kliman. CRC Press. Electric Motors and their Controls. Tak Kenjo. Oxford Science Publications. Accionamientos Eléctricos,

Más detalles

Práctica 6: Máquina Síncrona. Conocer y determinar el papel de cada componente de la máquina síncrona.

Práctica 6: Máquina Síncrona. Conocer y determinar el papel de cada componente de la máquina síncrona. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 6: Máquina Síncrona Conocer y determinar el papel de

Más detalles

2. Características de funcionamiento de los motores eléctricos

2. Características de funcionamiento de los motores eléctricos 2. Características de funcionamiento de los motores eléctricos Anibal T. De Almeida ISR-Universidad de Coímbra 1 Temario Velocidad Par Principales tipos de carga Ciclos de servicio Velocidad y deslizamiento

Más detalles

UNIVERSIDAD AUTONOMA METROPOLITANA. .~zcapotzalco

UNIVERSIDAD AUTONOMA METROPOLITANA. .~zcapotzalco UNIVERSIDAD AUTONOMA METROPOLITANA.~zcapotzalco LICENCIATURA EN INGENIERIA MECANICA NOMBRE DEL PROYECTO: IMPLEMENTACIÓN DE SISTEMAS TRABAJO PARA DETERMINAR LOS RANGOS DE TEMPERATURAS DE LA MOLDURA UTILIZADA

Más detalles

Problema 1. Problema 2

Problema 1. Problema 2 Problemas de clase, octubre 2016, V1 Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce 50 kw de refrigeración utilizando como refrigerante R-22, si su temperatura

Más detalles

Control 3. EL42C Conversión Electromecánica de la Energía

Control 3. EL42C Conversión Electromecánica de la Energía Control 3 EL42C Conversión Electromecánica de la Energía Problema 1 Profesor: Patricio Mendoza A. Prof. Auxiliar: Inés Otárola L. 9 de junio de 2008 Responda brevemente las siguientes preguntas: a. Qué

Más detalles

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS.- CARACTERÍSTICAS DE LA MÁQUINA ASÍNCRONA O DE INDUCCIÓN Las principales características de estas máquinas son:

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquinas Eléctricas I - G862 Tema 3. Máquinas Asíncronas o de Inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:

Más detalles

Código: Titulación: INGENIERÍA TÉCNICA INDUSTRIAL EN MECÁNICA Curso: 3º

Código: Titulación: INGENIERÍA TÉCNICA INDUSTRIAL EN MECÁNICA Curso: 3º ASIGNATURA: AMPLIACIÓN DE DISEÑO DE MÁQUINAS Código: 128213008 Titulación: INGENIERÍA TÉCNICA INDUSTRIAL EN MECÁNICA Curso: 3º Profesor(es) responsable(s): - JORGE RIPOLL CAMÚS Departamento: INGENIERÍA

Más detalles

BOMBAS HIDRÁULICAS. Práctica 2

BOMBAS HIDRÁULICAS. Práctica 2 Página 1/8 BOMBAS HIDRÁULICAS Práctica 2 Elaborado por: Revisado por: Autorizado por: Vigente desde: M.I. Alexis López Montes M.I. Alejandro Maya Franco Dra. Ma. del Rosio Ruíz Urbano 1. Seguridad en la

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

Vida del motor. La vida del motor depende de. Temperatura de operación Tipo de servicio. Vida del aislamiento. Vida del motor

Vida del motor. La vida del motor depende de. Temperatura de operación Tipo de servicio. Vida del aislamiento. Vida del motor Vida del motor La vida del motor depende de Temperatura de operación Tipo de servicio Vida del motor = Vida del aislamiento Factores que disminuyen vida de aislamiento ϖ ϖ ϖ ϖ ϖ calentamiento continuo

Más detalles

b) Representación en planta del sistema. c) Calcula la velocidad de giro de la rueda conducida. d) Calcula la relación de transmisión.

b) Representación en planta del sistema. c) Calcula la velocidad de giro de la rueda conducida. d) Calcula la relación de transmisión. TRANSMISIÓN SIMPLE. 27. Dados los siguientes datos realiza el dibujo y calcula la velocidad de giro de la rueda 2 sabiendo: d 1 = 30 cm, n 1 = 500 rpm, d 2 = 600 mm 28. Se quiere construir un mecanismo

Más detalles

EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"

EXPERIENCIA C917 LABORATORIO DE VENTILADOR CENTRÍFUGO INGENIERIA CIVIL EN MECANICA PROGRAMA DE PROSECUCIÓN DE ESTUDIOS GUIA DE LABORATORIO ASIGNATURA "LABORATORIO DE MÁQUINAS HIDRÁULICAS" CÓDIGO 9517 NIVEL 04 EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 6: Elementos de Control en Robótica S.0 Introducción S.1 Actuadores S.1.1 S.1.2 El motor de corriente

Más detalles

1. Cálculo de la resistencia por unidad de longitud. Realiza una tabla de doble entrada, en la que figuren las resistencias que

1. Cálculo de la resistencia por unidad de longitud. Realiza una tabla de doble entrada, en la que figuren las resistencias que = = UNIDAD 1: LA CORRIENTE ELÉCTRICA ACTIVIDADES FINALES ÁG. 3 1. Cálculo de la resistencia por unidad de longitud. Realiza una tabla de doble entrada, en la que figuren las resistencias que ofrece cada

Más detalles

CATÁLOGO DE PRODUCTO ROMER GEAR

CATÁLOGO DE PRODUCTO ROMER GEAR CATÁLOGO DE PRODUCTO ROMER GEAR MEASurement system romer gear measurement system El ROMER Gear Measurement System es un sistema de medición completamente portátil que permite la medición 3D rápida y sencilla

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS TP 1 PROPIEDADES REOLÓGICAS 1) Determinación de la viscosidad con viscosímetro Rotovisco Objetivo: determinar la viscosidad de distintos tipos de fluidos Material a utilizar: Viscosímetro Rotovisco con

Más detalles

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena.

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. Ficha nº:3 Transmisión circular. 1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. 2) Descripción: Ruedas de fricción: Son sistemas formados por

Más detalles

Código: Titulación: INGENIERÍA TÉCNICA INDUSTRIAL EN MECÁNICA Curso: 3º

Código: Titulación: INGENIERÍA TÉCNICA INDUSTRIAL EN MECÁNICA Curso: 3º ASIGNATURA: AMPLIACIÓN DE DISEÑO DE MÁQUINAS Código: 128213008 Titulación: INGENIERÍA TÉCNICA INDUSTRIAL EN MECÁNICA Curso: 3º Profesor(es) responsable(s): - JORGE RIPOLL CAMÚS Departamento: INGENIERÍA

Más detalles