LAB. 4: ONDAS ESTACIONARIAS EN UNA COLUMNA DE AIRE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LAB. 4: ONDAS ESTACIONARIAS EN UNA COLUMNA DE AIRE"

Transcripción

1 LAB. 4: ONDAS ESTACIONARIAS EN UNA COLUMNA DE AIRE EDGAR MANUEL RODRIGUEZ COD LABORATORIO DE FISICA III UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS LIC. MATEMÁTICAS & FÍSICA PEREIRA

2 1. RESUMEN En este informe se describe cómo funcionan un tubo sonoro desde el punto de vista acústico, es decir, cómo se comportan sus columnas de aire dentro del mismo. La columna gaseosa al ser convenientemente excitada es capaz de producir sonido. El cuerpo sonoro es la columna gaseosa, y no el tubo que la contiene; en efecto, el tubo tiene la importante función de definir la forma de la columna pero fuera de esto, influye relativamente poco sobre los fenómenos sonoros. Los tubos sonoros pueden ser cerrados, es decir, que poseen una sola abertura y tubos abiertos, que poseen dos o más. Trataré de calcular con un mínimo de incertidumbre las frecuencias de vibración para los modos respectivos y evidenciar cómo la velocidad del sonido depende de la temperatura del medio. Las columnas de aire contenidas en los tubos sonoros se comportan, como cuerdas musicales, por lo tanto las columnas de aire vibrantes poseen nodos, o sea puntos donde la vibración es nula, y vientres, equidistantes de los anteriores, donde la vibración alcanza su máxima amplitud. La vibración de las columnas de aire es longitudinal; los nodos serán por tanto, puntos de condensación y los vientres puntos de dilatación o rarefacción; en los extremos cerrados siempre se producen nodos y en los extremos abiertos generalmente se producen vientres. El punto de excitación no puede ser un nodo, pero no necesita ser un vientre, pudiendo estar en un punto intermedio. Una columna de aire puede vibrar con toda su longitud o dividida en segmentos iguales lo mismo que las cuerdas; en el primer caso se obtiene el sonido llamado fundamental, y en los otros los armónicos segundo, si la columna vibra dividida en mitades; tercero, si vibra en tercios, etc. Tomando como punto de partida el que en los extremos de un tubo abierto, sólo pueden haber vientres de vibración, el tubo producirá su fundamental cuando vibre con un nodo único en su centro. Cuando el tubo produce su segundo armónico, producirá dos nodos y tres vientres; cuando produce su tercer amónico, producirá tres nodos y 4 vientres, y así sucesivamente. En los Tubos Cerrados, la onda se forma con un nodo en el extremo cerrado y un vientre en el extremo abierto. A igualdad de longitud de tubo, el tubo abierto produce un sonido de frecuencia doble que el cerrado. Los tubos abiertos emiten la serie completa de armónicos correspondientes a su longitud, mientras que los cerrados, emiten sólo los armónicos de orden impar. Estos aspectos también serán tratados en la presente práctica. SUMMARY

3 This report describes how tubes sound from the acoustic point of view, that is, how they behave columns of air within it. Column to be conveniently excited gas is able to produce sound. The sound body is the gas column, not the tube that contains, in effect, the tube has an important role in defining the shape of the column but otherwise, relatively little influence on sound phenomena. The sound tube may be closed; they have a single opening and open tubes, which possess two or more. Try to calculate an uncertainty minimum vibration frequency for the respective modes and demonstrate how the speed of sound depends on the temperature of the medium. The columns of air contained in the sound components behave as musical strings, so the vibrating air columns have nodes, ie points where the vibration is zero, and bellies, equidistant from the previous ones, where the vibration reaches its maximum amplitude. The vibration of the air columns is longitudinal, the nodes will therefore dew points and antinodes dilation or rarefaction points, in the closed ends and nodes always occur at the open ends are generally produced bellies. The excitation point can not be a node, but need not be a stomach, and may be at an intermediate point. A column of air may vibrate with full length or divided into equal segments the same as the strings in the first case one obtains the sound called fundamental and second harmonic other, if the column vibrates divided into halves, third, if it vibrates into thirds, etc. Taking as its starting point at the ends of an open tube, can only have bellies of vibration, the tube will produce its key vibrate when a single node at its center. When the tube produces its second harmonic, produce two nodes and three sows, when producing a third ammonium produce three nodes and four bellies, and so on. In closed tubes, the wave is formed with a node at the closed end and an open end belly. A tube equal length, the open tube produces a double frequency sound that closed. The open tubes emit the full set of harmonics corresponding to its length, while the closed emit only odd order harmonics. These aspects will also be covered by this practice.

4 2. INTRODUCCIÓN Cuando se produce una perturbación periódica en el aire, se originan ondas sonoras longitudinales. Por ejemplo, si se golpea un diapasón con un martillo, las ramas vibratorias emiten ondas longitudinales. El oído, que actúa como receptor de estas ondas periódicas, las interpreta como sonido. El comportamiento de estas ondas sonoras, es lo que estudiaremos en este laboratorio, la propagación de estas ondas sonoras en el interior de un tubo abierto y de un tubo cerrado y la forma en que estas se superponen dentro de los mismos para dar lugar a un patrón de ondas estacionarias. 3. OBJETIVOS 3.1 Identificar los distintos modos de vibración de las columnas de aire en un tubo abierto y en un tubo cerrado. 3.2 Medir la velocidad del sonido en el aire. 4. MARCO TEORICO Si las ondas armónicas se combinan en determinado medio y tienen la misma frecuencia y longitud de onda, se encuentra que la resultante posee un patrón estacionario, denominado onda estacionaria. 4.1 Tubos abiertos: Si un tubo es abierto, el aire vibra con su máxima amplitud en los extremos. En la figura, se representan los tres primeros modos de vibración.

5 La distancia entre dos nodos o entre dos vientres es media longitud de onda. Si la longitud del tubo es L, tenemos que: L=l /2, L=l, L=3l /2,... En general L=n (l /2), n=1, 2, 3... Un número entero. (Patrones de ondas estacionarias correspondientes a ondas de presión en un tubo abierto en los dos extremos) Considerando que l =v s /f (velocidad del sonido dividido la frecuencia) Las frecuencias de los distintos modos de vibración responden a la fórmula 4.2 Tubos cerrados:

6 Si el tubo es cerrado se origina un vientre en el extremo por donde penetra el aire y un nodo en el extremo cerrado. Como la distancia entre un vientre y un nodo consecutivo es l /4. La longitud L del tubo es en las figuras representadas L=l /4, L=3l /4, L=5l /4... En general L= (2n+1) l /4; con n = 0, 1, 2, 3,... (Patrones de ondas estacionarias correspondientes a ondas de presión en un tubo cerrado en un extremo y abierto en el otro) Las frecuencias de los distintos modos de vibración responden a la fórmula

7 4.3 LEYES DE BERNOULLI Las fórmulas obtenidas explican las denominadas leyes de Bernoulli: La frecuencia del sonido en un tubo es: 1. Directamente proporcional a la velocidad del sonido v s en el gas que contiene el tubo, 2. Inversamente proporcional a la longitud del tubo L, 3. En un tubo abierto, se puede producir el sonido que corresponde a la frecuencia fundamental (n=1) y sus armónicos (n=2, 3, 4,...) 4. En un tubo cerrado, se puede producir el sonido que corresponde a la frecuencia fundamental y los armónicos impares (2n+1=3, 5, 7,...). 5. En dos tubos idénticos y con el mismo gas, uno abierto y otro cerrado, el abierto produce un sonido cuya frecuencia (fundamental) es el doble que la del cerrado. 5. MATERIALES Y EQUIPOS 1. Generador de señales. 2. Parlante. 3. Tubo de resonancia de acrílico. 4. Embolo móvil.

8 5. Amplificador y micrófono. 6. Osciloscopio. 6. PROCEDIMIENTO EXPERIMENTAL PRECAUCION: Trabajar a frecuencia máxima de 1600 Hz. 6.1 FRECUENCIAS DE RESONANCIA DE UN TUBO ABIERTO 1. Mida la temperatura en el laboratorio usando el termómetro de pared disponible. Anote el valor medido. 2. Monte el equipo como se muestra en la imagen anterior. Coloque el generador de señales en el modo sinusoidal, con la frecuencia de salida en la escala de 1 khz, con el dial en 0 Hz. conecte esta señal al canal CH1 del osciloscopio. Coloque la velocidad de barrido en 1 ms/div y la ganancia en el canal uno en 5 V/div. Verifique que las perillas de calibración estén giradas completamente a la derecha. Aumente levemente la frecuencia y observe la señal. 3. Coloque el micrófono aproximadamente en la mitad del tubo. El amplificador conéctelo al canal CH2 y actívelo. Ajuste la amplitud del generador hasta que pueda distinguir el sonido proveniente del parlante. Varíe la frecuencia lentamente a partir de cero hasta que observe el efecto de resonancia entre las dos señales. La condición de resonancia se observa cuando la señal del micrófono es muy similar a la proveniente del generador y además tiene una amplitud máxima. 4. Tenga en cuenta que debido al ruido del laboratorio, es difícil encontrar el primer armónico. Si no lo encuentra, intente con el siguiente armónico. Utilice la perilla trigger del osciloscopio para estabilizar la señal de salida del micrófono, si es necesario. Deduzca, comparando la frecuencia encontrada con la dada por la teoría, si la primera corresponde al armónico fundamental o a otro armónico. 5. Una vez hallada la frecuencia de resonancia, active el modo XY del osciloscopio; su efecto es independizar las señales del tiempo, para observar la figura de Lissajous que se forma al superponerlas. Qué figura espera observar si hay resonancia entre las dos señales? 6. Desactive el modo XY y mida en el osciloscopio la frecuencia proveniente del generador. Esta es la frecuencia f 0, correspondiente al modo

9 fundamental ( Hz) o al armónico encontrado. Verifique que es el armónico más bajo que es capaz de medir. 7. Eleve lentamente la frecuencia hasta que encuentre nuevas resonancias procediendo de la misma forma que en los pasos anteriores. Estas serán las frecuencias correspondientes a los armónicos superiores al fundamental. Encuentre al menos cinco frecuencias de resonancia. Tenga en cuenta mover el micrófono hasta las posiciones donde se esperan observar los máximos de presión para cada armónico. Para guiarse observe la figura de los patrones de ondas estacionarias correspondientes a ondas de presión en un tubo abierto en los dos extremos (sección 4.1). Registre los resultados en una tabla. 8. Para observar el patrón de la onda estacionaria, retire el micrófono lentamente y observe en la pantalla de osciloscopio la señal correspondiente a éste. Corresponde lo observado con lo que espera de acuerdo a los patrones de ondas estacionarias correspondientes a ondas de presión? 6.2 FRECUENCIAS DE RESONANCIA DE UN TUBO CERRADO 1. Coloque el émbolo dentro del tubo en la posición de 50 cm. Cerciórese que el extremo frente al parlante esté abierto. Coloque el micrófono dentro del tubo donde se presente un máximo de presión (cerca al pistón). 2. Repita el procedimiento seguido para tubo abierto, hasta el ítem 5, para obtener la frecuencia correspondiente al modo fundamental. 3. Para hallar las frecuencias correspondientes a los armónicos superiores al fundamental repita el ítem 6, pero deje el micrófono en la posición inicial. Por qué es mejor hacer esto? Explique. Registre los datos en una tabla. 4. Para observar el patrón de la onda estacionaria, retire el micrófono lentamente y observe en la pantalla de osciloscopio la señal correspondiente a este. Corresponde lo observado con lo que espera de acuerdo a los patrones de onda estacionarias correspondientes a ondas de presión? 7. DATOS OBTENIDOS Temperatura del laboratorio, T = 26 o C. 7.1 FRECUENCIAS DE RESONANCIA DE UN TUBO ABIERTO:

10 L A = 0,90 m Corrección de la longitud del tubo, L = L A + 0,8.d = 0,90 m + 0,8. 0,031 m = 0,9248 m, donde d = diámetro del tubo. ARMONICO PERIODO, T (ms) FRECUENCIA, f (Hz) 1 5,4 185,18 2 2,7 370,37 3 1,8 555,56 4 1,3 769,23 5 1,1 909, FRECUENCIAS DE RESONANCIA DE UN TUBO CERRADO L C = 0,50 m Corrección de la longitud del tubo, L = L A + 0,8.d = 0,50 m + 0,8. 0,031 m = 0,5248 m, donde d = diámetro del tubo. ARMONICO PERIODO, T (ms) FRECUENCIA, f (Hz) 1 6,2 161, ,2 833,33 7 0, ,11 9 0, ,46 8. ANALISIS Y DISCUSION DE RESULTADOS FRECUENCIAS DE RESONANCIA EN UN TUBO 1. Para cada configuración del tubo (abierto y cerrado) divida cada una de las frecuencias de resonancia halladas por la frecuencia de resonancia más baja que encontró. Sus resultados deberían dar una serie de números cercanos a números enteros. Confirman sus resultados esta aseveración? Explique. R//.

11 FRECUENCIAS DE RESONANCIA DE UN TUBO ABIERTO: ARMONICO FRECUENCIA, f (Hz) RELACION f n / f ,18 185,18 / 185,18 = ,37 370,37 / 185,18 = 2, ,56 555,56 / 185,18 = 3, ,23 769,23 / 185,18 = 4, ,09 909,09 / 185,18 = 4,91 La serie esperada es 1, 2, 3, 4, 5 y la serie experimental es 1, 2, 3, 4,15, 4,91: los resultados dan una serie de números cercanos a números enteros como se esperaba de un experimento hecho con rigurosidad. FRECUENCIAS DE RESONANCIA DE UN TUBO CERRADO ARMONICO FRECUENCIA, f (Hz) RELACION f n / f ,29 161,29 / 161,29 = / 161,29 = 3, ,33 833,33 / 161,29 = 5, , ,11 / 161,29 = 6, , ,46 / 161,29 = 9,54 La serie esperada es 1, 3, 5, 7, 9 y la serie experimental es 1, 3,10, 5,17, 6,89, 9,54: los resultados dan una serie de números cercanos a números enteros como se esperaba, excepto por la última relación que se aparta en un 6% del valor esperado, pero en general se obtienen buenas aproximaciones. 2. Es la serie de números que usted ha hallado, la misma para el tubo cerrado que para el tubo abierto? R//. La serie para el tubo abierto se ajusta a un modelo continuo (1, 2, 3, 4, 5) y la obtenida para el tubo abierto sólo involucra los números que se ajustan a enteros positivos impares en orden ascendente (1, 3, 5, 7, 9). 3. Con los datos para tubo abierto y cerrado construya dos gráficos de frecuencia en función del número de armónico. Halle la ecuación de la recta en cada caso y comparándola con la ecuación teórica para tubo abierto y cerrado respectivamente, deduzca la velocidad del sonido con su incertidumbre. R//. 3.1 PARA EL TUBO ABIERTO:

12 Comparando la ecuación experimental Y = 184,6.X + 3,882, con la ecuación teórica de tubos abiertos f n = (v / (2.L)).n, se concluye que: 184,6 = v / (2.L), entonces: v = ,6. L = ,6 s -1. 0,9248 m = 341,44 m/s. Cálculo de la incertidumbre en la velocidad del sonido en el tubo abierto: Depende del cálculo del período y de la longitud. Para el período, T: Como el osciloscopio es instrumento digital, incertidumbre por resolución, U r = 0,0002 s / (2. 3) = 0,00006 s. Para la longitud, L: Como la regla (ó cinta métrica) es instrumento análogo, Incertidumbre por resolución, U r = 0,001 m / ( 3) = 0,0006 m. Incertidumbre por especificación, U s = 2% (0,90 m / ( 3) = 0,010 m. Incertidumbre estándar combinada: U c = (0, , ,010 2 ) = 0,01. Incertidumbre expandida: U e = U c * K = 0,01. 1,96 = 0,02, siendo k el factor de cobertura para un número infinito de grados de libertad y un 95 % como nivel de confianza. Finalmente, v s = (341,44 ± 0,02) m/s.

13 3.2 PARA EL TUBO CERRADO: Comparando la ecuación experimental Y = 168,2.X 12,52, con la ecuación teórica de tubos abiertos f n = (v / (4.L)).n, se concluye que: 168,2 = v / (4.L), entonces: v = ,2. L = ,2 s -1. 0,5248 m = 353,08 m/s. Cálculo de la incertidumbre en la velocidad del sonido en el tubo cerrado: Depende del cálculo del período y de la longitud. Para el período, T: Como el osciloscopio es instrumento digital, incertidumbre por resolución, U r = 0,0002 s / (2. 3) = 0,00006 s. Para la longitud, L: Como la regla (ó cinta métrica) es instrumento análogo, Incertidumbre por resolución, U r = 0,001 m / ( 3) = 0,0006 m. Incertidumbre por especificación, U s = 2% (0,50 m / ( 3) = 0,006 m. Incertidumbre estándar combinada: U c = (0, , ,006 2 ) = 0,006. Incertidumbre expandida: U e = U c * K = 0,006. 1,96 = 0,01, siendo k el factor de cobertura para un número infinito de grados de libertad y un 95 % como nivel de confianza.

14 Finalmente, v s = (353,08 ± 0,01) m/s. 4. Promedie los resultados para la velocidad obtenida de los dos gráficos y obtenga el mejor estimado con su respectiva incertidumbre. R//. Ū = (341, ,08) / 2 = 347,26 m/s. U c = (0, ,01 2 ) = 0,02 m/s. Tenemos, entonces: v s = (347,26 ± 0,02) m/s, a 26 o C. 5. Compare el valor obtenido con el calculado a través de la expresión v = 333,5 + 0,607. T, donde T es la temperatura en grados Celsius medida en el laboratorio. Halle el porcentaje de error y explique las posibles razones de la discrepancia. R//. Valor teórico esperado para la velocidad del sonido dependiente de la temperatura: v = (333,5 + 0, ) m/s = 349,28 m/s. Porcentaje de error: % e = (349,28 347,26) * 100 / 349,28 = 0,56. Un error tan pequeño, < 1% realmente es despreciable para nuestros efectos; mas algunas de las posibles causas de discrepancia pueden ser: Estimación subjetiva de la temperatura en el laboratorio y baja resolución del termómetro, ruido en el laboratorio que puede influir en la toma de datos para las frecuencias, paralaje en visualización al osciloscopio, aproximación de decimales (aunque se hizo conforme a las reglas de redondeo en cifras significativas) y errores aleatorios que siempre existen y pueden volverse incontrolables. 9. CONCLUSIONES 9.1 Los valores para la velocidad del sonido obtenidos indirectamente a partir de las frecuencias de resonancia en el tubo abierto y en el tubo cerrado, están muy cercanos entre sí, dentro de los errores experimentales considerados; lo cual indica que las mediciones se realizaron con buen cuidado.

15 9.2 Con los dos experimentos fue posible constatar la serie continua esperada para los armónicos en el tubo abierto y la serie impar ascendente para los armónicos en el tubo cerrado. 9.3 El sonido requiere un medio para su propagación y la velocidad del mismo se afecta con la densidad de dicho medio y con la temperatura del ambiente; último factor que se tuvo en cuenta para comparar el valor teórico esperado con el valor experimental depurado de diferentes fuentes de error. 9.4 El extremo cerrado de una columna de aire es un nodo de desplazamiento debido a que la pared en este extremo no permite el movimiento molecular. 10. FUENTES CONSULTADAS (1) Arcos Velasco, HECTOR IVAN et al. Guías de Física Experimental III. (2011). Publicaciones UTP, Pereira. (2) abiertos (EXCELENTE APPLET para entender estos fenómenos). (3) (4) (Excelente presentación en diapositivas de ondas estacionarias). (5) (6)

Ondas estacionarias en una columna de aire

Ondas estacionarias en una columna de aire Laboratorio 4 Ondas estacionarias en una columna de aire 4.1 Objetivos 1. Identificar los distintos modos de vibración de las columnas de aire en un tubo abierto y cerrado. 2. Medir la velocidad del sonido

Más detalles

1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados.

1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados. Laboratorio 4 Ondas estacionarias en una columna de aire 4.1 Objetivos 1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados. 2. Medir la velocidad del sonido

Más detalles

TUBO DE RESONANCIA ONDAS ESTACIONARIAS

TUBO DE RESONANCIA ONDAS ESTACIONARIAS TUBO DE RESONANCIA ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de las ondas acústicas y de su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante

Más detalles

ONDAS DE SONIDO ESTACIONARIAS EN TUBOS

ONDAS DE SONIDO ESTACIONARIAS EN TUBOS Departamento de Física Laboratorio de Imagen y Sonido ONDAS DE SONIDO ESTACIONARIAS EN TUBOS 1. Objetivos Analizar la formación de ondas sonoras estacionarias en tubos. Determinar la velocidad de propagación

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

Columnas de Aire Resonantes en Tubos Abiertos y Cerrados

Columnas de Aire Resonantes en Tubos Abiertos y Cerrados Columnas de Aire Resonantes en Tubos Abiertos y Cerrados Objetivo: Equipo: - Estudiar varias propiedades importantes de las ondas sonoras, incluidas la recuencia, amplitud e intensidad. - Tubos transparentes

Más detalles

TUBO DE RESONANCIA (II) ONDAS ESTACIONARIAS

TUBO DE RESONANCIA (II) ONDAS ESTACIONARIAS TUBO DE RESONANCIA (II) ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de las ondas acústicas y de su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La

Más detalles

Práctica #9 Ondas estacionarias en una cuerda

Práctica #9 Ondas estacionarias en una cuerda Física -Químicos do cuatrimestre 007 Práctica #9 Ondas estacionarias en una cuerda Objetivo Realizar un estudio experimental de ondas estacionarias en cuerdas con sus dos extremos fijos. Estudio de los

Más detalles

MEDIDA DE LA VELOCIDAD DEL SONIDO

MEDIDA DE LA VELOCIDAD DEL SONIDO Laboratorio de Física General (Ondas mecánicas) MEDIDA DE LA VELOCIDAD DEL SONIDO Fecha: 02/10/2013 1. Objetivo de la práctica Determinación de la velocidad del sonido (y la constante adiabática del aire)

Más detalles

1. Medir el período y determinar la frecuencia de oscilación de movimientos armónicos simples (M.A.S.) mediante el osciloscopio.

1. Medir el período y determinar la frecuencia de oscilación de movimientos armónicos simples (M.A.S.) mediante el osciloscopio. Laboratorio 3 Superposición de M. A. S. 3.1 Objetivos 1. Medir el período y determinar la frecuencia de oscilación de movimientos armónicos simples (M.A.S.) mediante el osciloscopio. 2. Medir las amplitudes

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

* Cuando dos ondas o vibraciones de frecuencias ligeramente diferentes se suman, se producen pulsaciones. La frecuencia de estas es F=f - f.

* Cuando dos ondas o vibraciones de frecuencias ligeramente diferentes se suman, se producen pulsaciones. La frecuencia de estas es F=f - f. Superposición de ondas. Cuerdas y tubos sonoros Generalidades * Cuando ondas incidentes se suman a sus propias ondas reflejadas se producen ondas estacionarias. Hay puntos de amplitud cero, llamados nodos,

Más detalles

Ondas Estacionarias en una. Cuerda FIS Objetivo. Materiales

Ondas Estacionarias en una. Cuerda FIS Objetivo. Materiales FIS-1525 Ondas Estacionarias en una Cuerda Objetivo Observar las ondas estacionarias en una cuerda tensa con análisis y medición de algunos parámetros importantes involucrados en este fenómeno como longitud

Más detalles

Demostración de la Interferencia Acústica

Demostración de la Interferencia Acústica 54 Encuentro de Investigación en Ingeniería Eléctrica Zacatecas, Zac, Marzo 17 18, 2005 Demostración de la Interferencia Acústica Erick Fabián Castillo Ureña, Depto. de Ingeniería Eléctrica y Electrónica,

Más detalles

Ondas acústicas en un tubo semi-cerrado

Ondas acústicas en un tubo semi-cerrado Ondas acústicas en un tubo semi-cerrado Labruna, Gimena, labrugi@yahoo.com.ar Quiroga, Paula, paulaquiroga@hotmail.com Scalise, Guido, gscalise@ciudad.com.ar Valli, Mauricio, mauriciolaplata@sinectis.com.ar

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 03 Laboratorio 03: ONDAS TRANSVERSALES EN UNA CUERDA I. OBJETIVOS General Estudiar

Más detalles

LAB. 3: OSCILACIONES DE UNA CUERDA TENSA

LAB. 3: OSCILACIONES DE UNA CUERDA TENSA LAB. 3: OSCILACIONES DE UNA CUERDA TENSA EDGAR MANUEL RODRIGUEZ COD. 75 073 300 UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS LIC. MATEMÁTICAS & FÍSICA PEREIRA MAYO 2012 1. RESUMEN Esta

Más detalles

aletos CAPÍTULO 3.08 ONDAS ESTACIONARIAS EN TUBOS SONOROS

aletos CAPÍTULO 3.08 ONDAS ESTACIONARIAS EN TUBOS SONOROS aletos Física para iencias e Ingeniería APÍTUO 3.08 ONDAS STAIONARIAS N TUOS SONOROS 1 3.08-1 Ondas estacionarias en tubos sonoros Un tubo sonoro consiste básicamente en un tubo metálico, o de madera,

Más detalles

PRÁCTICA Nº2 TUBO DE RESONANCIA

PRÁCTICA Nº2 TUBO DE RESONANCIA PRÁCTICA Nº2 TUBO DE RESONANCIA 1.- Objetivo El objetivo de esta práctica es determinar la velocidad de propagación del sonido en el aire empleando el fenómeno de la resonancia en un tubo. Además se pretenden

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui TEMA I.13 Ondas Estacionarias Longitudinales Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

I.3.1 INTERFERENCIA DE ONDAS TRANSVERSALES. Si consideramos dos pulsos que viajan en una cuerda, uno hacia la derecha y otro a la izquierda:

I.3.1 INTERFERENCIA DE ONDAS TRANSVERSALES. Si consideramos dos pulsos que viajan en una cuerda, uno hacia la derecha y otro a la izquierda: I.3 SUPERPOSICIÓN DE ONDAS ONDAS ESTACIONARIAS Si dos o más ondas viajan en un mismo medio, la función de onda resultante en un punto es la suma algebraica de los valores de las funciones de las ondas

Más detalles

Ondas Estacionarias en una Cuerda

Ondas Estacionarias en una Cuerda Ondas Estacionarias en una Cuerda Objetivo Observar las ondas estacionarias en una cuerda tensa y mediante el análisis y medición de algunos parámetros importantes, involucrados en este fenómeno. Materiales

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1.- Halla la velocidad de propagación de un movimiento ondulatorio sabiendo que su longitud de onda es 0,25 m y su frecuencia es 500 Hz. R.- 125 m/s. 2.- La velocidad del sonido

Más detalles

Ondas estacionarias en una cuerda tensa

Ondas estacionarias en una cuerda tensa Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Objetivos Ondas estacionarias en una cuerda tensa 1. Producir los modos normales de vibración de una cuerda fija en los

Más detalles

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Elaborado por: Ing. Francisco Solórzano Asesor: M.Sc. Maximino Suazo Facultad de Ciencias Escuela de Física Magnetostricción I. Objetivo 1. Analizar la respuesta

Más detalles

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión Física III clase 4 (22/03/2010) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería Civil

Más detalles

Ondas estacionarias. kx t

Ondas estacionarias. kx t Ondas estacionarias Un caso interesante de interferencia de ondas surge cuando interfieren dos ondas idénticas que se propagan en sentidos contrarios (lo que sucede, por ejemplo, cuando la onda reflejada

Más detalles

2. ONDAS TRANSVERSALES EN UNA CUERDA

2. ONDAS TRANSVERSALES EN UNA CUERDA 2. ONDAS RANSVERSALES EN UNA CUERDA 2.1 OBJEIVOS Analizar el fenómeno de onda estacionaria en una cuerda tensa. Determinar la densidad lineal de masa de una cuerda. Estudiar la dependencia entre la frecuencia

Más detalles

Utilizando una identidad trigonométrica, se llega a:

Utilizando una identidad trigonométrica, se llega a: Ondas Estacionarias Cuando dos ondas de la misma frecuencia y de la misma amplitud viajan en direcciones opuestas se combinan obedeciendo al principio de superposición produciendo un fenómeno de interferencia.

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Ondas I: ondas y sus características Nº Ejercicios PSU 1. Dentro de las características de las ondas mecánicas se afirma que MC I) en su propagación existe transmisión

Más detalles

Actividad IV.38 Resonadores de Helmholtz Cavidades resonantes acústicas

Actividad IV.38 Resonadores de Helmholtz Cavidades resonantes acústicas Actividad IV.38 Resonadores de Helmholtz Cavidades resonantes acústicas Objetivo Estudio experimental de ondas sonoras en cavidades resonantes. Análisis del fenómeno de resonancias en diversos sistemas

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no materia. Pero aunque no sea materia sí puede interaccionar

Más detalles

Sonido. Slide 1 / 54. Slide 2 / 54. Slide 3 / 54. Características del sonido. Características del sonido

Sonido. Slide 1 / 54. Slide 2 / 54. Slide 3 / 54. Características del sonido. Características del sonido Sonido Slide 1 / 54 Características del sonido Slide 2 / 54 Aire Aire (0 o ) Helio Hidrógeno Agua agua de mar hiero y metal vidrio aluminio madera dura cemento Velocidad del Sonido in diferentes materiales

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Ejemplo Suponga que

Más detalles

Experiencia P45: Modos resonantes y velocidad del sonido Sensor de voltaje, Salida de potencia

Experiencia P45: Modos resonantes y velocidad del sonido Sensor de voltaje, Salida de potencia Sensor de voltaje, Salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P45 Speed of Sound 2.DS P36 Speed of Sound P36_MACH.SWS Equipo necesario Cant. Equipo necesario Cant

Más detalles

F U N D A M E N T O S D E A C Ú S T I C A

F U N D A M E N T O S D E A C Ú S T I C A TEMA 4: F U N D A M E N T O S D E A C Ú S T I C A. F U N D A M E N T O S F Í S I C O S D E L A E M I S I Ó N D E L S O N I D O E N F U N C I Ó N D E L T I P O D E I N S T R U M E N T O Q U E L O P R O

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

Oscilaciones de una cuerda tensa

Oscilaciones de una cuerda tensa Laboratorio 3 Oscilaciones de una cuerda tensa 3.1 Objetivos 1. Determinar los modos normales de vibración de una cuerda fija en ambos extremos. 2. Verificar experimentalmente la relación de la frecuencias

Más detalles

1. SUPERPOSICIÓN DE OSCILACIONES

1. SUPERPOSICIÓN DE OSCILACIONES . SUPERPOSICIÓN DE OSCILACIONES. OBJETIVOS Estudiar las características fundamentales del movimiento armónico simple (MAS). Determinar el periodo y la frecuencia en un MAS. Estudiar la superposición de

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2 Examen 2 1. Diga si es cierto o falso y razone la respuesta: La frecuencia con la que se percibe un sonido no depende de la velocidad del foco emisor. 2. Dibujar, superponiendo en la misma figura, dos

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

Experiencia P44: Modos resonantes- Tubo Modos resonantes de una columna de aire Sensor de Voltaje

Experiencia P44: Modos resonantes- Tubo Modos resonantes de una columna de aire Sensor de Voltaje Experiencia P44: Modos resonantes- Tubo Modos resonantes de una columna de aire Sensor de Voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P44 Resonance.DS P35 Resonance Modes

Más detalles

ONDAS NOMBRE: CURSO:

ONDAS NOMBRE: CURSO: 1 ONDAS NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación de

Más detalles

Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. Teror

Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. Teror Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. eror Objetivo El objetivo de la siguiente práctica es alcanzar el vientre de la onda que produciremos gracias a la ayuda

Más detalles

Ondas estacionarias en una cuerda tensa

Ondas estacionarias en una cuerda tensa Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Objetivos Ondas estacionarias en una cuerda tensa Actualizada y corregida por Fis. Ricardo Salgado y Fis. Luis Zapata Coordinador

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ELVER ANTONIO RIVAS CÓRDOBA MOVIMIENTO ONDULATORIO El movimiento ondulatorio se manifiesta cuando la energía que se propaga en un medio elástico produce movimientos que lo cambian. Para describir una onda

Más detalles

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas?

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? Cómo se puede controlar la interferencia de dos ondas experimentalmente?

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos:

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: 1. Tensión y deformación 2. Movimiento ondulatorio simple 3. Ondas periódicas 4. Ondas estacionarias Tensión y deformación Objeto

Más detalles

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en 1 Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a través de un medio. Pero la onda

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 )

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 ) 1 Interferencia Como adelantamos al discutir la diferencia entre partí culas y ondas, el principio de superposición da a lugar al fenómeno de interferencia. Sean dos ondas idénticas que difieren en la

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1. Superposición de ondas. 2. Ondas estacionarias. 3. Pulsaciones. 4. Principio de Huygens. 5. Difracción. 6. Refracción. 7. Reflexión. 8. Efecto Doppler. Física 2º Bachillerato

Más detalles

CAPITULO N 2: EL SONIDO

CAPITULO N 2: EL SONIDO CAPITULO N 2: EL SONIDO TEMA DE LA CLASE: PROPAGACIÓN DEL SONIDO RAPIDEZ DEL SONIDO OBJETIVOS: Reconocer y analizar el fenómeno del sonido como un tipo de onda y determinar la rapidez de una onda sonora

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

Movimiento rectilíneo uniformemente acelerado

Movimiento rectilíneo uniformemente acelerado Movimiento rectilíneo uniormemente acelerado Objetivo General El alumno estudiará el movimiento rectilíneo uniormemente acelerado Objetivos particulares 1. Determinar experimentalmente la relación entre

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

Problemas de Ondas Sonora AP Física B de PSI

Problemas de Ondas Sonora AP Física B de PSI Problemas de Ondas Sonora AP Física B de PSI Nombre Multiopción 1. Dos fuentes de sonido S 1 y S 2 producen ondas con frecuencias de 500 Hz y 250 Hz. Cuando se compara la velocidad de la onda 1 a la velocidad

Más detalles

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza ONDAS Junio 2013. Pregunta 1A.- Una onda transversal, que se propaga en el sentido positivo del eje X, tiene una velocidad de propagación de 600 m s 1 y una frecuencia de 500 Hz. a) La mínima separación

Más detalles

Solución Guía de Ejercicios Acústica y Organología I

Solución Guía de Ejercicios Acústica y Organología I Solución Guía de Ejercicios Acústica y Organología I 1. Construir una escala (8 notas) mediante el sistema pitagórico (afinación natural) con la frecuencia de inicio de 200 Hz. (realícenlo ustedes) 2.

Más detalles

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO:

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO: 1 EJERCICIOS DE ONDA NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

( ) ( t) ( ) ( ) ( ) ( )

( ) ( t) ( ) ( ) ( ) ( ) IES La Magdalena. Avilés. Asturias Un caso interesante de interferencia de ondas surge cuando interfieren dos ondas idénticas que se propagan en sentidos contrarios (lo que sucede, por ejemplo, cuando

Más detalles

ONDAS. Objetivo: 1. Comprender el concepto de onda. 2. Reconocer las características de una onda. Criterio A: Describir conocimiento científico

ONDAS. Objetivo: 1. Comprender el concepto de onda. 2. Reconocer las características de una onda. Criterio A: Describir conocimiento científico LAS ONDAS ONDAS Objetivo: 1. Comprender el concepto de onda. 2. Reconocer las características de una onda. Criterio A: Describir conocimiento científico DEFINICIÓN Es la propagación o transmisión de energía

Más detalles

Propagación: POR SU DIRECCIÓN DE OSCILACIÓN

Propagación: POR SU DIRECCIÓN DE OSCILACIÓN Propagación: POR SU DIRECCIÓN DE OSCILACIÓN La dirección de su oscilación en comparación con la dirección de propagación define si una onda es transversal o longitudinal. Una onda transversal es aquella

Más detalles

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Ondas Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Este documento contiene material multimedia. Requiere Adobe Reader 7.1 o superior para poder ejecutarlo. Las animaciones fueron realizadas por

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características tanto para el circuito RC y el RL, asociadas a capacidades e inductancias en circuitos eléctricos

Más detalles

Instrumentos de medida. Estimación de errores en medidas directas.

Instrumentos de medida. Estimación de errores en medidas directas. Instrumentos de medida. Estimación de errores en medidas directas. Objetivos El objetivo de esta primera práctica es la familiarización con el uso de los instrumentos de medida y con el tratamiento de

Más detalles

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras 0 3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras En los sonidos del habla no existen ondas sonoras simples. Las ondas sonoras simples son siempre periódicas. También reciben el

Más detalles

Ondas Acústicas en una Caja Prismática

Ondas Acústicas en una Caja Prismática Ondas Acústicas en una Caja Prismática M. Eugenia Capoulat.- Alejandra D. Romero. Laboratorio de Física 5 Dto. de Física FCEyN U.B.A. 005. Resumen. Un generador de funciones, un osciloscopio, un parlante

Más detalles

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano.

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano. .2. ONDAS. El sonido puede ser definido como cualquier variación de presión en el aire, agua o algún otro medio que el oído humano puede detectar. Lo anterior implica que no todas las fluctuaciones de

Más detalles

Tema 6: Movimiento ondulatorio.

Tema 6: Movimiento ondulatorio. Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie

Más detalles

Protocolo de Experiencias de Oscilaciones y Ondas

Protocolo de Experiencias de Oscilaciones y Ondas Aula Espacio Tocar la Ciencia J Güémez Aula de la Ciencia Universidad de Cantabria Junio 22, 2011 Protocolo de Experiencias de Oscilaciones y Ondas 1 Equilibrios: estable, inestable, indiferente Con la

Más detalles

PRÁCTICA Nº1 SONÓMETRO

PRÁCTICA Nº1 SONÓMETRO PRÁCTICA Nº1 SONÓMETRO 1.- Objetivo El objetivo de esta práctica es el estudio de las ondas estacionarias en una cuerda sujeta por ambos extremos. Para ello se obtendrán los modos de vibración para diferentes

Más detalles

Unidad 8. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. Movimiento ondulatorio.

Unidad 8. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. Movimiento ondulatorio. Unidad 8 Vibraciones y ondas chenalc@gmail.com Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

Uso de teléfonos celulares para medir la velocidad del sonido en el aire.

Uso de teléfonos celulares para medir la velocidad del sonido en el aire. Uso de teléfonos celulares para medir la velocidad del sonido en el aire. Cell phone use to measure speed of sound in air. Jesús Ramón Lerma Aragón Facultad de Ciencias: Universidad Autónoma de Baja California

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

Liceo Cristo Redentor Los Álamos. Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS LAS ONDAS

Liceo Cristo Redentor Los Álamos. Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS LAS ONDAS Liceo Cristo Redentor Los Álamos Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS LAS ONDAS Clase 1: Objetivos: Describir cualitativamente el movimiento ondulatorio.

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

V=λ.f En esta ecuación V será la velocidad de propagación del sonido en el aire, λ la longitud de onda,y f, la frecuencia.

V=λ.f En esta ecuación V será la velocidad de propagación del sonido en el aire, λ la longitud de onda,y f, la frecuencia. Introducción El objetivo de este trabajo práctico es poder determinar la velocidad de propagación del sonido en el aire a partir de dos métodos diferentes. El primero será con un tubo de Quincke y el segundo

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Ondas estacionarias en una cuerda tensa

Ondas estacionarias en una cuerda tensa FS-00 Física General II UNAH Objetivos Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Ondas estacionarias en una cuerda tensa Actualizada y corregida por Fis. Ricardo

Más detalles

Medir la velocidad del sonido en el aire a temperatura ambiente

Medir la velocidad del sonido en el aire a temperatura ambiente Experimento 10 VELOCIDAD DEL SONIDO EN EL AIRE- TUBO DE RESONANCIA Objetivo Medir la velocidad del sonido en el aire a temperatura ambiente Teoría Los sistemas mecánicos tienen frecuencias naturales de

Más detalles

Ondas. Slide 1 / 28. Slide 2 / 28. Slide 3 / 28. Movimiento de Ondas. Movimiento de Ondas. Todo tipo de ondas que viajan transmiten energía

Ondas. Slide 1 / 28. Slide 2 / 28. Slide 3 / 28. Movimiento de Ondas. Movimiento de Ondas. Todo tipo de ondas que viajan transmiten energía Slide 1 / 28 Ondas Movimiento de Ondas Slide 2 / 28 Una onda viaja a lo largo de su medio, pero las partículas individuales se mueven hacia arriba y abajo. Movimiento de Ondas Slide 3 / 28 Todo tipo de

Más detalles

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte Movimiento Ondulatorio 1 Movimiento Ondulatorio Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte neto de materia, pero con transporte de energía. 2 Clases de Ondas

Más detalles

Taller de Ondas, Sonido

Taller de Ondas, Sonido Taller de Ondas, Sonido MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A leaky faucet drips 40 times in 30.0 s. What is the frequency of the dripping?

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

Tema: Parámetros del Cableado Coaxial

Tema: Parámetros del Cableado Coaxial Tema: Parámetros del Cableado Coaxial Contenidos Impedancia característica. Velocidad de propagación. Onda reflejada. Línea de transmisión terminada con cargas. Objetivos Específicos Fundamentos de Cableado

Más detalles