La glucólisis comprende dos etapas, cada una de ellas compuesta por 5 reacciones:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La glucólisis comprende dos etapas, cada una de ellas compuesta por 5 reacciones:"

Transcripción

1 GLUCOLISIS La glucólisis es una secuencia lineal de reacciones catabólicas o degradativas, concretamente compuesta por 10 reacciones; son secuencias oxidativas que liberan cierta cantidad de energía. Es el proceso por el cual de glucosa, compuesta por 6 átomos de carbono, se pasa a dos moléculas de ácido pirúvico, de 3 átomos de carbono cada uno. Además, durante el proceso se libera un balance neto de energía de 2 ATP. Por otra parte, al ser un proceso oxidativo, acompañando ha de ir una reducción, por lo que se obtienen dos moléculas de NADH + H+. Se trata de un proceso que se lleva a cabo en el citosol de la célula, por lo que los 10 enzimas que llevan a acabo las 10 reacciones se encuentran solubilizadas en el interior. Es un proceso independiente de la presencia de oxígeno, aunque algunas de las reacciones posteriores que sufre el pirúvico si dependen de oxígeno. La glucólisis comprende dos etapas, cada una de ellas compuesta por 5 reacciones: La primera etapa comprende las primeras cinco reacciones, en las cuales la molécula de glucosa inicial se transforma en dos moléculas de 3 fosfogliceraldehido o gliceraldehido 3 fosfato. Se trata de una fase que se suele llamar fase preparativa, donde la glucosa se va a romper en dos moléculas de 3 carbonos cada una, con la particularidad de que se van a incorporar dos ácidos fosfóricos (dos moléculas de gliceraldehido 3 fosfato; por lo que hay dos fosfatos, uno en cada molécula), lo que lleva al consumo de 2 moléculas de ATP. En la segunda etapa comprende las siguientes 5 reacciones que llevan a la finalización del procedo, donde los dos gliceraldehido 3 fosfato se transforman en dos ácidos pirúvico. Es esta etapa la que conlleva la parte oxidativa, por lo que se produce la reducción de las dos moléculas de NAD+ a NADH + H+. Además, en esta etapa se han de producir 4 moléculas de ATP para dar lugar al balance neto de + 2 ATP, es decir, la liberación de 2 ATP, por eso que esta segunda etapa recibe el nombre de fase de generación de energía. Desde el punto de vista energético, el rendimiento es muy bajo, solamente con la producción de dos moléculas de ATP; pero en este proceso se forma el ácido pirúvico, que participa en otras reacciones en las que la energía neta liberada es mucho mayor. El NADH + H+ en condiciones de aerobiosis, es decir, en presencia de oxígeno, da lugar a agua (reduce al oxígeno) y a la oxidación del mismo a NAD+. Esto es la cadena respiratoria (cadena de transporte electrónico) llevada a cabo en las mitocondrias (por lo que el NADH + H+ ha de entrar en la misma), en la que se libera cierta cantidad de energía aprovechada para la síntesis de ATP a partir de ADP y Pi en la llamada fosforilación oxidativa. El NADH + H+ producido en la glucólisis, con presencia de oxígeno, es utilizado para generar ATP, es decir, energía. Si existen condiciones de anaerobiosis, es decir, sin la presencia de oxígeno, el NADH + H+ ha de ser transformado en NAD+, utilizado en otras reacciones acopladas a las llamadas fermentaciones anaeróbicas. 1

2 De las 10 reacciones, 7 son reacciones reversibles, que van a ocurrir en el proceso contrario, la gluconeogénesis (síntesis de glucógeno a partir de ácido pirúvico); mientras que 3 reacciones son irreversibles. Reacciones de la glucólisis La glucólisis comienza con la glucosa, donde la primera reacción, irreversible, consiste en una fosforilación en el carbono 6 de la glucosa, originando por tanto la glucosa 6 fosfato. Esto significa la utilización de una molécula de ATP que dona un Pi y queda liberado como ADP. Esta primera reacción está catalizada por un enzima denominado hexokinasa (kinasa = cataliza reacciones de fosforilación) La hexokinasa es un enzima que actúa mediante un mecanismo de ajuste inducido, donde la unión del primer sustraía, la glucosa, induce a un cambio de conformación, mediante el cual se produce un acercamiento de los dominios que engloban al sustraía, adquiriendo su centro activo un carácter apolar favorable para la reacción de fosforilación en el carbono 6 de la glucosa, con la liberación de una molécula de agua. Como bien su nombre indica, hexokinasa, cataliza reacciones de fosforilación de distintas hexosas. Presentan una amplia especificidad de sustraías, aunque presenta gran afinidad hacia la glucosa. Presenta una Km muy baja. Como mecanismo de regulación, la hexokinasa se inhibe por altas concentraciones de glucosa 6 fosfato. En el hígado encontramos un isoenzima de la hexokinasa denominada glucoquinasa, que cataliza la misma reacción pero con distintas características. Este enzima es especifico para la glucosa, pero en cambio tienen menor afinidad por la misma, debido a que su Km es más alta. Esto significa que solo funciona al existir altas concentraciones de glucosa, lo que le permite al hígado ajustar o regular las concentraciones sanguíneas de glucosa. La segunda reacción de la glucólisis es reversible, donde se pasa de la glucosa 6 fosfato (G6P) a fructosa 6 fosfato (F6P). Se trata de una reacción de isomerización de aldosa a cetosa catalizada por la fosfoglucoisomerasa. Se trata de una reacción en la cual primeramente, la G6P rompe su forma cíclica, se abre, sufriendo unos procesos que dan lugar a la formación de un intermediario de reacción denominado cis enol, con una corta vida, donde seguidamente se forma la cetosa que al ciclarse da lugar a la forma furanosa de la F6P. 2

3 Al ser una reacción de isomerización, se transfiere el grupo oxígeno que formaba el aldehído (del carbono 1), al carbono 2, dando lugar a un grupo ceto. Todo esto es catalizado por el enzima. La tercera reacción, también irreversible, conlleva la presencia y consumo de ATP, originando la fructosa 1,6 bisfosfato (FBP). Se trata de una reacción de fosforilación, por lo que está catalizada por una kinasa, concretamente la fosfofructokinasa 1 (PFK 1), que fosforila el carbono 1 de la F6P. Esta reacción irreversible constituye el principal punto de control o regulación de la glucólisis. Se trata del enzima más regulado. Al igual que la anterior reacción irreversible, son ambas lo suficientemente exorgónicas (liberan demasiada energía) como para ser prácticamente irreversibles en el organismo in vivo. La cuarta reacción es reversible, y consiste en la ruptura de la molécula de FBP para dar lugar a 3 fosfodihiroxiacetona (DHAP) y a 3 fosfogliceraldehido (G3P), ambas con 3 carbonos. La 3 fosfodihiroxiacetona corresponde a los átomos de carbono 1, 2 y 3 de la FBP; mientras que el también llamado gliceraldehido 3 fosfato corresponde a los carbonos 4, 5 y 6, siendo el 6 el 1 de la nueva molécula. El enzima que cataliza esta reacción es una aldolasa, concretamente recibe el nombre de fructosa bisfosfato aldolasa. La aldolasa presentan un su centro activo dos residuos ácido base de Lys e His. Lo primero que ocurre es la ruptura del anillo de la FBP, para dar lugar a la forma abierta, dejando al carbono 2 con el grupo ceto libre. El primer pasa de la aldolasa mediante un mecanismo de catálisis covalente, consiste en la formación de un enlace entre el carbono 2 del sustrato y el nitrógeno del grupo amino del resto de Lys del centro activo del enzima. Esto conlleva la pérdida de una molécula de agua, y da lugar a la denominada base de Schiff. 3

4 Después actúa el enzima mediante una catálisis ácido base, concretamente, el a.a. actúa como una base (generalmente la His) captando un protón. Capta el protón del OH del carbono 3, desencadenando procesos en el que el oxigeno con carga negativa del carbono 3 ataca nucleofílicamente al carbono 4, rompiendo la fructosa por el enlace entre los carbonos 3 4. El resultado son dos moléculas de 3 carbonos, una de las cuales queda aún unida al enzima por el enlace base de Schiff, mientras que la otra molécula es liberada como gliceraldehido 3 fosfato. La molécula unida al enzima es liberada mediante la hidrólisis de la base de Schiff, donde el oxígeno queda como grupo ceto y los dos hidrógenos en el nitrógeno del enzima, cerrando así el ciclo. La quinta y última reacción de la primera etapa de la glucólisis, también reversible, consiste en una isomerización catalizada por la triosa fosfato isomerasa, cuyo sustrato son las triosas (las dos moléculas anteriores). La función de este enzima es la transformación de uno de los productos de la reacción anterior en el otro. Concretamente, la triosa fosfato isomerasa cataliza la isomerización del 3 fosfodihiroxiacetona a 3 fosfogliceraldehido, dado que este es el sustrato de la siguiente reacción glucolítica. Esto quiere decir que de una molécula de glucosa, en cinco reacciones obtenemos dos moléculas de gliceraldehido 3 fosfato, dando por terminada la primera etapa o fase de la glucólisis. 4

5 Una vez terminada la etapa de preparación, comienza la fase de generación de energía, es decir, las cinco siguientes reacciones que finalizan la glucólisis, con el objetivo fundamental de aprovechas los fosfatos de las dos moléculas de G3P para sintetizar ATP. Hasta el momento, los enlaces de fosfato del gliceraldehido no son enlaces ricos en energía, por lo que en esta fase se va a dar lugar a ellos, de ahí lo que generación de energía. Para ello, partiendo de las dos moléculas de G3P, se lleva a cabo la sexta reacción, una reacción reversible, de la glucólisis, donde ambas moléculas se transforman en dos moléculas de ácido 1,3 bisfosfoglicerico (BPG). 5

6 Se trata de una reacción compleja, de una oxidación que requiere por tanto una reducción, además de producirse la incorporación de un Pi por cada molécula de G3P, el cual va a quedar unido mediante un enlace rico en energía. Es por tanto en esta reacción donde se generan los dos poderes reductores a consecuencia de la oxidación, es decir, se forman dos moléculas de NADH + H+ (el NAD+ se reduce oxidando al sustrato) Se trata de una reacción catalizada por un enzima denominado fosfogliceraldehido deshidrogenasa, el cual presenta un centro activo con un resto de SH, es decir, de Cis, que actúa por un mecanismo de catálisis covalente. El enzima, con su grupo SH va a reaccionar con el carbono 1 del G3P, formando un enlace covalente S C (los enlaces entre azufre carbono reciben el nombre de enlaces tiohemiacetal), dando lugar a un grupo OH en ese mismo carbono. Los dos hidrógenos del carbono 1 pasan al coenzima NAD+, el cual es reducido a NADH + H+, mientras que se forma un doble enlace C = O. Se trata de una deshidrogenación u oxidación del sustrato. Este intermediario recibe el nombre de tioéster. Acto seguido se produce la fosforilación por un Pi, que ataca al carbono 1 uniéndose a él mediante un enlace rico en energía, y permitiendo la liberación del enzima. Esto da lugar al 1,3 fosfoglicerato. La séptima reacción consiste en la transferencia del fosfato unido por un enlace rico en energía a una molécula de ADP para formar ATP y el ácido 3 fosfoglicérico (3PG). El BPG libera con el enlace rico en energía 11 Kcal/mol, suficientes como para formar el ATP. Por tanto se producen dos moléculas de ATP, compensando así el gasto energético de la primera etapa. 6

7 Se trata de una reacción reversible, la cual ocurre cuando la concentración de ATP es pequeña, ya que en presencia de una alta concentración de ATP puede ocurrir el proceso inverso. El nombre del enzima que cataliza esta reacción es el de fosfoglicerato kinasa. La siguiente reacción, la octava, es también reversible, en la cual se produce la transformación del 3PG en el ácido 2 fosfoglicérico (2PG), catalizado por el enzima fosfoglicerato mutasa, cuyo mecanismo de acción es el siguiente: en su centro activo posee una His con el nitrógeno 3 de su radical fosforilado, de tal modo que reacciona con el fosfato del carbono 3 de 3PG y cede su fosfato al carbono 2 del sustrato, originando un intermediario 2,3 bisfosfoglicerato. Enzima P + 3PG! [Enzima 2,3 bispg]! Enzima P + 2PG La siguiente reacción, la novena, también reversible, es una deshidratación, con pérdida de una molécula de agua procedente del OH libre (que ya no esta fosforilado) del carbono 3 y el H del carbono 2. Esto da lugar a un doble enlace entre el carbono 2 y el 3, dejando el fosfato del carbono 2 unido mediante un enlace rico en energía, para dar lugar al ácido fosfoenolpirúvico (PEP). El enzima encargado de catalizar esta reacción es una deshidratasa denominada enolasa. Este enlace rico en energía es aprovechado en la décima y última reacción para sintetizar ATP a partir de ADP, para dar lugar al ácido pirúvico. El enlace rico en energía libera 14'8, Kcal/mol suficientes como para formar el ATP. Esto quiere decir que ya se han sintetizado las dos moléculas de ATP que faltaban. Se trata de una reacción catalizada por la piruvato kinasa, formando un intermediario de reacción inestable llamado enol pirúvico, que rápidamente pasa a piruvato. Además, es una reacción irreversible; constituye el tercer punto de control de la glucólisis. 7

8 Resumiendo: 8

9 9

10 Regulación de la glucólisis Si la concentración de ATP es baja, esto implica una alta concentración de ADP y AMP. Son en estas condiciones cuando la glucólisis debe estar muy activada. Si ocurre lo contrario, donde la concentración de ATP es muy elevada y por tanto la de ADP y AMP es baja, la glucólisis no funciona. El estado energético intracelular es el principal mecanismo por tanto de regulación de la glucólisis. Por ello que ha de estar este estado energético regulado, de lo cual se encargan los tres enzimas que catalizan las reacciones irreversibles. El primer punto de control lo encontramos a nivel de la hexokinasa, la cual como bien se dijo, es inhibida por altas concentraciones de G6P. Es independe de las concentraciones de ATP. El segundo y más importante punto de control se establece a nivel de la PFK 1, la cual es inhibida, como acabamos de decir, por altas concentraciones de ATP, ya que entonces se inhibe la glucólisis, por lo que este enzima no funciona. Una alta concentración de ADP y AMP favorece por tanto la actuación de al PFK 1. Por otro lado, este mismo enzima está inhibido por el citrato, ya que si existe abundante ATP se inhibe las enzimas que degradan el ácido cítrico (para el que se necesita el piruvato), por lo que su concentración aumenta y por tanto inhibe la glucólisis a nivel de la PFK 1. Otro mecanismo de reacción es el que da lugar a la fructosa 2,6 bisfosfato (F2,6BP), que a pequeñas cantidades activan fuertemente a la PFK 1. Es un mecanismo en el que se encuentra implicada una regulación hormonal a través de segundos mensajeros, y también implica una modulación covalente. La F6P en la glucólisis se transforma en FBP; pero para que esto ocurra de manera más favorable, una pequeña parte de la F6P se transforma en F2,6BP, que activa fuertemente a la transformación anterior, es decir, activa a la PFK 1. La reacción de F6P a F2,6BP está catalizada por la PFK 2, la cual puede estar activa o inactiva. Este enzima presenta en su forma activa un centro activo con un grupo OH de una Serina, el cual se puede fosforilar obteniendo PFK 2 P, que no es más que la forma inactiva. Esto quiere decir que la fosforilación de la PFK 2 inactiva la glucólisis. La fosforilación de este enzima está catalizada por la proteín Kinasa A, la cual está activada por segundos mensajeros, por el c AMP, y por tanto por hormonas. 10

11 El c AMP activa a la Kinasa A que fosforila a la PFK 2, la cual no lleva a cabo la transformación hacia FBP, y por tanto inhibe la glucólisis. Por otro lado, la PFK 2 es un enzima bifuncional. En su estructura encontramos claramente dos dominios: un dominio Kinasa; y un dominio Fosfatasa. Presenta actividad PFK 2, y también actividad contraria, una actividad fosfatasa, una actividad fructosa 2,6 bisfosfato fosfatasa. Ambos dominios nunca están activadas a la vez, sino que están alternados, uno si y el otro no. Cuando el dominio kinasa presenta un grupo OH de una Serina libre, este dominio kinasa está activado y el dominio fosfatasa inactivado. La fosforilación de ese grupo OH llevada a cabo por la proteín kinasa A, da lugar a la pérdida de la actividad kinasa y a la adquisición de la actividad del dominio fosfatasa, es decir, no solamente se inactiva la kinasa, sino que se activa la fosfatasa que cataliza la degradación de la F2,6BP que había a F6P, inactivando, podríamos decir, aún más la glucólisis. El glucagón es un factor hiperglucemiante pancreático como vimos, producido cuando hay una baja concentración de glucosa en sangre, da tal modo que restablece los valores normales. Una disminución de concentración de glucosa produciría un aumento de la concentración de glucagón, una hormona que activaría a segundos mensajeros como el c AMP, aumentando por tanto su concentración, y activando a la proteín kinasa A, la cual fosforilaría a la PFK 2, provocando un aumento de la actividad fosfatasa. Esto lleva a una disminución de la concentración de F2,6BP, que disminuye la actividad de la PKk 1, y por tanto de la glucólisis, como resultado de la disminución de glucosa en sangre, además de favorecer el proceso inverso, es decir, la formación de glucosa en la gluconeogénesis. Cuando ocurre el proceso contrario, un aumento de glucosa en sangre, se favorece la glucólisis. El tercer punto de control se establece a nivel de la piruvato kinasa, la cual está controlada de varias maneras. En primer lugar, ésta enzima está inhibida por un aumento de la concentración de ATP, aunque también se encuentra inhibida por una alta concentración de Acetil CoA, igual que el citrato en la PFK 1. El Acetil CoA de manera directa del piruvato al introducirse en la mitocondria, pero también procede de ácidos grasas en su mayor parte, por lo que una acumulación de grasas también inhibe la glucólisis a nivel de la piruvato kinasa. Además, un aumento de Acetil CoA, provoca también una mayor actividad del ciclo de krebs, y por tanto un aumento de concentración del citrato, que inhibe la glucólisis a nivel de la PFK 1. También se encuentra inhibida por Alanina, ya que su estructura está relacionada con el propio pirúvico, que por transaminación con glutamato da lugar a la alanina. La única activación la produce un aumento de concentración de FBP, ya que entre el segundo punto de control y el tercero, todas las reacciones intermedias son reversibles, por lo que cuando llegan a PEP pueden volver a FBP, el cual activa a la piruvato kinasa para evitar un estancamiento y poder consumir el PEP. Por otro lado la piruvato kinasa está sometida también a una modulación hormonal, aunque solamente la piruvato kinasa del hígado de mamíferos. En su centro activo presenta un OH libre que al ser fosforilado 11

12 inactiva el enzima. Esta fosforilación está catalizada también por la proteín kinasa A, activada por el c AMP. 12

Metabolismo de glúcidos

Metabolismo de glúcidos UT II.- Metabolismo de glúcidos T 18-glicolisis Tema 3.- Degradación n de glúcidos Digestión n de glúcidos de la dieta Degradación n de glucosa por GLUCOLISIS: Características y reacciones Balance químico

Más detalles

Metabolismo de los glúcidos

Metabolismo de los glúcidos Metabolismo de los glúcidos La mayoría de los glúcidos que se ingieren con el alimento son polisacáridos. Su hidrólisis en el tubo digestivo proporciona sus monosacáridos constituyentes que se absorben

Más detalles

GLUCOSA: EXCELENTE COMBUSTIBLE Y PRECURSOR VERSÁTIL

GLUCOSA: EXCELENTE COMBUSTIBLE Y PRECURSOR VERSÁTIL GLICÓLISIS GLUCOSA: EXCELENTE COMBUSTIBLE Y PRECURSOR VERSÁTIL GLICÓLISIS (GLYCOS = AZÚCAR + LÍSIS = RUPTURA) FASE PREPARATORIA O FASE DE GASTO DE ENERGÍA (ATP) Inversión de ATP aumenta el contenido de

Más detalles

Glucógeno, almidón, sacarosa. almacenamiento. Glucosa. Oxidación vía glucólisis. Oxidación ruta de las pentosas fosfato

Glucógeno, almidón, sacarosa. almacenamiento. Glucosa. Oxidación vía glucólisis. Oxidación ruta de las pentosas fosfato GLUCÓLISIS CO 2 NH 4 H 2 O Glucógeno, almidón, sacarosa almacenamiento Oxidación ruta de las pentosas fosfato Glucosa Oxidación vía glucólisis Ribosa 5-fosfato Piruvato del griego Glykos = dulce Lysis

Más detalles

GLUCOLISIS. Etanol + CO 2 + H 2 O. Levaduras

GLUCOLISIS. Etanol + CO 2 + H 2 O. Levaduras GLUCOLISIS Secuencia de reacciones que convierten glucosa en piruvato formando ATP. Condiciones aeróbicas: precede al TCA y la cadena de transporte de electrones. Condiciones anaeróbicas: músculo activo

Más detalles

(Vía aerobia) Pág. 177

(Vía aerobia) Pág. 177 (Vía aerobia) Pág. 177 Dos vías: 1.- Aerobia (Respiración Celular) 2.- Anaerobia (Fermentaciones) VÍA AEROBIA Es un proceso aerobio que consiste en degradar G-6-P en CO 2, H 2 O y ATP, cuyo balance es:

Más detalles

TEMA II. REGULACIÓN DEL METABOLISMO. METABOLISMO DE LA GLUCOSA

TEMA II. REGULACIÓN DEL METABOLISMO. METABOLISMO DE LA GLUCOSA TEMA II. REGULACIÓN DEL METABOLISMO. METABOLISMO DE LA GLUCOSA Autora: Prof. Ileana Rodríguez SUMARIO 1. Glucólisis. Características generales. Importancia biológica. 2. Gluconeogénesis. Características

Más detalles

Metabolismo. Forma de obtención de carbono. Corresponde a la actividad. participan sistemas multienzimáticos (rutas metabólicas) RUTAS METABÓLICAS

Metabolismo. Forma de obtención de carbono. Corresponde a la actividad. participan sistemas multienzimáticos (rutas metabólicas) RUTAS METABÓLICAS Facultad de Ciencias de la Salud BIO160 Bioquímica i General Metabolismo METABOLISMO Corresponde a la actividad coordinada que ocurre dentro de una célula, en la cual participan sistemas multienzimáticos

Más detalles

Orden en estructuras biológicas

Orden en estructuras biológicas Metabolismo Orden en estructuras biológicas energía + CO 2 + H 2 O azucar + O 2 Las células obtienen energía mediante la oxidación de moléculas biológicas La degradación de una molécula orgánica se realiza

Más detalles

El catabolismo es la fase degradativa del metabolismo. El catabolismo es semejante en organismos autótrofos y heterótrofos.

El catabolismo es la fase degradativa del metabolismo. El catabolismo es semejante en organismos autótrofos y heterótrofos. PROCESOS CATABÓLICOS El catabolismo es la fase degradativa del metabolismo El catabolismo es semejante en organismos autótrofos y heterótrofos. Son reacciones de oxidación y reducción acopladas En estas

Más detalles

GLUCO-NEO. NEO-GÉNESIS: NESIS: esquema general Ruta anabólica que se produce en hígado y riñón

GLUCO-NEO. NEO-GÉNESIS: NESIS: esquema general Ruta anabólica que se produce en hígado y riñón T 6-gluconeogénesis GLUCO-NEO NEO-GÉNESIS: NESIS: esquema general Ruta anabólica que se produce en hígado y riñón Glucosa6- fosfatasa La gluconeogénesis convierte dos moléculas de piruvato en una de glucosa

Más detalles

PROCESOS ENERGÉTICOS II

PROCESOS ENERGÉTICOS II PROCESOS ENERGÉTICOS II Respiración Celular Prof. Aurora Ferro Catabolismo Es el conjunto de reacciones metabólicas cuyo fin es obtener energía a partir de compuestos orgánicos complejos Vías catabólicas

Más detalles

METABOLISMO ENERGETICO

METABOLISMO ENERGETICO METABOLISMO ENERGETICO DESCARBOXILACION OXIDATIVA DEL PIRUVATO Dra. Carmen Aída Martínez Destino del piruvato Puente entre los hidratos de carbono y en ATC PIRUVATO Producto final de glucólisis aeróbica

Más detalles

Reacciones de oxidación y reducción

Reacciones de oxidación y reducción METABOLISMO Reacciones de oxidación y reducción (deshidrogenación) (hidrogenación) Oxidación-Reducción biológica Oxidación H H + e- Molécula orgánica Coenzima NAD+ Molécula orgánica oxidada NADH + H +

Más detalles

Gluconeogénesis y Síntesis de Carbohidratos Catabolismo - Carbohidratos, Ácidos Grasos y Amino Ácidos Convergencia: Ciclo de Krebs, Fosforilación

Gluconeogénesis y Síntesis de Carbohidratos Catabolismo - Carbohidratos, Ácidos Grasos y Amino Ácidos Convergencia: Ciclo de Krebs, Fosforilación Gluconeogénesis Gluconeogénesis y Síntesis de Carbohidratos Catabolismo - Carbohidratos, Ácidos Grasos y Amino Ácidos Convergencia: Ciclo de Krebs, Fosforilación Oxidativa Anabolismo - energía química

Más detalles

1.- Lactato, producido fundamentalmente mediante la glucólisis en el músculo esquelético y los eritrocitos

1.- Lactato, producido fundamentalmente mediante la glucólisis en el músculo esquelético y los eritrocitos Sustratos de la gluconeogénesis 1.- Lactato, producido fundamentalmente mediante la glucólisis en el músculo esquelético y los eritrocitos Durante el ejercicio intenso se movilizan las reservas de glucógeno

Más detalles

Glucólisis Conceptos Generales

Glucólisis Conceptos Generales UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS FASE I 2º AÑO, Unidad Didáctica: BIOQUÍMICA MÉDICA 2011 Glucólisis Conceptos Generales Dr. Dr. Mynor Mynor A. A. Leiva Leiva Enríquez

Más detalles

Cap. 7 Respiración Celular y Fermentación

Cap. 7 Respiración Celular y Fermentación Cosechando la energía El arreglo de los átomos en las moléculas orgánicas representa energía potencial. Los organismos obtienen energía para mantener los procesos de vida transformando esa energía potencial

Más detalles

CATABOLISMO DE LOS ÁCIDOS GRASOS

CATABOLISMO DE LOS ÁCIDOS GRASOS CATABOLISMO DE LOS ÁCIDOS GRASOS 1 β-oxidación de Ácidos Grasos Ocurre en tejidos como: Hígado, músculo esquelético, corazón, riñón, tej. Adiposo, etc. Comprende la oxidación del carbono β del ácido graso.

Más detalles

Metabolismo de carbohidratos. Marijose Artolozaga Sustacha, MSc

Metabolismo de carbohidratos. Marijose Artolozaga Sustacha, MSc Metabolismo de carbohidratos Marijose Artolozaga Sustacha, MSc Funciones del metabolismo: Obtener energía Convertir los nutrientes en sustancias asimilables por las células Proporcionar al organismo las

Más detalles

4. El ciclo de los ácidos tricarboxílicos

4. El ciclo de los ácidos tricarboxílicos 4. El ciclo de los ácidos tricarboxílicos Este ciclo, conocido también como de los ácidos tricarboxílicos o ciclo de Krebs, es la vía de oxidación de la mayor parte de carbohidratos, ácidos grasos y aminoácidos

Más detalles

Metabolismo de carbohidratos 1 (Glicólisis y fermentación) Marijose Artolozaga Sustacha, MSc

Metabolismo de carbohidratos 1 (Glicólisis y fermentación) Marijose Artolozaga Sustacha, MSc Metabolismo de carbohidratos 1 (Glicólisis y fermentación) Marijose Artolozaga Sustacha, MSc Funciones del metabolismo: Obtener energía Convertir los nutrientes en sustancias asimilables por las células

Más detalles

TEMA IV. GLUCÓLISIS. 1.Generalidades 2.Reacciones de la glucólisis 3.Control de la glucólisis

TEMA IV. GLUCÓLISIS. 1.Generalidades 2.Reacciones de la glucólisis 3.Control de la glucólisis TEMA IV. GLUCÓLISIS 1.Generalidades 2.Reacciones de la glucólisis 3.Control de la glucólisis PRINCIPALES DESTINOS DE LA GLUCOSA SÍNTESIS DE GLUCÓGENO, ALMIDÓN, SACAROSA Reserva GLUCOSA Oxidación vía Pentosas

Más detalles

RESPIRACIÓN CELULAR. C 6 H 12 O 6 + O 2 + 6H 2 O CO H 2 O + Energía

RESPIRACIÓN CELULAR. C 6 H 12 O 6 + O 2 + 6H 2 O CO H 2 O + Energía RESPIRACIÓN CELULAR Es el proceso por el cual la energía química de las moléculas de "alimento" es liberada y parcialmente capturada en forma de ATP. Los carbohidratos, grasas y proteínas pueden ser usados

Más detalles

Metabolismo de carbohidratos 4 (Gluconeogénesis) Marijose Artolozaga Sustacha, MSc

Metabolismo de carbohidratos 4 (Gluconeogénesis) Marijose Artolozaga Sustacha, MSc Metabolismo de carbohidratos 4 (Gluconeogénesis) Marijose Artolozaga Sustacha, MSc GLUCONEOGÉNESIS Gluconeogénesis Cerebro necesita 120 g de glucosa / día Cuerpo completo: 160 g / día No siempre alcanzan

Más detalles

el acetil CoA procede de cualquier sustancia o molécula que degrademos para obtener energía.

el acetil CoA procede de cualquier sustancia o molécula que degrademos para obtener energía. Tema 16: El acetil CoA. El acetil CoA es un producto común a todas las reacciones de degradación de todas las moléculas orgánicas. Una ruta metabólica nunca está separada de las demás. Estructura. Resto

Más detalles

Metabolismo celular. Reacciones que no requieren de oxígeno para poder realizarse. Reacciones que requieren de oxígeno para poder realizarse

Metabolismo celular. Reacciones que no requieren de oxígeno para poder realizarse. Reacciones que requieren de oxígeno para poder realizarse Metabolismo celular ENERGÍA: En términos bioquímicos, representa la capacidad de cambio, ya que la vida depende de que la energía pueda ser transformada de una forma a otra, cuyo estudio es la base de

Más detalles

Oxidación de ácidos grasos y ciclo de Krebs Departamento de Bioquímica Noviembre de 2005

Oxidación de ácidos grasos y ciclo de Krebs Departamento de Bioquímica Noviembre de 2005 U.T.I. Biología Celular Oxidación de ácidos grasos y ciclo de Krebs Departamento de Bioquímica Noviembre de 2005 Fases de la respiración celular 1. La oxidación de ácidos grasos, glucosa y algunos aminoácidos

Más detalles

ESTRUCTURA DEL GLUCÓGENO

ESTRUCTURA DEL GLUCÓGENO ESTRUCTURA DEL GLUCÓGENO Extremo no reductor Representaciones de la estructura ramificada del glucógeno. Homopolisacárido de glucosa formado por enlaces glicosídicos, a-1,4 y en las ramificaciones a-1,6

Más detalles

Metabolismo Biología de 12º

Metabolismo Biología de 12º DEPARTAMENTO DE CIENCIAS NATURALES Metabolismo Biología de 1º Nombre y Apellidos Fecha: METABOLISMO Y RESPIRACIÓN CELULAR 1. Qué fila de la siguiente tabla describe las reacciones catabólicas? Energía

Más detalles

Metabolismo de carbohidratos 2 (PirDH y ciclo de Krebs) Marijose Artolozaga Sustacha, MSc

Metabolismo de carbohidratos 2 (PirDH y ciclo de Krebs) Marijose Artolozaga Sustacha, MSc Metabolismo de carbohidratos 2 (PirDH y ciclo de Krebs) Marijose Artolozaga Sustacha, MSc Descarboxilación oxidativa Descarboxilación oxidativa En la matriz mitocondrial Irreversible O 2 Complejo Piruvato

Más detalles

OXIDACIÓN DEL PIRUVATO Y CICLO DE KREBS. Dra. Carmen Aída Martínez

OXIDACIÓN DEL PIRUVATO Y CICLO DE KREBS. Dra. Carmen Aída Martínez OXIDACIÓN DEL PIRUVATO Y CICLO DE KREBS Dra. Carmen Aída Martínez Fuentes de Acetil CoA Metabolismo del Piruvato Descarboxilación oxidativa del piruvato Puente entre los hidratos de carbono y en ATC

Más detalles

proceso utilizado por la mayoría de las células animales y vegetales, es la degradación de biomoleculas (glucosa, lípidos, proteínas) para que se

proceso utilizado por la mayoría de las células animales y vegetales, es la degradación de biomoleculas (glucosa, lípidos, proteínas) para que se proceso utilizado por la mayoría de las células animales y vegetales, es la degradación de biomoleculas (glucosa, lípidos, proteínas) para que se produzca la liberación de energía necesaria, y así el organismo

Más detalles

Fundación H.A. Barceló Facultad de Medicina. Licenciatura en Nutrición Bioquímica Primer año Módulo 19 - Lección 1

Fundación H.A. Barceló Facultad de Medicina. Licenciatura en Nutrición Bioquímica Primer año Módulo 19 - Lección 1 Fundación H.A. Barceló Facultad de Medicina Licenciatura en Nutrición Bioquímica Primer año Módulo 19 - Lección 1 1 1 Metabolismo energético: Integración, especialización por órganos ciclo ayunoalimentación

Más detalles

TEMA 11 Metabolismo de lípidos y de aminoácidos

TEMA 11 Metabolismo de lípidos y de aminoácidos TEMA 11 Metabolismo de lípidos y de aminoácidos 1. Movilización de lípidos de reserva 2. Degradación y biosíntesis de ácidos grasos 3. Formación de cuerpos cetónicos 4. Degradación de aminoácidos y eliminación

Más detalles

Ejercicios de Repaso. Fermentación y Respiración Celular

Ejercicios de Repaso. Fermentación y Respiración Celular 1. Llena los espacios en blanco a. se refiere al conjunto de reacciones metabólicas que tienen que ver con la degradación de moléculas complejas. Estas reacciones energía por lo tanto se definen como.

Más detalles

Ciclo del Acido Cítrico

Ciclo del Acido Cítrico Ciclo del Acido Cítrico Balance del ciclo del ácido cítrico Esquema del ciclo del ácido cítrico Balance del ciclo del ácido cítrico El sentido metabólico del ciclo del ácido cítrico es obtener electrones

Más detalles

Metabolismo de carbohidratos 4 (Gluconeogénesis) Marijose Artolozaga Sustacha, MSc

Metabolismo de carbohidratos 4 (Gluconeogénesis) Marijose Artolozaga Sustacha, MSc Metabolismo de carbohidratos 4 (Gluconeogénesis) Marijose Artolozaga Sustacha, MSc GLUCONEOGÉNESIS Gluconeogénesis Cerebro necesita 120 g de glucosa / día Cuerpo completo: 160 g / día No siempre alcanzan

Más detalles

COLEGIO INTERNACIONAL ÁREA DE CIENCIAS BÁSICAS Y TECNOLOGÍAS CÁTEDRA DE BIOLOGÍA MITOCONDRIAS PROF. LIC. BIOL. LUIS MARÍN

COLEGIO INTERNACIONAL ÁREA DE CIENCIAS BÁSICAS Y TECNOLOGÍAS CÁTEDRA DE BIOLOGÍA MITOCONDRIAS PROF. LIC. BIOL. LUIS MARÍN COLEGIO INTERNACIONAL ÁREA DE CIENCIAS BÁSICAS Y TECNOLOGÍAS CÁTEDRA DE BIOLOGÍA MITOCONDRIAS PROF. LIC. BIOL. LUIS MARÍN CAPACIDAD Describe la estructura y función de las mitocondrias en el proceso de

Más detalles

1. INTRODUCCION AL METABOLISMO. GLUCOLISIS

1. INTRODUCCION AL METABOLISMO. GLUCOLISIS Departamento de Bioquímica y Biología Molecular PROCESOS bioquimicos Y METABOLICOS 1. INTRODUCCION AL METABOLISMO. GLUCOLISIS ESQUEMA - Introducción al metabolismo Metabolismo intermediario Divisiones

Más detalles

Ciclo del ácido cítrico (Krebs o Ciclo de los ácidos tricarboxílicos

Ciclo del ácido cítrico (Krebs o Ciclo de los ácidos tricarboxílicos Ciclo del ácido cítrico (Krebs o Ciclo de los ácidos tricarboxílicos Oxidación de los derivados de la glucosa para dar CO 2 Dentro de la mitocondria (eucariotas) Eje central del metabolismo celular Vía

Más detalles

Bloque 2: Organización y fisiología celular. Función de nutrición 2ª parte

Bloque 2: Organización y fisiología celular. Función de nutrición 2ª parte 2.- ORGANIZACIÓN Y FISIOLOGÍA CELULAR. 2.5. CELULA EUCARIOTICA. FUNCIÓN DE NUTRICIÓN. 3ª PARTE CONTENIDOS 2.5.5. Metabolismo. 2.5.5.4.3. Respiración: ciclo de krebs, cadena respiratoria y fosforilación

Más detalles

Bioquímica Estructural y Metabólica. TEMA 10. Gluconeogénesis

Bioquímica Estructural y Metabólica. TEMA 10. Gluconeogénesis y ruta de las pentosas fosfato. Gluconeogénesis, principales sustratos. Reacciones enzimá7cas. Balance energé7co. Regulación recíproca de la glucólisis y la gluconeogénesis. Ruta de las pentosas fosfato.

Más detalles

Metabolismo. Conjunto de reacciones bioquímicas de una célula. El metabolismo comprende dos grandes tipos de reacciones:

Metabolismo. Conjunto de reacciones bioquímicas de una célula. El metabolismo comprende dos grandes tipos de reacciones: Metabolismo Conjunto de reacciones bioquímicas de una célula El metabolismo comprende dos grandes tipos de reacciones: 1) reacciones de mantenimiento, que suministran a) energía b) poder reductor c) precursores

Más detalles

metabolismo tiene dos propósitos fundamentales: la generación de energía para poder realizar funciones vitales para el organismo síntesis

metabolismo tiene dos propósitos fundamentales: la generación de energía para poder realizar funciones vitales para el organismo síntesis METABOLISMO El metabolismo tiene dos propósitos fundamentales: la generación de energía para poder realizar funciones vitales para el organismo y la síntesis de moléculas biológicas El metabolismo es el

Más detalles

Objetivos: Glicólisis. Fermentación láctica. Gluconeogénesis y Ciclo de Cori. Metabolismo de disacáridos

Objetivos: Glicólisis. Fermentación láctica. Gluconeogénesis y Ciclo de Cori. Metabolismo de disacáridos Objetivos: Glicólisis Fermentación láctica Gluconeogénesis y Ciclo de Cori Metabolismo de disacáridos GLICOLISIS glykos : glucosa lysis : romper OBJETIVO: obtención de energía en forma rápida y para trabajos

Más detalles

Integración del metabolismo

Integración del metabolismo Integración del metabolismo Estrategias importantes del catabolismo 1. El ATP es la unidad biológica universal de energía. La hidrólisis del ATP cambia el cociente de equilibrio por un factor de 108. La

Más detalles

-La molécula glucídica utilizada por las células como combustible es la glucosa, que puede proceder de:

-La molécula glucídica utilizada por las células como combustible es la glucosa, que puede proceder de: BIOLOGÍA CATABOLISMO DE LOS GLÚCIDOS CARACTERES GENERALES -La molécula glucídica utilizada por las células como combustible es la glucosa, que puede proceder de: a)la digestión de los nutrientes. b)las

Más detalles

CICLO DE KREBS. Destinos metabólicos del piruvato 12/04/2012. Colesterol Ácidos Grasos. citrato. citrato. Acetil CoA

CICLO DE KREBS. Destinos metabólicos del piruvato 12/04/2012. Colesterol Ácidos Grasos. citrato. citrato. Acetil CoA CICLO DE KREBS Destinos metabólicos del piruvato Colesterol Ácidos Grasos citrato citrato Acetil CoA Esqueleto carbonado de Aminoácidos 1 Estructura de la mitocondria Membrana externa Membrana interna

Más detalles

26/10/2009. Clase 12. Energética celular Glucólisis y oxidación aeróbica I MAPA METABÓLICO

26/10/2009. Clase 12. Energética celular Glucólisis y oxidación aeróbica I MAPA METABÓLICO Clase 12. Energética celular Glucólisis y oxidación aeróbica I 1. Rutas metabólicas, niveles de complejidad y mapas metabólicos. 2. Glucólisis: principal ruta de nivel 2. 3. Respiración celular 3.1. El

Más detalles

Conversión del glucoso 6 fosfato en otras hexosas

Conversión del glucoso 6 fosfato en otras hexosas BIOSINTESIS DE LOS CARBOHIDRATOS TABLA DE CONTENIDO Introducción Justificación Objetivos Síntesis del glucoso fosfato a partir del ácido pirúvico Regulación de la ruta que va desde el piruvato al glucoso

Más detalles

Revisión- Opción Múltiple Procesamiento de energía

Revisión- Opción Múltiple Procesamiento de energía Revisión- Opción Múltiple Procesamiento de energía 1. El mmetabolismo es considerado como las "reacciones químicas totales que ocurren dentro de un organismo". Estas reacciones químicas pueden estar vinculados

Más detalles

BIOLOGÍA 2º BACHILLERATO 2. 0RGANIZACIÓN Y FISIOLOGÍA CELULAR (2) Clara Benhamú Barchilón

BIOLOGÍA 2º BACHILLERATO 2. 0RGANIZACIÓN Y FISIOLOGÍA CELULAR (2) Clara Benhamú Barchilón 5.5.4. CATABOLISMO CELULAR CARACTERÍSTICAS GENERALES DEL CATABOLISMO El catabolismo es un proceso degradativo en el que se transforman moléculas complejas en otras más simples. Debido a la oxidación de

Más detalles

BIOQUÍMICA TEMA 5. METABOLISMO DE LOS HIDRATOS DE CARBONO

BIOQUÍMICA TEMA 5. METABOLISMO DE LOS HIDRATOS DE CARBONO BIOQUÍMICA TEMA 5. METABOLISMO DE LOS HIDRATOS DE CARBONO D. Ph. Daniel Díaz Plascencia. Contacto: dplascencia@uach.mx www.lebas.com.mx El metabolismo de los hidratos de carbono es una de las principales

Más detalles

Unidad 7: Respiración Celular

Unidad 7: Respiración Celular 1 La energía lumínica es capturada por las plantas verdes y otros organismos fotosintéticos, que la transforman en energía química fijada en moléculas como la glucosa. Estas moléculas son luego degradadas

Más detalles

RESULTADO DE APRENDIZAJE:

RESULTADO DE APRENDIZAJE: Explicar las reacciones químicas del ciclo de Krebs y su regulación RESULTADO DE APRENDIZAJE: Relacionar el metabolismo de las distintas macromoléculas alrededor del Ciclo de Krebs Las reacciones se llevan

Más detalles

3. GLUCONEOGENESIS. METABOLISMO DEL GLUCOGENO

3. GLUCONEOGENESIS. METABOLISMO DEL GLUCOGENO Departamento de Bioquímica y Biología Molecular PROCESOS bioquimicos Y METABOLICOS 3. GLUCONEOGENESIS. METABOLISMO DEL GLUCOGENO ESQUEMA - Gluconeogénesis: Generalidades Fases Transformación de 2Pir Glc

Más detalles

RESULTADO DE APRENDIZAJE:

RESULTADO DE APRENDIZAJE: Explicar las reacciones Krebs y su regulación químicas del ciclo de RESULTADO DE APRENDIZAJE: Relacionar el metabolismo de las distintas macromoléculas alrededor del Ciclo de Krebs El ciclo de Krebs Ciclo

Más detalles

1. Las mitocondrias. La respiración celular.

1. Las mitocondrias. La respiración celular. 1. Las mitocondrias. La respiración celular. 1.1. Las mitocondrias. Orgánulos encargados de la obtención de energía mediante la respiración celular. En el proceso se sintetiza ATP gracias a la intervención

Más detalles

TREHALASA( 2"x" Glucosa"

TREHALASA( 2x Glucosa Las preguntas a 5 refieren a la actividad de la enzima Trehalasa. La trehalosa es un disacárido NO reductor formado por 2 moléculas de glucosa. En el intestino es hidrolizado por la enzima TREHALASA. TREHALASA(

Más detalles

Lactate Dehydrogenase

Lactate Dehydrogenase Tema 25: Destinos metabólicos del piruvato Fermentación Para la continuación de la degradación de glucosa, el NAD + (en cantidades limitadas en la célula) consumido en la glucólisis debe ser reciclado.

Más detalles

Metabolismo II. Anabolismo

Metabolismo II. Anabolismo Metabolismo II. Anabolismo I. Definición II. Tipos de anabolismo III. Anabolismo Heterótrofo A. Gluconeogénesis B. Glucogenogénesis C. Amilogénesis D. Anabolismo de lípidos E. Anabolismo de proteínas F.

Más detalles

www.paestarporaqui.com PRINCIPALES RUTAS DEL CATABOLISMO Catabolismo de los glúcidos PRINCIPALES RUTAS DEL CATABOLISMO DE LA GLUCOSA Ácido pirúvico Según el destino del piruvato y de la naturaleza del

Más detalles

RESPIRACIÓN AEROBIA Y ANAEROBIA

RESPIRACIÓN AEROBIA Y ANAEROBIA RESPIRACIÓN AEROBIA Y ANAEROBIA Las células llevan a cabo diversos procesos para mantener su funcionamiento normal, muchos de los cuales requieren energía. La respiración celular es una serie de reacciones

Más detalles

GLÚCIDOS DE LA DIETA Los glúcidos aportados en la dieta son. POLISACÁRIDOS Almidón. MONOSACÁRIDOS Fructuosa, Glucosa

GLÚCIDOS DE LA DIETA Los glúcidos aportados en la dieta son. POLISACÁRIDOS Almidón. MONOSACÁRIDOS Fructuosa, Glucosa GLÚCIDOS DE LA DIETA Los glúcidos aportados en la dieta son POLISACÁRIDOS Almidón DISACÁRIDOS Sacarosa, Lactosa, Maltosa MONOSACÁRIDOS Fructuosa, Glucosa DIGESTIÓN DE LOS GLÚCIDOS La digestión de los Glúcidos

Más detalles

1- LANZADERAS 2- DESCARBOXILACIÓN DEL PIRUVATO Dr. Mynor A. Leiva Enríquez

1- LANZADERAS 2- DESCARBOXILACIÓN DEL PIRUVATO Dr. Mynor A. Leiva Enríquez UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS FASE I, BIOQUÍMICA MÉDICA 2º AÑO - 2013 1- LANZADERAS 2- DESCARBOXILACIÓN DEL PIRUVATO Dr. Mynor A. Leiva Enríquez Lanzaderas de sustrato.

Más detalles

Respiracion Celular Prof. Nerybelle Perez-Rosas 2011

Respiracion Celular Prof. Nerybelle Perez-Rosas 2011 Respiracion Celular Prof. Nerybelle Perez-Rosas 2011 2 Respiracion Celular Podemos clasificar organismos basandonos en la forma en que obtienen energia. autotrofos: son capaces de producir sus propias

Más detalles

Metabolismo de hidratos de carbono

Metabolismo de hidratos de carbono Introducción a la Botánica 2016 10ma. clase teórica: 13/4/2016 Metabolismo de hidratos de carbono La fotosíntesis y la respiración 1 La fotosíntesis y la respiración Azúcares + ATP + nutrientes del suelo

Más detalles

GLÚCIDOS DE LA DIETA Los glúcidos aportados en la dieta son. POLISACÁRIDOS Almidón, Glucógeno. DISACÁRIDOS Sacarosa, Lactosa, Maltosa

GLÚCIDOS DE LA DIETA Los glúcidos aportados en la dieta son. POLISACÁRIDOS Almidón, Glucógeno. DISACÁRIDOS Sacarosa, Lactosa, Maltosa GLÚCIDOS DE LA DIETA Los glúcidos aportados en la dieta son POLISACÁRIDOS Almidón, Glucógeno DISACÁRIDOS Sacarosa, Lactosa, Maltosa MONOSACÁRIDOS Fructuosa, Glucosa DIGESTIÓN DE LOS GLÚCIDOS La digestión

Más detalles

Respiración Celular: una visión general. Metabolismo. Respiración Celular: una visión general

Respiración Celular: una visión general. Metabolismo. Respiración Celular: una visión general Metabolismo Respiración Celular: una visión general Visión general de la Respiración Celular Si el Oxígeno está disponible, los organismos pueden obtener energía de los alimentos por un proceso llamado

Más detalles

METABOLISMO Y BIOENERGÉTICA BIOQUÍMICA. CAPÍTULO 14

METABOLISMO Y BIOENERGÉTICA BIOQUÍMICA. CAPÍTULO 14 METABOLISMO Y BIOENERGÉTICA BIOQUÍMICA. CAPÍTULO 14 METABOLISMO Estudio de las reacciones bioquímicas que se llevan a cabo, incluidas su coordinación, regulación y necesidades energéticas. La energía que

Más detalles

CICLO DEL ÁCIDO CÍTRICO

CICLO DEL ÁCIDO CÍTRICO Facultad de Ciencias Farmacéuticas y Bioquímicas Carrera de Bioquímica CICLO DEL ÁCIDO CÍTRICO David Gutierrez Yapu Bioquímica II Hans Adolf Krebs Ciclo de Krebs Ciclo de los Tres Nombres El ciclo de Krebs

Más detalles

BLOQUE II: El sistema de aporte y utilización de energía

BLOQUE II: El sistema de aporte y utilización de energía BLOQUE II: El sistema de aporte y utilización de energía Tema 2. Fundamentos del metabolismo energético A. El metabolismo humano: conceptos de catabolismo y anabolismo. B.-Principales vías metabólicas

Más detalles

Metabolismo I. Dra. Sandra Orellana Clase 18

Metabolismo I. Dra. Sandra Orellana Clase 18 Metabolismo I Dra. Sandra Orellana Clase 18 Respiración celular DIFERENTES RUTAS METABÓLICAS ADP, ATP y respiración celular. Qué es ATP? Energía utilizada por las células Adenosina Trifosfato

Más detalles

Bloque 2: Organización y fisiología celular. Función de nutrición 2ª parte

Bloque 2: Organización y fisiología celular. Función de nutrición 2ª parte 2.- ORGANIZACIÓN Y FISIOLOGÍA CELULAR. 2.5. CELULA EUCARIOTICA. FUNCIÓN DE NUTRICIÓN. 2ª PARTE CONTENIDOS 2.5.5. Metabolismo. 2.5.5.1. Concepto de metabolismo. Catabolismo y anabolismo. 2.5.5.2. Aspectos

Más detalles

anabólicas, interdependencia entre ellas. o Clasificación de los organismos en relación con los tipos de

anabólicas, interdependencia entre ellas. o Clasificación de los organismos en relación con los tipos de METABOLISMO CELULAR Metabolismo: o Concepto. Tipos de reacciones metabólicas: catabólicas y anabólicas, interdependencia entre ellas. o Clasificación de los organismos en relación con los tipos de metabolismo:

Más detalles

Tema 5: Nutrición y metabolismo Parte 3

Tema 5: Nutrición y metabolismo Parte 3 Tema 5: Nutrición y metabolismo Parte 3 4. Catabolismo: Vías generales y su conexión (glucólisis, fermentaciones, ciclo de Krebs, cadena respiratoria). - Catabolismo Mapa general del catabolismo con las

Más detalles

Glucolisis y gluconeogénesis. Algunos aspectos puntuales Dr. Alfredo Rigalli

Glucolisis y gluconeogénesis. Algunos aspectos puntuales Dr. Alfredo Rigalli Glucolisis y gluconeogénesis. Algunos aspectos puntuales Dr. Alfredo Rigalli Tabla de contenidos 1.Aspectos generales de glucólisis...1 2.Algunos aspectos particulares de la glucólisis...4 2.1.Glucokinase

Más detalles

A + B C + D. SUBSTRATO: Es la substancia que sufre una transformación en una reacción bioquímica para formar el producto.

A + B C + D. SUBSTRATO: Es la substancia que sufre una transformación en una reacción bioquímica para formar el producto. REACCINES BIQUÍMICAS Son aquellas que se llevan a cabo en ser vivo, en alguno de sus componentes como un órgano, un tejido o una célula, o bien, aquellas que se llevan a cabo in vitro mediante el uso de

Más detalles

Catabolismo de los glúcidos

Catabolismo de los glúcidos atabolismo de los glúcidos (un ejemplo del uso de LYX/L A TEX en Biología) Luque Resumen Práctica final del curso Software Libre y Educación: Guadalinex (Thales-ica 2004-05). Estudio de la degradación

Más detalles

Citosol. Matriz mitocondrial. La glucolisis (glucosa - piruvato) se produce en el citosol

Citosol. Matriz mitocondrial. La glucolisis (glucosa - piruvato) se produce en el citosol CICLO DE LOS ÁCIDOS TRICARBOXÍLICOS o de Krebs Piruvato La glucolisis (glucosa - piruvato) se produce en el citosol Citosol Piruvato Matriz mitocondrial Oxalacetato Ciclo Krebs Citrato El piruvato entra

Más detalles

PRINCIPIOS DE REGULACIÓN METABÓLICA MANTENIMIENTO DE HOMEOSTASIS A NIVEL MOLECULAR

PRINCIPIOS DE REGULACIÓN METABÓLICA MANTENIMIENTO DE HOMEOSTASIS A NIVEL MOLECULAR PRINCIPIOS DE REGULACIÓN METABÓLICA MANTENIMIENTO DE HOMEOSTASIS A NIVEL MOLECULAR FACTORES QUE AFECTAN LA ACTIVIDAD DE LAS ENZIMAS 1. MODULACIÓN POR CAMBIO EN EL NÚMERO DE MOLÉCULAS DE ENZIMA 2. MODULACIÓN

Más detalles

Formación de ATP por la cadena transportadora de electrones Fotosíntesis. Capítulo 17 Bioquímica

Formación de ATP por la cadena transportadora de electrones Fotosíntesis. Capítulo 17 Bioquímica Formación de ATP por la cadena transportadora de electrones Fotosíntesis Capítulo 17 Bioquímica Introducción La oxidación de glucosa, por glucólisis, la oxidación del piruvato y el ciclo del ácido cítrico

Más detalles

RUTA de las PENTOSAS-P: FUNCIONES PENTOSAS. NADPH (poder reductor) PENTOSAS-P PROCESOS METABÓLICOS QUE REQUIEREN NADPH BIOMOLÉCULAS QUE NECESITAN

RUTA de las PENTOSAS-P: FUNCIONES PENTOSAS. NADPH (poder reductor) PENTOSAS-P PROCESOS METABÓLICOS QUE REQUIEREN NADPH BIOMOLÉCULAS QUE NECESITAN RUTA de las PENTOSAS-P: FUNCIONES La ruta de las pentosas-p tiene como funciones: LA GENERACIÓN DE y de BIOMOLÉCULAS QUE NECESITAN PENTOSAS Nucleótidos Ácidos nucleicos Coenzimas: ATP, GTP NAD, FAD, CoA

Más detalles

Mecanismo de reacción de la citrato sintasa

Mecanismo de reacción de la citrato sintasa Reacción 1. Citrato sintasa: Condensación del acetilo y el oxalacetato. Es una reacción muy exergónica (-32,2 Kj/mol). Mecanismo de reacción de la citrato sintasa La reacción es semejante a una condensación

Más detalles

CADENA RESPIRATORIA O CADENA DE TRANSPORTE DE ELECTRONES

CADENA RESPIRATORIA O CADENA DE TRANSPORTE DE ELECTRONES CADENA RESPIRATORIA O CADENA DE TRANSPORTE DE ELECTRONES El NADH y FADH2 obtenidos contienen un par de electrones que se transfieren al O2 con liberación de energía. La cadena respiratoria transporta los

Más detalles

Una explicación sobre la respiración celular

Una explicación sobre la respiración celular Una explicación sobre la respiración celular Todos necesitamos energía para funcionar y obtener esta energía de los alimentos que comemos. La forma más eficiente para las células para captar energía almacenada

Más detalles

GLUCONEOGENESIS L.GOETSCHEL

GLUCONEOGENESIS L.GOETSCHEL GLUCONEOGENESIS Gluconeogénesis Término que se utiliza para incluir todos los mecanismos y vías responsables de convertir otras sustancias diferentes de los carbohidratos a glucosa o glucógeno. Los sustratos

Más detalles

BIOLOGIA. Tema 5 UNIDAD DIDÁCTICA V: La respiración.

BIOLOGIA. Tema 5 UNIDAD DIDÁCTICA V: La respiración. Tema 5 UNIDAD DIDÁCTICA V: La respiración. 1. ÍNDICE: 5.1.- CONCEPTO DE RESPIRACIÓN CELULAR. 5.2.- SIGNIFICADO BIOLÓGICO DE LA RESPIRACION. 5.3.- LOCALIZACIÓN INTRACELULAR DE LOS PROCESOS RESPIRATORIOS.

Más detalles

Ciclo de Krebs Destino del piruvato. Descarboxilación oxidativa. Aspectos estructurales y mecanismos de la piruvato deshidrogenasa.

Ciclo de Krebs Destino del piruvato. Descarboxilación oxidativa. Aspectos estructurales y mecanismos de la piruvato deshidrogenasa. Ciclo de Krebs Destino del piruvato. Descarboxilación oxidativa. Aspectos estructurales y mecanismos de la piruvato deshidrogenasa. Relevancia del ciclo de Krebs dentro del metabolismo en general. Descripción

Más detalles

UNLaM-Kinesiología-Bioquímica-Metabolismo de HC. Metabolismo de glúcidos 1ª parte

UNLaM-Kinesiología-Bioquímica-Metabolismo de HC. Metabolismo de glúcidos 1ª parte Metabolismo de glúcidos 1ª parte Metabolismo: El metabolismo es el proceso global a través del cual los sistemas vivos adquieren y utilizan energía libre para realizar sus diferentes funciones. Para ello

Más detalles

LA RESPIRACIÓN CELULAR

LA RESPIRACIÓN CELULAR LA RESPIRACIÓN CELULAR Respiración celular La degradación de la glucosa mediante el uso de oxígeno o alguna otra sustancia inorgánica, se conoce como respiración celular. La respiración celular que necesita

Más detalles

Glicólisis. (citosol)

Glicólisis. (citosol) Glicólisis (citosol) GLUCÓGENO Glucogénolisis Glucogénesis GLUCOSA Glucólisis Gluconeogénesis LACTATO Glicólisis D-glucosa Piruvato deshidrogenasa 2 Piruvato 2 Acetil CoA Ciclo de Krebs 2 Lactato El

Más detalles

Se obtiene + energía En aerobiosis

Se obtiene + energía En aerobiosis Se obtiene + energía En aerobiosis 1. Piruvato + TPP (E1) Hidroxi etil TPP + CO2 Succinato deshidrogenasa ESTEQUIOMETRIA DEL CICLO DEL ACIDO CITRICO Acetil-CoA + 3H 2 O + 3NAD + +

Más detalles

BIOLOGÍA GENERAL Ing.MSc. Sigfredo Ramos Cortez

BIOLOGÍA GENERAL Ing.MSc. Sigfredo Ramos Cortez BIOLOGÍA GENERAL Ing.MSc. Sigfredo Ramos Cortez UNIDAD 2: ENERGÍA Y METABOLISMO TEMA: LA FUENTE DE ENERGÍA PARA LAS CELULAS SUBTEMAS: La glucosa El trifosfato de adenosina (ATP) OBJETIVOS DE LA CLASE:

Más detalles

OXIDACIÓN DE LA GLUCOSA GLUCÓLISIS DECARBOXILACIÓN OXIDATIVA CICLO DE KREBS CADENA TRANSPORTADORA DE ELECTRONES

OXIDACIÓN DE LA GLUCOSA GLUCÓLISIS DECARBOXILACIÓN OXIDATIVA CICLO DE KREBS CADENA TRANSPORTADORA DE ELECTRONES OXIDACIÓN DE LA GLUCOSA GLUCÓLISIS DECARBOXILACIÓN OXIDATIVA CICLO DE KREBS CADENA TRANSPORTADORA DE ELECTRONES Reacciones de oxido-reducción Energía celular El ATP es el principal transportador de energía

Más detalles

Fuente de Luz FOTOAUTÓTROFOS FOTOHETERÓTROFOS energía Reacciones Químicas QUIMIOAUTÓTROFOS QUIMIOHETERÓTROFOS

Fuente de Luz FOTOAUTÓTROFOS FOTOHETERÓTROFOS energía Reacciones Químicas QUIMIOAUTÓTROFOS QUIMIOHETERÓTROFOS 1. EL METABOLISMO. GENERALIDADES El metabolismo es el conjunto de reacciones que tienen lugar en las células, mediante las cuales estas obtienen la energía y la utilizan para mantener sus concentraciones

Más detalles

FUNCIONES DE LA RUTA DE LAS PENTOSAS FOSFATO

FUNCIONES DE LA RUTA DE LAS PENTOSAS FOSFATO FUNCIONES DE LA RUTA DE LAS La ruta de las pentosas fosfato es una vía de oxidación de la G6P, cuyas funciones son: Generar poder reductor en forma de NADPH. Suministrar esqueletos carbonados de 3, 4,

Más detalles

Catabolismo de la glucosa: respiración celular

Catabolismo de la glucosa: respiración celular El Catabolismo 1 Catabolismo Obje/vo: obtención de energía (y almacenamiento en forma de ATP) Fuentes principales de E: glúcidos y lípidos Energía ATP para llevar a cabo ac/vidad celular o para sinte/zar

Más detalles