CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique"

Transcripción

1 CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD Mg. Ing. Ana María Echenique

2 CONCEPTO DE ELECTRÓNICA Laelectrónica,esunaramadelafísicaquetieneuncampodeaplicaciónmuy amplio Es el campo de la Bioingeniería, donde se estudia el diseño y la aplicación de los dispositivos biomédicos, la electrónica tiene su aplicación considerando que el funcionamiento de estos depende del flujo de electrones en los dispositivos electrónicos. Ya sea para la generación, transmisión, recepción, almacenamiento y control de la información. Esta información puede consistir en datos, voz, sonido, imágenes, señales, variables de procesos biológicos, entre otros. Por este motivo es de interés para comprender el funcionamiento de los dispositivos electrónicos, conocer los materiales con los que se fabrican los dispositivos electrónicos Telecomunicaciones ELECTRON Computación Equipamiento Médico

3 OBJETIVOS: Reconocer los diferentes tipos de materiales, según su estructura atómica Describir la estructura del cristal de Si Conocer los tipos de materiales semiconductores Describir los tipos de portadores de carga y clases de impurezas

4 CLASIFICACIÓN Todos los elementos que tienen propiedades físicas y químicas semejantes se encuentran agrupados en la tabla periódica. Desde el punto de vista eléctrico, todos los cuerpos simples o compuestos formados por esos elementos se pueden dividir en tres amplias categorías: Conductores Aislantes Semiconductores

5 MATERIALES CONDUCTORES En la categoría conductores se encuentran agrupados todos los metales que en mayor o menor medida conducen o permiten el paso de la corriente eléctrica por sus cuerpos. Entre los mejores conductores por orden de importancia para uso en la distribución de la energía eléctrica de alta, media y baja tensión, así como para la fabricación de componentes de todo tipo como dispositivos y equipos eléctricos y electrónicos, se encuentran el cobre (Cu), aluminio (Al), plata (Ag) y el oro (Au).

6 PROPIEDADES DE LOS MATERIALES CONDUCTORES

7 APLICACIONES DE METALES CONDUCTORES

8 APLICACIONES DE METALES CONDUCTORES

9 APLICACIONES DE METALES CONDUCTORES

10 MATERIALES AISLANTES Aislantes ó Dieléctricos son materiales que no conducen la electricidad por lo que puede ser usado como aislante eléctrico. A diferencia de los cuerpos metálicos buenos conductores de la corriente eléctrica, existen otros como el aire, la porcelana, la mica, la ebonita, las resinas sintéticas, los plásticos, etc., que ofrecen una alta resistencia a su paso. Esos materiales se conocen como aislantes o dieléctricos.

11

12 MATERIALES SEMICONDUCTORES Los "semiconductores" constituyen elementos que poseen características intermedias entre los cuerpos conductores y los aislantes. Sin embargo, bajo determinadas condiciones esos mismos elementos permiten la circulación de la corriente eléctrica. El Silicio (Si)y el Germanio (Ge) son elementos semiconductores utilizados para fabricar componentes electrónicos (diodos detectores y rectificadores de corriente, transistores, circuitos integrados y microprocesadores).

13 Un semiconductor, es un material que tiene las propiedades eléctricas de un conductor y de un aislante, como por ejemplo el Germanio y el Silicio (metaloides), este ultimo el más utilizado en la actualidad para la fabricación de componentes electrónicos. Después del oxigeno, el silicio es el elemento mas abundante en la corteza terrestre en: Arena, cuarzo, granito, arcilla, mica, etc. Silicio Fabricación de componentes electrónicos Construcción de ladrillos, vidrios y otros materiales Silicona para implantes médicos Fertilizante en la agricultura

14 DISPOSITIVOS ELECTRÓNICOS

15 RESISTIVIDAD PARA DIFERENTES MATERIALES Los valores de la resistividad nos permiten clasificar los materiales como conductores, semiconductores y aislantes Conductor semiconductor aislante ρ = 10 6 Ohm/cm ρ = 50 Ohm/cm ρ = Ohm/cm Cobre Germanio mica ρ = Ohm/cm Silicio

16 ESTRUCTURA ATÓMICA DEL GE Y SI El Ge, posee 32 electrones, mientras que el Si posee 14. Ambos tiene 4 electrones de valencia

17

18 NIVELES DE ENERGÍA En la estructura atómica aislada existen niveles discretos de energía (individuales) asociados con cada electrón que orbita. De hecho cada material tendrá su propio conjunto permitido de niveles de energía para los electrones en su estructura atómica. Mientras más distante se encuentre el electrón del núcleo mayor es el estado de energía, y cualquier electrón que haya dejado su átomo, tiene un estado de energía mayor que cualquier electrón en la estructura atómica.

19

20 Eg energía de desdoblamiento. Es la energía necesaria para llevar un electrón de la banda de valencia a la banda de conducción. 1 ev Es una unidad de energía para que un electrón pase por una diferencia de 1v Equivale a 1, Joule Eg Eg 10 ev Eg = 1.1 ev (Si) Eg = 0.67 ev (Ge) Eg = 1.41 ev (ArGa) Eg = 0

21 A 0ºK (273ºC), tanto los aislantes como los semiconductores no conducen, ya que ningún electrón tiene energía suficiente para pasar de la banda de valencia a la de conducción. A 300ºK (25ºC), algunos electrones de los semiconductores alcanzan este nivel. Al aumentar la temperatura aumenta la conducción en los semiconductores (al contrario que en los metales). Mientras que los conductores tienen electrones libres a 0ºK.

22 ESTRUCTURA CRISTALINA Cuando el Ge o SI solidifican lo hacen en forma de una red cristalina tipo diamante. Representación tridimensional Representación plana

23 Veamos cómo se estructura un cristal de Silicio... Un átomo de Si al centro de la celda base... Y 4 átomos iguales alrededor de éste ligados a él compartiendo electrones entre sí. Enlaces covalentes Los electrones periféricos de cada átomo de Si forman enlaces covalentes con los átomos vecinos. Permitiendo que el átomo del centro quede con 8 electrones en su última órbita.

24 CLASIFICACIÓN DE LOS SEMICONDUCTORES Semiconductores Intrínsecos Semiconductores Extrínsecos Material Tipo N Material Tipo P

25 No hay enlaces covalentes rotos. Esto equivale a que los electrones de la banda de valencia no pueden saltar a la banda de conducción. Semiconductor Intrínseco Ge Ge Ge Ge Ge Ge Ge Ge Representación plana del Germanio a 0º K

26 Hay 1 enlace roto por cada 1, átomos. Un electrón libre y una carga por cada enlace roto. Situación del Ge a 300ºK Ge Ge Ge Ge Ge Ge Ge Ge

27 Situación del Ge a 300º K Muy importante Ge Ge Ge Ge Ge Ge Ge Ge Generación Generación Recombinación Siempre se están rompiendo (generación) y reconstruyendo (recombinación) enlaces. La vida media de un electrón puede ser del orden de milisegundos o microsegundos. Recombinación Generación

28 Situación del Ge a 300ºK Ge Ge Ge Ge Ge Ge Ge Ge Sentido de desplazamiento del hueco Sentido de desplazamiento del electrón El electrón libre, con carga negativa, se mueve. Y la carga también se desplaza y de manera contraria a los electrones

29 Ge Ge Ge Ge Ge Ge Ge Ge Aplicación de un campo externo El electrón libre, con carga negativa, se mueve por acción del campo. Y la carga también se desplaza.

30 Ge Ge Ge Ge Ge Ge Ge Ge Aplicación de un campo externo La carga se mueve también. Es un nuevo portador de carga, llamado hueco. Muy importante

31 huecos electrones Existe corriente eléctrica debida a los dos portadores de carga: P= p g es la densidad de corriente de huecos. N= n g es la densidad de corriente de electrones. Movimiento de cargas por un campo eléctrico exterior Ε

32 Semiconductores Intrínsecos Todo lo comentado hasta ahora se refiere a los llamados Semiconductores Intrínsecos, en los que: No hay ninguna impureza en la red cristalina. Hay igual número de electrones que de huecos N = P Ge: N = portadores/cm 3 Si: N = portadores/cm 3 (a temperatura ambiente) Pueden modificarse estos valores? Puede desequilibrarse el número de electrones y de huecos? La respuesta son los Semiconductores Extrínsecos

33 Semiconductores Extrínsecos (Tipo N) Introducimos pequeñas cantidades de impurezas del grupo V (Ej: Antimonio (Sb) Arsénico (As), Fósforo (P)) Tiene 5 electrones en la última capa Si Si Si Si Si Si Si 2 As ºK A 0ºK, habría un electrón adicional ligado al átomo de As

34 Semiconductores Extrínsecos (Tipo N) Si Si Si Si Si Si Si 2 As ºK 5 0ºK 4 A 300ºK, todos electrones adicionales de los átomos de As están desligados de su átomo (pueden desplazarse y originar corriente eléctrica). El As es un donador yenelsihaymáselectronesquehuecos.esun semiconductor tipo N. 5

35 N= ng n Siendo ng=pg y n>>ng luego N>>P P= pg Semiconductores Extrínsecos (Tipo N) Interpretación en diagrama de bandas de un semiconductor extrínseco Tipo N Energía. 1 electr./atm. 0 electr./atm. 300ºK E As =0,039eV 4electr./atm. 0ºK E g =0,67eV El As genera un estado permitido en la banda prohibida, muy cerca de la banda de conducción. La energía necesaria para alcanzar la banda de conducción se consigue a la temperatura ambiente, y es la energía de ionización del átomo de As. De esta manera cede un portador de carga negativa (electrón)

36 Semiconductores Extrínsecos (Tipo P) Introducimos pequeñas cantidades de impurezas del grupo III (Boro (B), Indio (In), Tiene 3 electrones en la última capa Galio (Ga)) Si Si Si Si Si Si Si 2 In 3 1 0ºK A 0ºK, habría una falta de electrón adicional ligado al átomo de In

37 Semiconductores Extrínsecos (Tipo P) Si Si Si Si Si Si Si 2 In (extra) A 300ºK, todas las faltas de electrón de los átomos de In están cubiertas con un electrón procedente de un átomo de Si, en el que se genera un hueco. El ln es un aceptador y en el Si hay más huecos que electrones. Es un semiconductor tipo P. 300ºK 0ºK

38 Semiconductores Extrínsecos (Tipo P) Interpretación en diagrama de bandas de un semiconductor extrínseco Tipo P 300ºK 0ºK Energía E In =0,067eV 3 electr./atom. 4electr./atom. 0 huecos/atom. E g =0,67eV El In genera un estado permitido en la banda prohibida, muy cerca de la banda de valencia. La energía necesaria para que un electrón alcance este estado permitido se consigue a la temperatura ambiente, generando un hueco en la banda de valencia. Esta energía es la de ionización del átomo de In, cediendo un portador de carga positivo (hueco) N= ng Siendo ng=pg y p>>pg luego P>>N P= pg p

39 Resumen Semiconductores intrínsecos: Igual número de huecos y de electrones Semiconductores extrínsecos: Tipo N: Más electrones (mayoritarios) que huecos (minoritarios) Impurezas del grupo V (donador) Todos los átomos de donador ionizados. Tipo P: Más huecos (mayoritarios) que electrones (minoritarios) Impurezas del grupo III (aceptador) Todos los átomos de aceptador ionizados. Muy importante

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras y aceptadoras. 4.1.- Semiconductores tipo

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Código de colores. Resistencias

Código de colores. Resistencias Resistencias La función de las resistencias es oponerse al paso de la comente eléctrica.su magnitud se mide en ohmios ( ) y pueden ser variables o fijas. El valor de las resistencias variables puede ajustarse

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen. Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez

Semiconductores. Lección Ing. Jorge Castro-Godínez Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1

ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1 ELEN 3311 Electrónica I - 1 - I. Sección 1.1, 1.: Materiales Semiconductores y la Junta p-n A. Estructura atómica Un estudio de los materiales, incluyendo su estructura atómica, es indispensable al estudiar

Más detalles

1.1 Definición de semiconductor

1.1 Definición de semiconductor Índice 1.- Introducción 1.1- Definición 1.2-Modelo de bandas de energía 1.3- Materiales intrínseco y extrínseco 2.-Tipos de materiales semiconductores 2.1- Estequiométricos (aislantes) 2.2- Imperfecciones

Más detalles

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.

Más detalles

FIZ Física Contemporánea

FIZ Física Contemporánea FIZ1111 - Física Contemporánea Interrogación N o 3 17 de Junio de 2008, 18 a 20 hs Nombre completo: hrulefill Sección: centering Buenas Malas Blancas Nota Table 1. Instrucciones - Marque con X el casillero

Más detalles

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS GRUPO 3 Rubén n Gutiérrez González María a Urdiales García María a Vizuete Medrano Índice Introducción Tipos de dispositivos Unión n tipo

Más detalles

TEMA 8 SISTEMA PERIÓDICO Y ENLACES

TEMA 8 SISTEMA PERIÓDICO Y ENLACES TEMA 8 SISTEMA PERIÓDICO Y ENLACES 1. LA TABLA PERIÓDICA Elementos químicos son el conjunto de átomos que tienen en común su número atómico, Z. Hoy conocemos 111 elementos diferentes. Los elementos que

Más detalles

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

LOS ÁTOMOS Y LAS PROPIEDADES DE LA MATERIA. (Ciencias Elemental) PROFESORA GILDA DIAZ MAT H AND S C I ENCE PAR T NERSHIP FOR T HE 21S T CENTURY

LOS ÁTOMOS Y LAS PROPIEDADES DE LA MATERIA. (Ciencias Elemental) PROFESORA GILDA DIAZ MAT H AND S C I ENCE PAR T NERSHIP FOR T HE 21S T CENTURY LOS ÁTOMOS Y LAS PROPIEDADES DE LA MATERIA (Ciencias Elemental) PROFESORA GILDA DIAZ MAT H AND S C I ENCE PAR T NERSHIP FOR T HE 21S T CENTURY ELEMENTARY AND MIDDLE S C HOOL MSP -21 ACADEMIA DE VERANO

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

SEMICONDUCTORES (parte 2)

SEMICONDUCTORES (parte 2) Estructura del licio y del Germanio SEMICONDUCTORES (parte 2) El átomo de licio () contiene 14 electrones dispuestos de la siguiente forma: 2 electrones en la primer capa (capa completa), 8 electrones

Más detalles

ILUMINACION DE ESTADO SÓLIDO LED

ILUMINACION DE ESTADO SÓLIDO LED FERNANDO GARRIDO ALVAREZ FERNANDO GARRIDO ALVAREZ INGENIERO INDUSTRIAL INGENIERO INDUSTRIAL CONSULTOR LUMINOTECNICO CONSULTOR LUMINOTECNICO ILUMINACION DE ESTADO SÓLIDO LED UNA APROXIMACION A SU CONOCIMIENTO

Más detalles

TEMA 1: Propiedades de los semiconductores 1.1

TEMA 1: Propiedades de los semiconductores 1.1 Índice TEMA 1: Propiedades de los semiconductores 1.1 1.1. INTRODUCCIÓN 1.1 1.2. CLASIFICACIÓN DE LOS MATERIALES 1.3 1.3. SEMICONDUCTORES INTRÍNSECOS. ESTRUCTURA CRISTALINA 1.6 1.4. SEMICONDUCTORES EXTRÍNSECOS.

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO CRCUTO ELÉCTRCO Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CRCUTO ABERTO CRCUTO CERRADO No existe continuidad entre dos conductores consecutivos.

Más detalles

FÍSICA Y QUÍMICA - 3º ESO ESTRUCTURA ATOMICA Y ENLACE 2

FÍSICA Y QUÍMICA - 3º ESO ESTRUCTURA ATOMICA Y ENLACE 2 FÍSICA Y QUÍMICA - 3º ESO ESTRUCTURA ATOMICA Y ENLACE 2 1. Define y explica los siguientes conceptos: número atómico, número másico e isótopos de un elemento químico. 2. Copia el siguiente párrafo y complétalo:

Más detalles

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar Introducción a la Teoría de semiconductores y nivel de Fermi Trabajo compilado por Willie R. Córdova Eguívar Conducción en los semiconductores Los semiconductores son materiales que ocupan una posición

Más detalles

Energía Solar Fotovoltaica

Energía Solar Fotovoltaica Rincón Técnico Fuente: http://www.electricidad-gratuita.com/energia%20fotovoltaica.html Autor: El contenido de este artículo es un extracto tomado de: http://www.electricidad-gratuita.com/energia%20fotovoltaica.html

Más detalles

Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I

Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I 1 Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I En el campo de la Ingeniería en Automatización y Control, es común el desarrollo

Más detalles

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS

Más detalles

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB)

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB) OPTOELECTRÓNICA OPTOELECTRÓNICA Tratamiento de la radiación electromagnética en el rango de las frecuencias ópticas y su conversión en señales eléctricas y viceversa. El rango del espectro electromagnético

Más detalles

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA.

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. 1.- Ciencia que estudia las características y la composición de los materiales,

Más detalles

Los elementos químicos

Los elementos químicos Los elementos químicos Física y Química Las primeras clasificaciones de los elementos Oxford University Press España, S. A. Física y Química 3º ESO 2 Un elemento químico es un tipo de materia constituido

Más detalles

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos.

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. Evolución histórica de la Tabla Periódica 1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. 1869: Mendeleev y Meyer: las propiedades

Más detalles

Física de Semiconductores Curso 2007

Física de Semiconductores Curso 2007 Física de Semiconductores Curso 007 Ing. Electrónica- P00 Ing. Electrónica/Electricista P88 3er. Año, V cuat. Trabajo Práctico Nro. 3: Bloque Sólidos: Semiconductores intrínsecos Objetivos: Estudiar las

Más detalles

Átomo de Cobre Cu 29. 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen

Átomo de Cobre Cu 29. 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen Átomo de Cobre Cu 29 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen (video van der graaf generator) Conductor Conductores son los materiales

Más detalles

Tema 3_3. Enlace metálico. Teoría de Bandas

Tema 3_3. Enlace metálico. Teoría de Bandas Tema 3_3. Enlace metálico. Teoría de Bandas Conductores (como los metales), que conducen muy bien la electricidad. Aislantes, que no conducen la electricidad. Semiconductores, de conductividad que cambia

Más detalles

Propiedades Periódicas y Propiedades de los elementos

Propiedades Periódicas y Propiedades de los elementos Propiedades Periódicas y Propiedades de los elementos Se denominan propiedades periódicas, aquellas que tienen una tendencia de variación de acuerdo a la ubicación de los elementos en la tabla periódica.

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Asignatura: Química 2. Curso: 3 ro. de Media. Proyecto Nº 3. Mes: Marzo-Abril. Año: Prof.: Lic. Manuel B. Noboa G.

Asignatura: Química 2. Curso: 3 ro. de Media. Proyecto Nº 3. Mes: Marzo-Abril. Año: Prof.: Lic. Manuel B. Noboa G. Asignatura: Química 2. Curso: 3 ro. de Media. Proyecto Nº 3. Mes: Marzo-Abril. Año: 2014-2015. Prof.: Lic. Manuel B. Noboa G. Unidad Nº 3: Elementos de los Bloques P y D. Propósito Nº 1: P. C.: 20 de marzo

Más detalles

Unidad Didáctica 1 ELECTRICIDAD Y ELECTROMAGNETISMO

Unidad Didáctica 1 ELECTRICIDAD Y ELECTROMAGNETISMO Unidad Didáctica 1 ELECTRICIDAD Y ELECTROMAGNETISMO 1 OBJETIVOS Al finalizar el estudio de esta Unidad Didáctica el alumno será capaz de: Analizar e interpretar los fenómenos eléctricos. Conocer magnitudes

Más detalles

QUÍMICA FUNDAMENTAL. Tabla Periódica

QUÍMICA FUNDAMENTAL. Tabla Periódica QUÍMICA FUNDAMENTAL Tabla Periódica 1 TEMAS DE ESTUDIO Construcción de la Tabla Periódica con base en la configuración electrónica Propiedades periódicas de los elementos 2 ANTECEDENTES HISTÓRICOS: ELEMENTOS

Más detalles

1. La búsqueda de los elementos. 2. Sistema periódico actual. 3. Los símbolos de los elementos. 4. Elementos naturales y artificiales. 5.

1. La búsqueda de los elementos. 2. Sistema periódico actual. 3. Los símbolos de los elementos. 4. Elementos naturales y artificiales. 5. 1. La búsqueda de los elementos. 2. Sistema periódico actual. 3. Los símbolos de los elementos. 4. Elementos naturales y artificiales. 5. Uniones entre átomos. 6. Enlace covalente. 7. Enlace iónico. 8.

Más detalles

RESISTORES Tipos de Resistores:

RESISTORES Tipos de Resistores: RESISTORES 2016 Tipos de Resistores: Teoría de Circuitos Por su composición o fabricación: De hilo bobinado (wirewound) Carbón prensado (carbon composition) Película de carbón (carbon film) Película óxido

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

Semiconductores. Cristales de silicio

Semiconductores. Cristales de silicio Semiconductores Son elementos, como el germanio y el silicio, que a bajas temperaturas son aislantes. Pero a medida que se eleva la temperatura o bien por la adicción de determinadas impurezas resulta

Más detalles

UNIDAD 10.- LAS UNIONES ENTRE ÁTOMOS. Cuestiones de evaluación inicial. 2.- Cuántos protones y cuantos neutrones tiene el Carbono?

UNIDAD 10.- LAS UNIONES ENTRE ÁTOMOS. Cuestiones de evaluación inicial. 2.- Cuántos protones y cuantos neutrones tiene el Carbono? UNIDAD 10.- LAS UNIONES ENTRE ÁTOMOS Cuestiones de evaluación inicial 1.- Cuántos elementos químicos conoces? 2.- Cuántos protones y cuantos neutrones tiene el Carbono? 3.- Qué es el sistema periódico?

Más detalles

CIENCIAS II CON ENFASIS EN QUIMICA

CIENCIAS II CON ENFASIS EN QUIMICA CIENCIAS II CON ENFASIS EN QUIMICA P1-TEMA 2.2 Propiedades intensivas y extensivas de los materiales y Proyectos 1. Explica con tus propias palabras en que consiste un proyecto. 2. Explica brevemente en

Más detalles

ESTADO SOLIDO. Propiedades 03/07/2012. Fuerte interacción entre partículas

ESTADO SOLIDO. Propiedades 03/07/2012. Fuerte interacción entre partículas ESTADO SOLIDO Propiedades Fuerte interacción entre partículas Ocupan posiciones relativamente fijas las partículas vibran Tienen forma propia y definida Son prácticamente incompresibles No difunden entre

Más detalles

Teoría de los semiconductores

Teoría de los semiconductores Teoría de los semiconductores Introducción Los materiales semiconductores han ocasionado la mayor revolución en el mundo de la electrónica, pues su comportamiento eléctrico permite el funcionamiento de

Más detalles

6. ELEMENTOS Y COMPUESTOS

6. ELEMENTOS Y COMPUESTOS 6. ELEMENTOS Y COMPUESTOS Las definiciones de elemento 1. Define sustancia simple y elemento. Una sustancia simple es una sustancia pura que no puede descomponerse en otras sustancias más sencillas por

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

TABLA PERIODICA. Ciencias naturales Ambientes Raymond Chang

TABLA PERIODICA. Ciencias naturales Ambientes Raymond Chang TABLA PERIODICA Ciencias naturales Ambientes Raymond Chang TABLA PERIODICA La organización más satisfactoria de los elementos fue obra de Dmitri Mendeleev, quien señalo que las propiedades, tanto físicas

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

Profesor: Carlos Gutiérrez Arancibia. Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares

Profesor: Carlos Gutiérrez Arancibia. Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares Profesor: Carlos Gutiérrez Arancibia Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares A. Sustancia Pura: SUSTANCIAS PURAS Y MEZCLAS Una sustancia pura es un

Más detalles

Colegio Superior de Señoritas Profesora: Noylen Vega Martínez Practica 8 avo año Química: - 1 -

Colegio Superior de Señoritas Profesora: Noylen Vega Martínez Practica 8 avo año Química: - 1 - Profesora: Noylen Vega Martínez Practica 8 avo año Química: - 1 - Respuesta Corta: Escriba en las líneas lo que se le solicita. 1. Cuál es el número atómico, de protones y de electrones de los siguientes

Más detalles

Las que tienen relación con el de tamaño: LAS PROPIEDADES PERIÓDICAS. Se pueden separar en dos grupos: PERIODICIDAD

Las que tienen relación con el de tamaño: LAS PROPIEDADES PERIÓDICAS. Se pueden separar en dos grupos: PERIODICIDAD LAS PROPIEDADES PERIÓDICAS Se pueden separar en dos grupos: 1- Las que tienen relación con el de tamaño: Los radios atómicos y los radios iónicos o cristalinos. La densidad. (ρ) El punto de fusión y ebullición.

Más detalles

GUIA TALLER QUIMICA GRADO 8 FORMACION DE MOLECULAS

GUIA TALLER QUIMICA GRADO 8 FORMACION DE MOLECULAS GUIA TALLER QUIMICA GRADO 8 FORMACION DE MOLECULAS Composición de la materia: como ya se ha establecido, está formada por átomos. La materia se puede encontrar en la naturaleza como: Elementos químicos:

Más detalles

Materiales. Presentado Por: Daniela Calderón Lavado 903 San Josemaria Escrivá De Balaguer

Materiales. Presentado Por: Daniela Calderón Lavado 903 San Josemaria Escrivá De Balaguer Materiales Presentado Por: Daniela Calderón Lavado 903 San Josemaria Escrivá De Balaguer Propiedades De La Materia Propiedades De La Materia son las materias primas, los materiales, y un producto tecnológico.

Más detalles

FÍSICA Y QUÍMICA Solucionario ELECTRONES Y ENLACES

FÍSICA Y QUÍMICA Solucionario ELECTRONES Y ENLACES FÍSICA Y QUÍMICA Solucionario ELECTRONES Y ENLACES 1.* Indicad cuántos electrones tienen en la última capa cada uno de estos elementos. a) C 4 f) O 6 k) K 1 b) F 7 g) P 5 l) S 6 c) Ne 8 h) H 1 m) He 8

Más detalles

Características de los materiales sólidos

Características de los materiales sólidos Características de los materiales sólidos Los materiales sólidos metálicos presentan una serie de propiedades que les otorgan la característica de ser una fuente importante de aplicaciones tecnológicas.

Más detalles

CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES

CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES ESTRUCTURA DEL CAPACITOR MOS El acrónimo MOS proviene de Metal-Oxide- Semiconductor. Antes de 1970 se

Más detalles

Aprendizaje esperado. Conocer la tabla periódica y sus características generales, estableciendo una relación con la configuración electrónica.

Aprendizaje esperado. Conocer la tabla periódica y sus características generales, estableciendo una relación con la configuración electrónica. Aprendizaje esperado Conocer la tabla periódica y sus características generales, estableciendo una relación con la configuración electrónica. Formulación de la Tabla Periódica En 1869 los trabajos realizados

Más detalles

Unidad 3 Curso: Química General 1 Mtra. Norma Mónica López.

Unidad 3 Curso: Química General 1 Mtra. Norma Mónica López. Unidad 3 Curso: Química General 1 Mtra. Norma Mónica López. Interacciones eléctricas De atracción +, - De repulsión +, + ó -,- Entre Átomos de una misma molécula Moléculas vecinas 2 ENLACE QUÍMICO Siempre

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA Proyecto de Ingeniería en Gas INTRODUCCIÓN A LOS MATERIALES Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Abril 2011 FUNDAMENTACIÓN Asignatura:

Más detalles

Conocer las formas de clasificación de los elementos según grupo y periodo. Identificar los criterios de clasificación de los elementos químicos.

Conocer las formas de clasificación de los elementos según grupo y periodo. Identificar los criterios de clasificación de los elementos químicos. Conocer las formas de clasificación de los elementos según grupo y periodo. Identificar los criterios de clasificación de los elementos químicos. Relacionar características de los átomos y su orden en

Más detalles

LA PARTE SÓLIDA DE LA TIERRA

LA PARTE SÓLIDA DE LA TIERRA UNIDAD DIDÁCTICA ADAPTADA CIENCIAS DE LA NATURALEZA 1º ESO TEMA 7 LA PARTE SÓLIDA DE LA TIERRA VAMOS A APRENDER 1.- QUÉ SON LOS MINERALES? 2.- QUÉ USO LE DAMOS A LOS MINERALES? 3.- QUÉ SON LAS ROCAS? 4.-

Más detalles

1. Introducción 2. Configuración electrónica y clasificación periódica 3. Propiedades periódicas Cuestionario de orientación y problemas

1. Introducción 2. Configuración electrónica y clasificación periódica 3. Propiedades periódicas Cuestionario de orientación y problemas PRÓLOGO A LA PRIMERA EDICIÓN 13 PRÓLOGO A LA TERCERA EDICIÓN 15 CAPÍTULO 1 Estructura atómica 17 1. Introducción 2. Principales experimentos que contribuyeron al conocimiento de la estructura atómica 3.

Más detalles

Diodos, Tipos y Aplicaciones

Diodos, Tipos y Aplicaciones Diodos, Tipos y Aplicaciones Andrés Morales, Camilo Hernández, David Diaz C El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido,

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO:

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: Electrónica ACADEMIA A LA QUE Electrónica Analógica Aplicada PERTENECE: NOMBRE DE LA MATERIA: Tecnología de Semiconductores CLAVE DE LA MATERIA: ET31 CARÁCTER

Más detalles

SEMICONDUCTORES PREGUNTAS

SEMICONDUCTORES PREGUNTAS SEMICONDUCTORES PREGUNTAS 1. Por qué los metales conducen mejor que los semiconductores 2. Por qué la conducción de la corriente eléctrica en los metales y los semiconductores tienen distinto comportamiento

Más detalles

CONDUCCIÓN ELECTRICA EN METALES AISLADORES Y SEMICONDUCTORES. 1. METALES... pp AISLADORES... pp SEMICONDUCTORES... pp.

CONDUCCIÓN ELECTRICA EN METALES AISLADORES Y SEMICONDUCTORES. 1. METALES... pp AISLADORES... pp SEMICONDUCTORES... pp. INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN CONTROL Y AUTOMATIZACIÓN FISICA MODERNA GRUPO: 3A1M PROFESOR: CASTAÑEDA LUIS HUGO INVESTIGACIÓN: CONDUCCIÓN

Más detalles

1. Los elementos químicos

1. Los elementos químicos RESUMEN de la UNIDAD 3. ELEMENTOS Y COMPUESTOS 1. Los elementos químicos La materia está formada por partículas denominadas átomos que, a su vez, están formados por otras partículas más pequeñas: protones,

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA Universidad de Burgos Departamento de Ingeniería Electromecánica TECNOLOGÍA ELECTRÓNICA Ingeniería Técnica en Informática de Gestión Curso 1º - Obligatoria - 2º Cuatrimestre Área de Tecnología Electrónica

Más detalles

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades COMPOSICIÓN DE LA MATERIA Mezclas homogéneas y heterogéneas Una mezcla es un compuesto formado por varias sustancias con distintas propiedades Algunos sistemas materiales como la leche a simple vista parecen

Más detalles

Corriente, Resistencia y Fuerza Electromotriz

Corriente, Resistencia y Fuerza Electromotriz Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1. LA CORRIENTE ELÉCTRICA. 1.1. Estructura del átomo. Todos los materiales están formados por átomos. En el centro del átomo (el núcleo) hay dos tipos de partículas: los protones (partículas

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 4

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 4 UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 4 NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: DOCENTES: Química General La Tabla Periódica

Más detalles

TEMA : LA ELECTRÓNICA

TEMA : LA ELECTRÓNICA Electrónica 3º E.S.O. 1 TEMA : LA ELECTRÓNICA 1. ELEMENTOS COMPONENTES DE LOS CIRCUITOS ELECTRÓNICOS. 1.1. Resistencias. Una resistencia es un operador o componente eléctrico que se opone al paso de la

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

Modelo Pregunta 1A a) b) Septiembre Pregunta A1.- a) b) c) d) Junio Pregunta 1A a) b) c) d) Solución. Modelo Pregunta 1B.

Modelo Pregunta 1A a) b) Septiembre Pregunta A1.- a) b) c) d) Junio Pregunta 1A a) b) c) d) Solución. Modelo Pregunta 1B. Modelo 2014. Pregunta 1A.- Cuando una muestra de átomos del elemento con Z = 19 se irradia con luz ultravioleta, se produce la emisión de electrones, formándose iones con carga +1. a) Escriba la configuración

Más detalles

ACTIVIDAD ACUMULATIVA

ACTIVIDAD ACUMULATIVA 1 Primer Semestre ACTIVIDAD ACUMULATIVA ENLACE QUÍMICO ESTRUCTURA DE LEWIS NOMBRE: NOTA (ACUMULATIVA): CURSO: 1º MEDIO PUNTAJE: FECA: Objetivos: 1. Comprender los aspectos esenciales del modelo atómico

Más detalles

Contactos semiconductor - semiconductor

Contactos semiconductor - semiconductor Contactos semiconductor semiconductor Lección 02.2 Ing. Jorge CastroGodínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge CastroGodínez

Más detalles

Física II. Electrostática

Física II. Electrostática Física II Electrostática Electrostática Concepto de Electrostática Conservación de la Carga Fuerzas y Cargas Eléctricas Ley de Coulomb & Cualitativa Conductores & Aislantes Electrostática Carga por Fricción

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA. Nombre: Grupo Calif

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA. Nombre: Grupo Calif INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA Práctica N º 11 Nombre: Grupo Calif OBJETIVO El alumno realizara experimentos sencillos para

Más detalles

Problemario de Talleres de Estructura de la Materia. DCBI/UAM-I. Obra Colectiva del. / Revisión octubre del 2012 UNIDAD 2

Problemario de Talleres de Estructura de la Materia. DCBI/UAM-I. Obra Colectiva del. / Revisión octubre del 2012 UNIDAD 2 UNIDAD 2 CAPAS ELECTRÓNICAS Y TAMAÑO DE LOS ÁTOMOS, ENERGÍA DE IONIZACIÓN Y AFINIDAD ELECTRÓNICA 1.- De acuerdo al modelo atómico propuesto por la mecánica cuántica, consideras que tiene sentido hablar

Más detalles

Colegio CEMEP Proyecto Nº 3 Química. 1º Media. Profesor Melvyn García

Colegio CEMEP Proyecto Nº 3 Química. 1º Media. Profesor Melvyn García Colegio CEMEP Proyecto Nº 3 Química. 1º Media. Profesor Melvyn García Propósito 1 Analizar las uniones químicas y la importancia de los electrones de valencia en la formación de las mismas. A qué se debe

Más detalles

Diapositiva 1 Para presentar los semiconductores, es útil empezar revisando los conductores. Hay dos perspectivas desde las que se puede explorar la conducción: 1) podemos centrarnos en los dispositivos

Más detalles

Explicación de las propiedades y los estados de agregación en los compuestos químicos en función de los tipos de enlace. vs.

Explicación de las propiedades y los estados de agregación en los compuestos químicos en función de los tipos de enlace. vs. Explicación de las propiedades y los estados de agregación en los compuestos químicos en función de los tipos de enlace. vs. Usar las propiedades y los estados de agregación en los compuestos químicos

Más detalles

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor El descubrimiento del diodo y el estudio sobre el comportamiento de los semiconductores desembocó que a

Más detalles

ELECTRÓNICA BÁSICA. Curso de Electrónica Básica en Internet. Tema 1: Fuentes de tensión y de corriente. Tema 2: Semiconductores

ELECTRÓNICA BÁSICA. Curso de Electrónica Básica en Internet. Tema 1: Fuentes de tensión y de corriente. Tema 2: Semiconductores default ELECTRÓNICA BÁSICA Curso de Electrónica Básica en Internet Tema 1: Fuentes de tensión y de corriente Tema 2: Semiconductores Tema 3: El diodo de unión Tema 4: Circuitos con diodos Tema 5: Diodos

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles