Diseño de transformadores monofásicos acorazados

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diseño de transformadores monofásicos acorazados"

Transcripción

1 Diseño de transformadores monofásicos acorazados En este pequeño opúsculo nos proponemos exponer los lineamientos básicos para encara el diseño de un transformador de poder de los que habitualmente se utilizan para la construcción de fuentes de alimentación. No obstante de implementar criterios prácticos no perderemos de vista las bases teóricas que dan origen a esos métodos de diseño. Los criterios para el diseño de los transformadores implican analizar en detalle las limitaciones que pueden influir en las características de funcionamiento del transformador. Las limitaciones son a saber: a) Por inducción máxima. b) Por perdidas en el hierro y en el cobre. c) Por regulación. a) En el primer caso, sabemos que si la inducción es muy elevada, el flujo necesario también lo es y, consecuentemente la corriente de magnetización también se eleva, con el consiguiente aumento de la corriente de vacío, cosa inconveniente para la calidad del transformador. En general la corriente de vacío debería quedar limitada a no más del 10% de la corriente nominal. En general se procurará que el valor de la inducción no sobrepase al de saturación para el hierro correspondiente, lo más común es 1. T, para un hierro con 3% de Si. También hay que tener en cuenta que las pérdidas en el hierro también se incrementan con el cuadrado de la inducción, por lo tanto, altos valores de B, ocasionarán también valores elevados de P FE. b) Por otra parte analizamos que convenía que las pérdidas en el hierro y en el cobre coincidieran, lo que implicaba que el rendimiento fuera máximo. Además hay que considerar que debido a las perdidas, la temperatura se incrementa y esto deteriora a los aislantes, disminuyendo la vida útil del transformador. Además, como la cantidad de calor que un cuerpo es capaz de disipar depende del área de su superficie de contacto con el ambiente, es lógico que la capacidad de disipación dependa del tamaño del núcleo, es decir cada núcleo será capaz de manejar determinada potencia. c) Definimos a la regulación del transformador como la variación relativa de la tensión de salida a plena V0 VL carga respecto de la de vacío. Matemáticamente r. Donde V 0 es la tensión en vacío, V L es la tensión a plena carga y r es la V0 regulación. 1) Régimen térmico Sabemos que existen tres modos de transmisión del calor que son: Conducción: Modo en el cual es necesario el contacto entre los cuerpos que transfieren el calor. Convección: Modo en el cual un cuerpo calienta las capas de fluido (aire, por ejemplo) que están en contacto con él y luego mediante el movimiento de esas capas de fluido el calor se va transmitiendo hacia el ambiente u otros cuerpos que se encuentren en zonas cercanas.

2 Radiación: Modo en el cual no hace falta ningún medio material para la transmisión del calor. Se propaga a través de ondas electromagnéticas semejantes a la luz y la radio pero de distinta longitud de onda. Es la forma en la cual, por ejemplo el sol nos hace llegar su calor. Fourier y otros físicos y filósofos establecieron una relación entre la cantidad de calor transmitida por unidad de tiempo (potencia), la variación de temperatura y el área de la superficie de disipación. Q P h( Tc Ta) Sd hsd T t Q cantidad de calor por unidadde tiempo t P potencia transferida h coeficiente combinado de conducción, convección y radiación Sd área de la superficie de disipación del cuerpo T c temperatura del cuerpo. T gradiente de tamperatura Ta temperatura ambiente Podemos admitir que el cobre y el hierro transmiten el calor en forma separada (totalmente independientes) por lo que aparecerán dos expresiones teniendo en cuenta la superficie total de disipación para cada caso a saber: P P Fe Cu n 1 n 1 hisdfei hisdcui T Donde los coeficientes combinados h i son de origen empírico, es decir, surgen de ensayos T 1 W de laboratorio, siendo su valor numérico h y admitiendo una sobre elevación de temperatura 780 Ccm T 40 C para que si aceptamos una temperatura ambiente de unos 0 C, los materiales no superen los 60 C, lo que garantiza una vida útil adecuada de los aislantes. Finalmente, y teniendo en cuenta estas consideraciones puede utilizarse la expresión: S P máx d tanto PCumáx 0.051SdCu para el cobre como para el hierro. y las pérdidas totales máximas admitidas PFemáx 0.051SdFe P T 0.051( SdCu + SdFe) Estos valores aparecen en las tablas de diseño de transformadores. En general para transformadores de poder (transformadores pequeños), conviene calcular para una inducción de B 1.T, ya que para una sobre elevación de temperatura de 40 C en el hierro, corresponde en general a una inducción mayor que la de saturación con el consecuente aumento de la corriente de vacío, deformación de la señal y en definitiva disminución de la calidad del transformador. En general el fabricante de las laminaciones (chapas de hierro al Si), especifica la llamada cifra de pérdidas, es decir las pérdidas en el hierro por unidad de masa (kg) a una inducción de 1T y a una frecuencia de 50

3 Hz. Como las pérdidas son proporcionales al cuadrado de la inducción, podemos calcular la nueva cifra de pérdidas de la siguiente forma, siendo para B 1.T pfe pfe y, finalmente las pérdidas totales para un determinado núcleo como P Fe 1.44pFe0GFe, donde en la expresiones anteriores, el significado de esos términos es p Fe0 cifra de pérdidas para 1T y 50Hz p Fe cifra de pérdidas para 1.T y 50Hz G Fe masa total del hierro para un dado núcleo. Los valores de las pérdidas totales vienen tabulados para 1.T y 50 Hz, con lo cual se nos evita realizar el cálculo. ) Distribución de los bobinados Admitiremos que cada uno de los devanados ocupan una porción igual de la ventana del transformador. Además el llenado de la ventana dependerá de la tensión de aislamiento que se pretende soporte el transformador. Desde el punto de vista matemático la porción de la ventana que se llenará con el cobre de los bobinados se pone de manifiesto con el llamado factor de ventana definido como la relación entre el área ocupada por los bobinados y el área total de la ventana, es decir f V. Vamos a admitir como condición de SCu SV diseño que las pérdidas en el cobre se reparten igualmente en el primario y en o los secundarios. Esto último hará que la sección total del cobre primario y secundario puedan escribirse, en función del factor de ventana fvsv del sig. modo: SCu 1 SCu. La sección de los alambres se obtendrán dividiendo por el número de fvsv fvsv espiras primario y secundario respectivamente, es decir s Cu1 y scu, finalmente de la tabla de N1 N alambres se obtiene el valor del diámetro correspondiente a la sección del primario y del secundario.

4 3) Ejemplo de diseño Las especificaciones que deberá cumplir nuestro transformador serán las indicadas a continuación: Tensión secundaria (V ) 1 V Potencia nominal a entregar en el secundario (P ) 100 W Factor de potencia de la carga (cos ϕ:) 0.85 Tensión primaria (V 1 ) 0 V Frecuencia de la red (f) 50 Hz Emplearemos el método de las pérdidas en el cobre y la inducción máxima. a) Cálculo de las potencias aparentes P 100 Pap Pap VA Pap cos ϕ 0.85 η 0.9 VA En la última expresión hemos tenido en cuenta el efecto del rendimiento y además hemos adoptado un valor arbitrario pero razonable, ya que es un dato que hasta que no definamos el núcleo no podremos conocerlo. Luego habrá que verificar si estamos muy errados o no. b) Elección del núcleo Cono siendo la potencia aparente primaria ingresamos en la tabla 7 (Potencias y pérdidas máximas) Buscamos en la columna de las potencias aparentes el valor más cercano por exceso. Para el caso planteado la potencia aparente más cercana es P ap 18 VA y las pérdidas máximas para ese núcleo (laminación # 60) son, para una cifra de pérdidas de.5 W/kg P Fe 9.5 W y P Cu 10.8 W c) Verificación del rendimiento real P 100 η 0.83 Se observa que es menor que el elegido, por lo tanto habrá que P + PFe + PCu recalcular la potencia aparente primaria y volver a verificar el núcleo. 118 La nueva potencia aparente será: Pap VA Donde adoptamos un rendimiento de 0.8 para 0.8 ponernos en un peor caso. d) Cálculo de las corrientes P I V A 0 P V 118V 1V ap1 ap 1 I e) Número de espiras 9.8A

5 I) Primario En la teoría del transformador dedujimos la expresión que vincula la tensión con la inducción, el área de la sección transversal del núcleo y la frecuencia. E1 0V E1 4.44fBmáxSFeN1 N fBmáxSF Hz 1.T m Los valores utilizados surgen considerando, como dijimos antes que la inducción máxima (de saturación) no debe superar 1.T, es decir B máx 1. T y el área de la sección transversal la obtenemos de la tabla 1 (dimensiones características de los núcleos), siendo S Fe 14.4cm II) Secundario Para obtener el número de espiras del secundario, es necesario conocer la relación de transformación y para ello tenemos que tener en cuenta las caídas de tensión debidas a los bobinados, es decir a las pérdidas en el cobre. Cuando analizamos la teoría del transformador encontramos las expresiones que relacionan tensión, fuerza electromotriz y caída de tensión en el primario y en el secundario. Ellas son V1 E1 + I1Z1 E1 + I1Z1 E1 V1 I1Z V E IZ E V + IZ Llamaremos a las caídas de tensión por el efecto de las pérdidas v 1 I1RCu1 v IRCu Que pueden obtenerse conociendo las pérdidas en el cobre y aceptando que se reparten en forma equitativa entre el primario y PCu 10.8 PCu1 5.4 secundario PCu 1 PCu 5.4W y recordando que PCu 1 I1v1 v1 8V En I forma análoga obtenemos 5.4 v 0.55V 9.8 E1 V1 v1 0 8 N1 N1 574 Por lo tanto r 17. Por lo tanto N 34 E V + v N r 17 f) Elección de los conductores En virtud de o estudiado anteriormente mm scu1 0.31mm mm scu 5.3mm 34 Donde la sección de la ventana la obtenemos de la tabla 1 sección de ventana (b c) 60 mm 0 mm

6 De la tabla de los alambres, entramos con el valor de la sección del alambre y obtenemos el diámetro. Así esp scu1 0.31mm DCu1 0.65mm 14.6 obtenemos cm esp scu 5.3mm DCu.6mm 3.8 cm Donde los últimos valores representan el número de espiras por cm. g) Llenado del carrete Para ver si los bobinados caben correctamente en el carrete, hay que analizar la cantidad de capas de cada tipo de alambre que necesitaremos y sin olvidarnos de los aislantes, que en general será papel presspan. De la tabla de aislantes, podemos adoptar el papel presspan de 0.1 mm de espesor. Por lo tanto esp esp esp cantidad de espiras por capa c cm 70 cm cm capa cantidad de espiras por capa esp 3.8 cm 5.4cm esp 0.5 capa Para el primario y secundario respectivamente. El valor c se obtiene a partir de la hoja de datos de los carretes, entrando con el tipo de laminación (# 60 A), es decir cuadrada El número de capas lo obtenemos N1 574 # de capas 8. 9 capas # espiras por capa 70 N # de capas # espiras por capa capas Finalmente debemos verificar si el devanado entra en el carrete 9 capas 0.65 mm + capas.6 mm + 11 capas aislante 0.1mm + 4 capas aislante 0.1mm 1.55 mm Donde hemos tenido en cuenta que ponemos una capa de papel presspan de 0.1 mm entre capas de espiras y dos capas entre primario y secundario y dos capas externas. Observamos que de la tabla de carretes podemos determinar el espesor disponible del carrete para las capas de espiras. h - b dimensión disponiblepara las capas 19 mm Finalmente vemos que 1.55 mm < 19 mm, es decir que no tendremos problema alguno en el armado del transformador. A continuación van algunas de las tablas útiles para el diseño.

7

8

9

10

11

12

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES Pág. 1 B1.1 RESISTENCIA El valor de la resistencia por unidad de longitud, en corriente continua y a la temperatura, vendrá dada por la siguiente expresión: Siendo:

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada.

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Anexo1. Ejemplo práctico, pg 1 Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Para clarificar conceptos y ver la verdadera utilidad del asunto, haremos el siguiente ejemplo práctico

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

P = Potencia del transformador. Potencia( VA) 10 a 50 51 a100 101 a 200 201 a 500 501 a 1000 1001 a 1500 δ A/mm 2 4 3,5 3 2,5 2 1,5

P = Potencia del transformador. Potencia( VA) 10 a 50 51 a100 101 a 200 201 a 500 501 a 1000 1001 a 1500 δ A/mm 2 4 3,5 3 2,5 2 1,5 CÁLCULO DE PEQUEÑOS TRANSFORMADORES (1) 1. Espiras por voltios. (N/V) N1 V1 N V 3 P 33,6 P N 1 /V 1 Espiras por voltios (en el primario) 3 Constante que depende del tipo de chapa, tipo de transformador...

Más detalles

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica.

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica. TEMA 3: CORRIENTES DE CORTOCIRCUITO EN REDES TRIFÁSICAS. INTRODUCCIÓN. CLASIFICACIÓN DE CORTOCIRCUITOS. CONSECUENCIAS DEL CORTOCIRCUITO. CORTOCIRCUITOS SIMÉTRICOS. 1. Introducción. Causas y Efectos de

Más detalles

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS DE TRANSFORMADORES Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

TEMA Nº7 INSTALACIONES CON LINEAS DE TENSION CONSTANTE (70/100 V)" TPISE Prof. León Peláez Herrero 1

TEMA Nº7 INSTALACIONES CON LINEAS DE TENSION CONSTANTE (70/100 V) TPISE Prof. León Peláez Herrero 1 TEMA Nº7 INSTALACIONES CON LINEAS DE TENSION CONSTANTE (70/100 V)" 1 QUÉ VAMOS A ESTUDIAR? INTRODUCCION TEORIA BASICA DE FUNCIONAMIENTO TRANSFORMADORES VENTAJAS Y DESVENTAJAS DE LAS INSTALACIONES DE MEGAFONIA

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología

Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología Medición de la conductividad térmica de materiales sólidos conductores Leonel Lira Cortés Laboratorio de Propiedades Termofísicas División Termometría, Área Eléctrica Centro Nacional de Metrología INTRODUCCION

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Electricidad Inducción electromagnética Inducción causada por un campo magnético variable

Electricidad Inducción electromagnética Inducción causada por un campo magnético variable P3.4.3.1-2 Electricidad Inducción electromagnética Inducción causada por un campo magnético variable Medición de la tensión de inducción en un lazo conductor con un campo magnético variable Descripción

Más detalles

Tema 14: Sistemas Secuenciales

Tema 14: Sistemas Secuenciales Tema 14: Sistemas Secuenciales Objetivos: (CONTADORES) Introducción. Características de los contadores. Contadores Asíncronos. Contadores Síncronos. 1 INTRODUCCIÓN Los contadores son sistemas secuenciales

Más detalles

PREPARACION OLIMPIADA MATEMATICA CURSO

PREPARACION OLIMPIADA MATEMATICA CURSO Comenzaremos recordando algunos conocimientos matemáticos que nos son necesarios. Para ello veamos el concepto de factorial de un número natural. Es decir, es un producto decreciente desde el número que

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION

Más detalles

Esquemas. CIRCUITO DE REGULACIÓN DE INTENSIDAD. Toda buena fuente debe tener una

Esquemas. CIRCUITO DE REGULACIÓN DE INTENSIDAD. Toda buena fuente debe tener una Una fuente de alimentación es uno de los instrumentos más necesarios para un laboratorio o taller de electrónica, siempre que tenga unas características de regulación de tensión y corriente adecuadas para

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g A s d pilote f ce β γ s área total o bruta de la sección de hormigón, en mm 2. En una sección hueca A g es el área de hormigón solamente

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

Cálculo de transformadores para pequeños equipos electrónicos

Cálculo de transformadores para pequeños equipos electrónicos CALCULO DEL TRANSFORMADOR En el comercio es posible conseguir el tipo de transformador requerido en cada oportunidad; pero cuando ello no es factible, se procede entonces a su construcción., realizando

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

ÍNDICE 1. ANILLO DE DISTRIBUCIÓN DATOS DEL CABLE RED DE BAJA TENSIÓN... 3

ÍNDICE 1. ANILLO DE DISTRIBUCIÓN DATOS DEL CABLE RED DE BAJA TENSIÓN... 3 ÍNDICE 1. ANILLO DE DISTRIBUCIÓN... 2 1.1. DATOS DEL CABLE...2 2. RED DE BAJA TENSIÓN.... 3 2.1. JUSTIFICACIÓN DE CÁLCULOS...3 2.2. MÉTODOS DE INSTALACIÓN EMPLEADOS....7 2.3. LÍNEAS CUADRO DE DISTRIBUCIÓN

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

BALANCE ENERGÉTICO CLIMATIZACIÓN

BALANCE ENERGÉTICO CLIMATIZACIÓN BALANCE ENERGÉTICO EN INSTALACIONES DE CLIMATIZACIÓN LAS CARGAS INTERNAS CARGA POR ILUMINACIÓN La iluminación de un local a acondicionar constituye una generación interna de calor sensible que debe ser

Más detalles

CÁLCULO DEL CIRCUITO QUE ALIMENTA UN MOTOR ELÉCTRICO

CÁLCULO DEL CIRCUITO QUE ALIMENTA UN MOTOR ELÉCTRICO CÁLCULO DEL CIRCUITO QUE ALIMENTA UN MOTOR ELÉCTRICO Profesores: Martínez Antón, Alicia (almaran@csa.upv.es) Blanca Giménez, Vicente (vblanca@csa.upv.es) Castilla Cabanes, Nuria (ncastilla@csa.upv.es)

Más detalles

CÁLCULOS EN ACERO Y FÁBRICA

CÁLCULOS EN ACERO Y FÁBRICA CÁLCULOS EN ACERO Y FÁBRICA Con la entrada del Código Técnico la edificación sufrió un cambio en todos sus niveles, proyecto, construcción y mantenimiento, obteniendo por tanto, todo un conjunto de variaciones

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad

Más detalles

7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS 64 7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS Otro tipo de sobrevoltajes que se presentan en un sistema eléctrico son los llamados temporales, que se caracterizan

Más detalles

Elongación inicial a la rotura, mínimo en % (de la Tracción inicial mínima) 250 %

Elongación inicial a la rotura, mínimo en % (de la Tracción inicial mínima) 250 % SECCIÓN : ESPECIFICACIONES TÉCNICAS DE MATERIALES Y EQUIPOS DEL SISTEMA DE DISTRIBUCIÓN CABLE DUPLEX DE Al, AAC, CABLEADO, NEUTRO DESNUDO, 600 V, XLPE, x n AWG - NOTA REVISIÓN: 0 FECHA: 0-0-0 MATERIAL.

Más detalles

PESO UNITARIO, RENDIMIENTO, Y CONTENIDO DE AIRE DEL HORMIGÓN FRESCO. MÉTODO GRAVIMÉTRICO.

PESO UNITARIO, RENDIMIENTO, Y CONTENIDO DE AIRE DEL HORMIGÓN FRESCO. MÉTODO GRAVIMÉTRICO. PESO UNITARIO, RENDIMIENTO, CONTENIDO DE AIRE DEL HORMIGÓN FRESCO. MÉTODO GRAVIMÉTRICO. (RESUMEN ASTM C 138) 1. ALCANCE 2. EQUIPO Este método de prueba cubre la determinación de la densidad del hormigón

Más detalles

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS Cuando se presenta una falla en un sistema eléctrico de potencia se presenta una condición transitoria que se amortigua rápidamente, quedando

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Soluciones contra el fuego

Soluciones contra el fuego Generalidades sobre el fuego EL TRIANGULO DEL FUEGO El fuego es un fenómeno físico con tres elementos: - Combustible - Comburente (Oxigeno) - Fuente de calor La combustión es una reacción exotérmica (emana

Más detalles

TRAZADO DE LÍNEAS EQUIPOTENCIALES

TRAZADO DE LÍNEAS EQUIPOTENCIALES TRAZADO DE LÍNEAS EQUIPOTENCIALES Nota: Traer, por comisión, dos hojas de papel carbónico de x 30 cm c/u, una hoja A3 o similar de 5 x 30 cm un pendrive o cualquier otro tipo de dispositivo estándar de

Más detalles

II Unidad Diagramas en bloque de transmisores /receptores

II Unidad Diagramas en bloque de transmisores /receptores 1 Diagramas en bloque de transmisores /receptores 10-04-2015 2 Amplitud modulada AM Frecuencia modulada FM Diagramas en bloque de transmisores /receptores Amplitud modulada AM En la modulación de amplitud

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE )

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE ) Asociación española de fabricantes de tubos y accesorios plásticos InfoTUB N.13-005 diciembre 2013 Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE) 1. Introducción Según

Más detalles

Mapas de Puntos. Cartografía a Temática Cuantitativa. Cartografía de superficie

Mapas de Puntos. Cartografía a Temática Cuantitativa. Cartografía de superficie Cartografía a Temática Cuantitativa Cartografía de superficie En la cartografía a temática tica cuantitativa existe el concepto de superficie estadística. stica. La superficie estadística stica es una

Más detalles

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N 1 CARGA AL VIENTO. La carga al viento o resistencia al viento nos indica el efecto que tiene el viento sobre la antena. El fabricante la expresa para una velocidad del viento de 120 km/h (130 km/h en la

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

MEDICIÓN DEL VOLUMEN

MEDICIÓN DEL VOLUMEN MEDICIÓN DEL VOLUMEN CONCEPTOS BÁSICOS Volumen: porción de espacio que ocupa un cuerpo ya sea sólido, líquido o gaseoso. Capacidad: es el volumen de un fluido que puede contener o suministrar un instrumento

Más detalles

Régimen de Conexión a Tierra. Ing. Braulio Alzate Duque SEGELECTRICA MÉXICO

Régimen de Conexión a Tierra. Ing. Braulio Alzate Duque SEGELECTRICA MÉXICO Régimen de Conexión a Tierra Ing. Braulio Alzate Duque SEGELECTRICA MÉXICO Responsabilidad social La responsabilidad social es la teoría ética o ideológica que una entidad ya sea un gobierno, corporación,

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

ESP. Características. Técnicas. Sistema de almacenaje Upmoviom.

ESP. Características. Técnicas. Sistema de almacenaje Upmoviom. ESP Características Técnicas Sistema de almacenaje Upmoviom www.upmoviom.com SISTEMA DE CASILLEROS 1.1 ESPECIFICACIONES TÉCNICAS Los casilleros como norma general, están previstos para su uso con materiales

Más detalles

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno

Más detalles

ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa

ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa Los requisitos pertinentes aplicables del Anexo IV, los requisitos específicos del presente Anexo y los procedimientos

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Dispositivos semiconductores de potencia. Interruptores. Radiadores

Dispositivos semiconductores de potencia. Interruptores. Radiadores Tema VII. Lección 22 Dispositivos semiconductores de potencia. Interruptores. Radiadores 22.1 Generalidades 22.2 Modelo estático de la trasferencia térmica 22.3 Cálculo estático de radiadores 22.4 Modelo

Más detalles

ET008 Transformadores monofásicos auxiliares para equipos

ET008 Transformadores monofásicos auxiliares para equipos ET008 Transformadores monofásicos auxiliares para equipos ESPECIFICACIÓN TÉCNICA Elaborado por: Revisado por: Armando Ciendua Margarita Olano Revisión #: Entrada en vigencia: ET008 08/08/2002 Esta información

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

FIBRA ÓPTICA Perfil de Indice de Refracción

FIBRA ÓPTICA Perfil de Indice de Refracción FIBRA ÓPTICA Perfil de Indice de Refracción Fibra Optica Fibra Optica Ventajas de la tecnología de la fibra óptica Baja Atenuación Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto

Más detalles

Se instalan válvulas reductoras de presión por: Necesidad. Presión de diseño del equipo inferior a la presión disponible

Se instalan válvulas reductoras de presión por: Necesidad. Presión de diseño del equipo inferior a la presión disponible Reducción de presión Se instalan válvulas reductoras de presión por: Necesidad Presión de diseño del equipo inferior a la presión disponible Eficacia Mejora la calidad del vapor Aumenta la vida de los

Más detalles

N I 72.30.00. Transformadores trifásicos sumergidos. Marzo de 2004 EDICION: 5ª NORMA IBERDROLA

N I 72.30.00. Transformadores trifásicos sumergidos. Marzo de 2004 EDICION: 5ª NORMA IBERDROLA N I 72.30.00 Marzo de 2004 EDICION: 5ª NORMA IBERDROLA Transformadores trifásicos sumergidos en aceite para distribución en baja tensión DESCRIPTORES: Transformador. N O R M A N I 72.30.00 Marzo de 2004

Más detalles

Sólo cuerdas dinámicas

Sólo cuerdas dinámicas Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

FUNDAMENTO MATERIAL Y EQUIPOS. Entre otros materiales es necesario disponer de:

FUNDAMENTO MATERIAL Y EQUIPOS. Entre otros materiales es necesario disponer de: González,E.yAlloza,A.M. Ensayos para determinar las propiedades mecánicas y físicas de los áridos: métodos para la determinación de la resistencia a la fragmentación. Determinación de la resistencia a

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Cartografía Temática Recopilación Apuntes Juan E. Gutiérrez Palacios

Cartografía Temática Recopilación Apuntes Juan E. Gutiérrez Palacios IV. MAPAS DE PUNTOS 4.1. INTRODUCCIÓN En los mapas de puntos la información cuantitativa se representa por medio de la repetición de puntos que, a diferencia de los mapas de símbolos proporcionales, no

Más detalles

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, miaguilar@ciudad.com.ar Mariana Ceraolo

Más detalles

SISTEMAS DE CONEXIÓN DEL NEUTRO Y DE LAS ITC-BT-08 MASAS EN REDES DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA Página 1 de 6 0. ÍNDICE...1

SISTEMAS DE CONEXIÓN DEL NEUTRO Y DE LAS ITC-BT-08 MASAS EN REDES DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA Página 1 de 6 0. ÍNDICE...1 ELÉCTRICA Página 1 de 6 0. ÍNDICE 0. ÍNDICE...1 1. ESQUEMAS DE DISTRIBUCION...2 1.1 Esquema TN...2 1.2 Esquema TT...4 1.3 Esquema IT...4 1.4 Aplicación de los tres tipos de esquemas...5 2. PRESCRIPCIONES

Más detalles

Exactitud de medición

Exactitud de medición Exactitud de medición Valores energéticos y rendimiento para inversores FV Sunny Boy y Sunny Mini Central Contenido Todo usuario de una instalación fotovoltaica desea estar informado lo mejor posible sobre

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

Última modificación: 22 de mayo de

Última modificación: 22 de mayo de CÁLCULO DE ENLACE Contenido 1.- Configuración de un enlace satelital. 2.- Atenuación en el espacio libre. 3.- Contornos de PIRE. 4.- Tamaño de la antena parabólica. Última modificación: ió 22 de mayo de

Más detalles

Estufa Bi-Energía Pellet-leña Vario Aqua. Potencia 4,5-14,9 kw. Energie. Genie

Estufa Bi-Energía Pellet-leña Vario Aqua. Potencia 4,5-14,9 kw. Energie. Genie Estufa Bi-Energía Pellet-leña Potencia 4,5-14,9 kw Energie Genie Antes, nunca mirabas a tu caldera. La innovación en la calefacción a leña El número de las estufas Bi-Energía Energie Genie CALEFACCION

Más detalles

Cálculo de disipadores de calor.

Cálculo de disipadores de calor. Cálculo de disipadores de calor. Los disipadores de calor son unos elementos complementarios que se usan para aumentar la evacuación de calor del componente al que se le coloque hacia el aire que lo rodea.

Más detalles

1.1 Qué es y para qué sirve un transformador?

1.1 Qué es y para qué sirve un transformador? TRANSFORMADORES_01_CORR:Maquetación 1 16/01/2009 10:39 Página 1 Capítulo 1 1.1 Qué es y para qué sirve un transformador? Un transformador es una máquina eléctrica estática que transforma la energía eléctrica

Más detalles

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES Área Resultados de aprendizaje Identifica, conecta y analiza conceptos básicos de química para la resolución de ejercicios, desarrollando pensamiento lógico y

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

Tubería interior. Tubería interior

Tubería interior. Tubería interior TUBERÍA PREAISLADA ALB CON POLIETILENO (PE) 1. Descripción Tubería Preaislada ALB flexible, para transporte de calor y frío en redes de distribución, tanto locales como de distrito, formada por una o dos

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles

Equipo que transforma la energía. Figura 6.1 Flujo de energía

Equipo que transforma la energía. Figura 6.1 Flujo de energía ÉRDIDAS Y CALENTAMIENTO EN MÁQUINAS ELÉCTRICAS 6.1 Introducción En todo proceso de transformación de la energía, se produce una diferencia entre la potencia que entrega el equipo para su utilización (otencia

Más detalles

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES TEMA 7 PROBLEMA E LA ISIPACIÓN TÉRMICA EN COMPONENTES 1. GENERALIAES. 2 2. EVACUACIÓN EL CALOR PROUCIO. 3 2.1. Evolución de la T j con el tiempo. 3 2.2. Ley de Ohm térmica. 4 2.3. Circuitos térmicos en

Más detalles

Cálculo de cortocircuitos

Cálculo de cortocircuitos Cálculo de cortocircuitos Índice 2 1 Tipo de Falla Las fallas posibles son: Falla trifásica Falla monofásica a tierra Falla entre dos fases Falla entre dos fases a tierra Fase abierta 3 Tipo de Falla 3-phase

Más detalles

Medir con cámaras infrarrojas

Medir con cámaras infrarrojas El pie diabético es una degeneración de la estructura vascular de los pies. Surge a partir de que se produce un engrosamiento vascular y el flujo sanguíneo se atrofia. Con el paso del tiempo se forman

Más detalles

Imagen 1: Bobina o solenoide del cañón.

Imagen 1: Bobina o solenoide del cañón. Cañones Electromagnéticos Por: Sebastián Camilo Hincapié cód. 244731 Julián Camilo Avendaño cód. 244753 Cañón de Gauss Introducción El cañón de gauss puede definirse como un acelerador magnético, que impulsa

Más detalles

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 9 CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 2.1 Criterios de diseño para el predimensionamiento de los sistemas de abastecimiento de agua 2.1.1 Período de diseño

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

Caudalímetro digital BOSCH HFM Multijet 8v. 1.9 Multijet 8v. Caudalímetro digital BOSCH HFM6 4.7

Caudalímetro digital BOSCH HFM Multijet 8v. 1.9 Multijet 8v. Caudalímetro digital BOSCH HFM6 4.7 1.9 Multijet 8v Caudalímetro digital BOSCH HFM6 4.7 El caudalímetro digital del tipo HFM 6 4.7 es un componente, realizado por Bosch, ( N de recambio 55350048 para la versión de 480Kg/ h de caudal configuración

Más detalles

Ventajas de las puertas de madera maciza.

Ventajas de las puertas de madera maciza. Ventajas de las puertas de madera maciza. POR ANDRÉS CÁCERES G. Las puertas macizas tienen muchas ventajas respecto a las puertas huecas, es por esto que está justificado su mayor precio. Su densidad tiene

Más detalles

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II 26.1. DISTRIBUCIONES PERFECTAMENTE CERRADAS CON TENSIÓN CONSTANTE Y SECCIÓN UNIFORME. Las distribuciones perfectamente cerradas son aquellas en las que el distribuidor

Más detalles

El objeto de este documento unitario es la justificación analítica de los elementos utilizados en la instalación eléctrica objeto de este proyecto.

El objeto de este documento unitario es la justificación analítica de los elementos utilizados en la instalación eléctrica objeto de este proyecto. 1.- Objeto El objeto de este documento unitario es la justificación analítica de los elementos utilizados en la instalación eléctrica objeto de este proyecto. 2.- Fórmulas y criterios de cálculo utilizados

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

TRANSFORMADOR ATERRIZADOR ZIG-ZAG

TRANSFORMADOR ATERRIZADOR ZIG-ZAG S.A. DE C.V. TRANSFORMADOR ATERRZADOR ZG-ZAG CARACTERÍSTCAS GENERALES: El banco aterrizador en zig zag normalmente se utiliza para ofrecer un camino a la corriente de falla, de tal manera, que una falla

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

DENSIDAD Y PESO ESPECÍFICO

DENSIDAD Y PESO ESPECÍFICO DENSIDAD Y PESO ESPECÍFICO Adaptación del Experimento Nº 2 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 43-47. Autorizado por el Autor. Materiales: Cilindros graduados

Más detalles

AUTOMATIZACION. Identificar los elementos utilizados en sistemas neumáticos por su respectivo símbolo y característica de conexión

AUTOMATIZACION. Identificar los elementos utilizados en sistemas neumáticos por su respectivo símbolo y característica de conexión AUTOMATIZACION GUIA DE TRABAJO 6 DOCENTE: VICTOR HUGO BERNAL UNIDAD No. 1 OBJETIVO GENERAL Identificar los elementos utilizados en sistemas neumáticos por su respectivo símbolo y característica de conexión

Más detalles