a la disminución de los hidrocarburos, al and the nervous system of modern incremento en la demanda energética y a machines, such as wind turbine

Tamaño: px
Comenzar la demostración a partir de la página:

Download "a la disminución de los hidrocarburos, al and the nervous system of modern incremento en la demanda energética y a machines, such as wind turbine"

Transcripción

1 47 Investigación, Investigación, desarrollo e innovación tecnológica de sistemas desarrollo control e aerogeneradores innovación Raúl Garduño Ramírez, Arnulfo Antelmo Rodríguez Martínez, Marino Sánchez Parra, Miguel Ángel Martínez Morales, María Aurora Hernández Cuéllar, Indira Xochiquetzal Alcaide Godínez, tecnológica Víctor Genaro Re López y Roberto Hernández González Abstract de sistemas A partir de 1973 resurgió la energía eólica en Europa y en Estados Unidos, debido Control systems constitute the brain a la disminución de los hidrocarburos, al and the nervous system of modern control incremento en la demanda energética y a machines, such as wind turbine la preocupación para la reducción de la generators (TGE by its acronym in Spanish). creciente contaminación ambiental. Con TGEs can work efficiently, safely and almost el avance de la electrónica de potencia en aerogeneradores autonomously, thanks to the control systems las últimas tres décadas, la tecnología para with which they are equipped. Conversely, any convertir la energía del viento en electricidad ha avanzado significativamente en malfunctioning of the control system may cause failure or damage of a component, a subsystem eficiencia, costo y confiabilidad. or even destruction of the TGE itself. This paper introduces some basic facts about generation of electric power from wind energy in the world and Mexico, wind turbogenerators and their most relevant technologies, TGE control systems, and R&TD+I about TGE control systems performed at the Instituto de Investigaciones Eléctricas. Introducción La energía eólica representa actualmente, una de las alternativas más viables para la generación eléctrica con energía renovable. La transición de molinos de viento que suministran energía mecánica a turbinas eólicas generadoras de electricidad, comenzó alrededor del año 1900 en los Estados Unidos y Dinamarca. En 1930 se analizó su conexión a la red eléctrica, sin embargo, con la aparición de los radios de transistores de escaso consumo de energía mediante el uso de pilas, se enfocó la aplicación de los aerogeneradores a la carga de baterías de vehículos de campo. El sistema de control de un aerogenerador constituye el cerebro de la máquina; su objetivo es garantizar su operación segura y eficiente, así como salvaguardar su integridad física. Este tipo de generación es hoy en día la de mayor penetración en el mercado de las energías renovables, con tasas de crecimiento anual superiores al 35%, de acuerdo con información del Consejo Eólico Mundial (GWEC por su siglas en inglés) (GWEC, 2012). A finales de 2011 se alcanzaron GW de capacidad de generación eólica instalada en todo el mundo (figura 1). China es el país que ocupa el primer lugar con GW, superando a los Estados Unidos que cuentan con una capacidad de generación instalada de GW. En Europa, Alemania se situó en tercer lugar con GW y España en el cuarto lugar con GW. En quinto lugar está la India con GW. Otras naciones en desarrollo también han aumentado su capacidad eólica. Por ejemplo, en Latinoamérica, Brasil llegó a GW; en África, Egipto alcanzó 550 MW y Marruecos 291 MW; en Europa, Rumania 59 MW, Polonia 245 MW, Croacia 20 MW y Estonia 48 MW.

2 48 Boletín IIE abril-junio-2012 Divulgación Esta tecnología se está expandiendo más allá de los tradicionales mercados de los países ricos y se espera que su desarrollo continúe no sólo en Asia, sino también en Latinoamérica, principalmente Brasil y México, y en África. La generación de energía eléctrica a partir de la energía del viento es una alternativa viable para satisfacer buena parte de la necesidad de energía eléctrica en el mundo, con las siguientes ventajas: 1) Es energía limpia que no produce gases tóxicos que contribuyen al calentamiento global y 2) La fuente de energía se renueva constantemente y no tiene costo. Energía eólica en México Figura 1. Capacidad anual de generación eólica instalada en el mundo en el período En 2010 se estimó que el potencial de generación eólica en México es de 71,000 MW, con lo cual podría generarse toda la energía eléctrica requerida en el país. Las regiones con mayor potencial eólico se encuentran en la Península de California, Sinaloa, Zacatecas, Hidalgo, Tamaulipas, Veracruz, Oaxaca y en la Península de Yucatán (Acosta, 2006) (figura 2). El mayor potencial eólico se concentra en el Estado de Oaxaca y se estima en 33,200 MW en la zona del Istmo de Tehuantepec, que es una de las zonas con mejores condiciones eólicas en el mundo. La capacidad de generación instalada en México pasó de 2 MW en 1994 a 773 MW en Se prevé que en 2014 llegará a 6,792 MW y se espera que para 2026, la capacidad eoloeléctrica total instalada sea de 20,900 MW, aportando el 5.3% del total de la energía eléctrica requerida (SENER, 2012) (figura 3). En 2011, la Secretaría de Energía (SENER) otorgó permisos para la construcción de proyectos eólicos por Figura 2. Regiones con mayor potencial de generación eólica en México. 2,069 MW, de los cuales cerca del 50% ya se encuentra en construcción. En la región de La Ventosa, Oaxaca, se encuentran en desarrollo tres parques eólicos: La Venta III, Oaxaca I y Oaxaca IV, con una capacidad de 307 MW, para entrar en operación en Para los siguientes años se tienen contemplados otros proyectos eólicos en las principales regiones con capacidad de generación eólica en el país, por ejemplo, en Baja California se tienen proyectadas las centrales eoloeléctricas La Rumorosa I, II y III. En la mayoría de los proyectos de generación eólica por desarrollarse se prevén parques de generación de 100 MW en promedio.

3 49 Figura 3. Proyección para el período de la capacidad estimada de generación eólica en México. Aerogeneradores y parques eólicos Un aerogenerador es una máquina formada principalmente por una turbina eólica y un generador eléctrico. La turbina eólica transforma la energía cinética del viento en energía mecánica rotacional, la cual es transformada en energía eléctrica por el generador. Existen dos tipos de aerogeneradores según su eje de rotación: horizontal y vertical. Por motivos de eficiencia y mayor rendimiento, el tipo de aerogenerador más utilizado en la actualidad es el aerogenerador de eje horizontal, en el cual, el eje de rotación se encuentra paralelo al suelo. Este tipo de aerogeneradores tienen su eje de rotación principal en la parte superior de una torre y necesitan un mecanismo de orientación para hacer frente a los cambios bruscos en la dirección del viento. Las partes principales de un aerogenerador de eje horizontal (figura 4) son las siguientes: Rotor: Su función es transformar la energía cinética del viento en un par mecánico de torsión en el eje del equipo. La velocidad de rotación se encuentra acotada por parámetros del diseño estructural, siendo la velocidad de punta de las aspas el principal indicador. Góndola o nacelle: Sirve de alojamiento para los elementos mecánicos y eléctricos (caja multiplicadora, generador eléctrico, módulos de control, etc.) del aerogenerador. Caja de engranajes o multiplicadora: Puede estar presente o no. Transforman la baja velocidad del eje del rotor en alta velocidad de rotación, en el eje del generador eléctrico. Generador eléctrico: Existen diferente tipos, dependiendo del diseño del aerogenerador: síncronos o asíncronos, jaula de ardilla o doblemente alimentados, con excitación o con imanes permanentes. Este equipo convierte la energía en electricidad. Torre: Ubica a la góndola a una mayor altura, donde los vientos son de mayor intensidad, permitiendo el giro de las aspas. Su diseño estructural soporta el peso de los equipos contenidos en la góndola del aerogenerador. Figura 4. Aerogenerador tripala de eje horizontal. Sistema de control: Se hace cargo del funcionamiento seguro y eficiente del equipo, controla la orientación de la góndola, la posición de las aspas y la potencia total entregada por el equipo. En un parque eólico, los aerogeneradores deben ser colocados de manera óptima y en función de diversas variables, como la ubicación de la infraestructura existente (accesos y red eléctrica), la viabilidad económica, los impactos ambientales y la producción de energía. Las turbinas deben situarse a cierta distancia unas de las otras, en términos de aerodinámica, porque el paso del viento por las aspas de un aerogenerador genera turbulencias en el mismo. Como norma general, la separación entre aerogeneradores en un parque eólico es de 5 a 9 diámetros de rotor en la dirección de los vientos dominantes y de 3 a 5 diámetros de rotor en la dirección perpendicular a los vientos dominantes. La figura 5 muestra una fila de aerogeneradores instalados en la central eoloeléctrica La Venta.

4 50 Boletín IIE abril-junio-2012 Divulgación Tecnologías de aerogeneradores Las tecnologías de aerogeneradores más utilizadas constan de una turbina eólica de eje horizontal, con diferentes tipos de generadores eléctricos (Marques, 2003), los cuales son: 1) Generador de inducción doblemente alimentado (DFIG), 2) Generador de inducción de jaula de ardilla (IG), 3) Generador síncrono de imanes permanentes (PMSG) y 4) Generador síncrono de rotor devanado (SG). Usualmente, estos aerogeneradores constan de una turbina eólica tripala de eje horizontal, con capacidad de operación a velocidad variable, una caja de engranes multiplicadora de velocidad, un generador eléctrico, un convertidor electrónico de frecuencia de potencia parcial o total y un transformador para la conexión a la red eléctrica, como se muestra en la figura 6. En todos estos tipos de aerogeneradores, la energía cinética del viento es capturada por las aspas de la turbina y transformada en energía mecánica rotacional de baja velocidad. La energía mecánica se transfiere mediante la caja de engranes a una velocidad más alta al generador eléctrico, para ser convertida en energía eléctrica. En un aerogenerador DFIG se produce energía eléctrica en los devanados del estator y del rotor. La energía producida en el estator tiene la frecuencia de la red eléctrica (60 Hz en México) y la producida en el rotor tiene una frecuencia variable dependiendo de la velocidad del viento. La energía eléctrica de frecuencia variable es convertida a la frecuencia de la red eléctrica por el convertidor electrónico. Finalmente, ambos flujos de potencia se suman y son alimentados a la red eléctrica Figura 5. Parque de generación eólica La Venta. a través de un transformador de potencia. En los aerogeneradores IG, PMSG y SG se produce energía eléctrica de frecuencia variable, en función de la velocidad del viento en los devanados del estator. Esta energía es convertida a frecuencia fija por el convertidor electrónico de potencia y posteriormente se transfiere a la red eléctrica, a través del trasformador de potencia. Cada tecnología tiene sus ventajas y desventajas relativas al costo, tamaño y peso de los equipos, calidad de la energía eléctrica, confiabilidad y mantenimiento (Polinder, 2005). La tecnología DFIG utiliza un convertidor electrónico cuya potencia equivale a un tercio de la potencia total del generador, mientras que las otras tres tecnologías descritas utilizan un convertidor de potencia completa, lo cual representa mayor costo y tamaño de este equipo. Además, el DFIG es 25% más barato que el IG. Por otro lado, el SG es el único que necesita un sistema de excitación. Una ventaja del PMSG es que la excitación del generador no es afectada por transitorios externos de la red. Control de aerogeneradores El sistema de control (SC) de un aerogenerador (TGE) constituye el cerebro de la máquina. Su objetivo es el de garantizar la operación segura y eficiente del TGE, así como salvaguardar su integridad física. En forma general, el SC de un aerogenerador contempla un sistema de control secuencial (SCS) y un sistema de control regulatorio (SCR). El SCS verifica el cumplimiento de una serie consecutiva de acciones y permisivos, y con base en ello toma acciones para posicionar al TGE en uno de los estados operativos (EO), incluidas en todas las fases de su operación. Asimismo, realiza la transición entre los diferentes EO de la máquina, distinguiendo entre las distintas situaciones de emergencia y condiciones de seguridad que se presentan ante contingencias en la operación del TGE. Los cambios de un EO a otro se realizan mediante una petición del usuario a través de la terminal de operación, o porque se produce alguna alarma que obliga al sistema a la existencia de un cambio de EO. Cuando se presentan

5 51 varias alarmas en forma simultánea, el SCS situará a la máquina en el EO más restrictivo de todas ellas. a) Doblemente alimentado (DFIG). b) Inducción de jaula de ardilla (IG). En forma general, un TGE puede estar en cualquiera de los siguientes EO: disponible, marcha, listo, generando, fuera de servicio: paro, emergencia o mantenimiento (figura 7). Disponible: El aerogenerador está disponible cuando no hay ninguna alarma activa y por lo tanto el TGE puede entrar en operación. En este EO, el sistema de orientación está activo. Marcha: El TGE entra en este EO, cuando el operador da la orden de arrancar, con lo cual el SCS inicia la secuencia de arranque y lleva a la máquina hasta un punto, antes de alcanzar las condiciones de sincronismo. c) Síncrono de imanes permanentes (PMSG). d) Síncrono de rotor devanado (SG). Figura 6. Tipos de aerogenerador. Figura 7. Estados operativos típicos de un aerogenerador.

6 52 Boletín IIE abril-junio-2012 Divulgación Listo: El aerogenerador entra en este EO, si al dar la orden de arranque o marcha la velocidad del viento está por debajo de una velocidad mínima de operación. En este caso, el aerogenerador se quedará en un estado transitorio de listo, orientándose continuamente con la dirección del viento y esperando solamente a que se den las condiciones de viento para continuar con la secuencia de arranque, hasta conectarse a la red (EO: Generando). Generando: Si se dan todas las condiciones para continuar con la secuencia de arranque y se alcanzan las condiciones de sincronismo, el aerogenerador se conecta a la red y genera potencia eléctrica. Fuera de servicio: Un TGE puede estar fuera de servicio y pasar a un EO de paro o de emergencia. Paro: Un aerogenerador pasa al EO de paro cuando se encuentra generando y sale de operación por un paro normal. Este paro puede ser a solicitud del operador o por la activación de alguna alarma. Sale de este EO cuando se corrige el problema que originó la alarma, se realiza el reconocimiento de alarmas y el operador solicita el cambio. Emergencia: El TGE pasa a un estado de emergencia cuando está generando y el operador activa un botón de paro de emergencia, o por la activación de alguna alarma de emergencia. Mantenimiento: Un TGE puede estar en mantenimiento ya sea preventivo, o por la existencia de problemas en alguno de sus componentes. En cuanto al SCR, su implementación debe cumplir con los siguientes objetivos: Captura eficiente de la energía disponible en el viento para todo el rango de velocidades de operación; limitación de las cargas mecánicas dinámicas excesivas y mitigación de las cargas transitorias; cumplimiento de los estándares de calidad de energía y satisfacción de los requerimientos del código de red vigente (Bianchi, 2007). Para lograr lo anterior, el SCR incluye el control de orientación de la góndola, el control de la posición angular de las aspas (pitch), el control del generador eléctrico y el control del convertidor de potencia. El sistema de control para el caso de un aerogenerador DFIG se muestra en la figura 8. El sistema de control de orientación tiene por objetivo alinear el eje del rotor, es decir, la posición de la góndola con la dirección del viento, con la finalidad de que las fuerzas de empuje y de levantamiento sean transmitidas lo más uniformemente posible a todo el tren de potencia y aprovechar al máximo la energía disponible del viento, ayudando con ello a minimizar los esfuerzos en los componentes mecánicos. El propósito del sistema de control de la posición angular de las aspas es ajustar dicho ángulo, en función de la velocidad del viento para cambiar la fuerza aerodinámica en las aspas y regular la potencia producida por la turbina eólica. En el modo de operación a velocidad variable con posición angular variable, el control de la turbina se programa para operar a velocidad variable y con una posición angular fija, este esquema es para velocidades de viento por debajo de la velocidad nominal, o bien, a velocidad constante y posición angular variable, para velocidades de viento por arriba de la velocidad nominal. La operación a velocidad variable permite maximizar la captura de energía a bajas velocidades de viento, mientras que la operación con posición angular variable permite regular la potencia de salida a velocidades de viento por arriba de la velocidad nominal. Como resultado se obtiene una curva de operación (figura 9), en la que se muestra la potencia producida por un aerogenerador, en función de la velocidad del viento. Figura 8. Sistemas de control de un aerogenerador.

7 53 En general se tienen dos estrategias básicas de control de la turbina eólica: Control a potencia constante y control a torque constante. En la primera, el sistema de control regula la potencia de salida del aerogenerador, de tal forma que la potencia sea constante para velocidades de viento arriba de la velocidad nominal. En la segunda, el sistema de control tiene como objetivo mantener constante el torque producido por la turbina para velocidades de viento arriba de la velocidad nominal (figura 10). La ventaja principal del control de torque es que se reducen los esfuerzos mecánicos de los componentes del tren de potencia, reduciendo con ello el número de fallas y los costos de mantenimiento. El control del convertidor de potencia AC-DC-AC puede realizar varias funciones. El convertidor del lado máquina funciona generalmente como un rectificador. El sistema de control puede regular el flujo de potencia o el torque contra-electromotriz en el generador de una manera muy rápida y precisa, lo cual permite equilibrar la potencia o el par aplicado por la turbina a la flecha del generador. El control del convertidor del lado red puede usarse para regular la potencia reactiva, el voltaje de salida del aerogenerador o el factor de potencia. Asimismo, el control de los convertidores puede incluir los elementos necesarios para evitar la desconexión de la red, debido a un hueco de tensión (figura 11) y con ello satisfacer los requerimientos de los códigos de red (figura 12). El control del convertidor de potencia también puede usarse para reducir las variaciones de la frecuencia y del voltaje en el punto de conexión a la red y la emisión de parpadeo (flicker), originados por la variación de la velocidad del viento y causantes de la baja calidad de la energía que típicamente suministran los aerogeneradores. Grupo de I+DT+i en control de aerogeneradores La Gerencia de Control, Electrónica y Comunicaciones del Instituto de Investigaciones Eléctricas cuenta con un grupo de investigación enfocado al desarrollo de sistemas de control para aerogeneradores. Este grupo terminó en diciembre de 2010, un proyecto para la Comisión Federal de Electricidad (CFE), en el que se monitoreó durante más de un año, la operación de un aerogenerador de 850 kw en la central eoloeléctrica La Venta, en la región de la Ventosa en el Istmo de Tehuantepec, Oaxaca. El objetivo del proyecto fue recabar información de las variables que caracterizan el comportamiento de la máquina y que permiten establecer las condiciones de operación que pueden dar origen a fallas en los equipos, así como la identificación de las estrategias del sistema de control. Se instrumentó un aerogenerador para medir las variables, se instalaron dos sistemas de adquisición de datos y se equipó para transmitir la información recabada hasta las instalaciones del IIE en Cuernavaca, Morelos. Con los resultados de este proyecto, la CFE podrá mejorar sus prácticas operativas y de mantenimiento para obtener mayores beneficios técnicos, económicos y ambientales del parque eólico. Actualmente, este grupo de investigadores está desarrollando el sistema de control para un aerogenerador de 1.2 MW con financiamiento del CONACYT. Adicionalmente, el grupo cuenta con una amplia gama de capacidades técnicas entre las que se encuentran las siguientes: a) Monitoreo y diagnóstico de la operación de aerogeneradores, b) Especificación de equipos, sensores y actuadores e integración de sistemas de control, c) Diseño y desarrollo de interfaces de operación (IHM) de aerogeneradores, d) Diseño de estrategias Figura 9. Curva típica de potencia-velocidad de un aerogenerador de operación a velocidad variable. Figura 10. Esquema genérico de control de torque constante y potencia constante para un aerogenerador.

8 54 Boletín IIE abril-junio-2012 Divulgación Figura 11. Hueco de tensión y respuesta de un aerogenerador DFIG con crowbar activo. Figura 12. Especificación del umbral mínimo de caída de tensión que debe soportar un aerogenerador sin salir de operación. de control retroalimentado y secuencial de aerogeneradores, e) Diseño y supervisión técnica de pruebas de aceptación en fábrica (FAT), instalación, pruebas de aceptación en sitio (SAT) y puesta en servicio de sistemas de control, f) Cursos de capacitación de operación y mantenimiento del sistema de control y g) Modelado y simulación de aerogeneradores para desarrollo de sistemas de control. Perspectivas de I+DT+i en control de aerogeneradores Un aerogenerador es un sistema complejo con grandes estructuras flexibles que trabaja bajo condiciones ambientales turbulentas e impredecibles, y está sujeto a las demandas variables de una red eléctrica a la cual está interconectado. La eficiencia y confiabilidad de un aerogenerador depende fuertemente de las características del sistema de control con que está equipado. Para optimizar la operación y el mantenimiento de un aerogenerador es necesario desarrollar sistemas de control de alto desempeño que regulen, de una manera coordinada, la orientación de la góndola, la posición angular de las aspas, la velocidad del rotor, el torque mecánico, el par contraelectromotriz, las potencias activa y reactiva generadas y el factor de potencia. Sistemas de control que supervisen y mantengan en zona segura las corrientes, voltajes y temperaturas de los componentes eléctricos, los torques, esfuerzos y deformaciones de los componentes mecánicos, así como las variaciones de voltaje, sobrecargas y contenido armónico de los componentes electrónicos. Sistemas de control que tomen en cuenta las grandes no linealidades y los problemas de estabilidad en la dinámica de un aerogenerador, debidos a la interacción de los subsistemas aerodinámico, mecánico, eléctrico y electrónico, así como los objetivos de optimización de la generación de energía, estrategias de reducción de cargas y esfuerzos, los requerimientos de confiabilidad y disponibilidad, y la incertidumbre de los modelos matemáticos. Adicionalmente, el creciente nivel de penetración de la energía eoloeléctrica en las redes eléctricas ha creado nuevos problemas y retos técnicos entre los que se incluyen: Respuesta a huecos de tensión de la red, control de frecuencia y potencia activa, regulación del voltaje y la potencia reactiva, restauración de los servicios de la red después de caídas de potencia, predicción del viento, etc. Esto ha resultado en la necesidad imperante de desarrollar nuevas soluciones de control para aerogeneradores que combinen control no lineal, técnicas adaptivas, metodologías robustas, estrategias de reparto de carga, leyes predictivas, control multivariable y control inteligente. Referencias GWEC. Global Wind Statics 2011, Febrero SENER. Estrategia Nacional de Energía , Febrero Acosta T. A. Parque Eólico en el Istmo de Tehuantepec, CFE, septiembre Marques J., Pinherio H., Gründling H. A., Pinherio J. R. y Hey H. L. A survey on variable-speed wind turbine system, Congreso Brasileño de Electrónica de Potencia (COBEP), Brasil, Polinder H., De Haan S. W. H., Dubois M. R. y Slootweg J. G. Basic Operation Principles and Electrical Conversion Systems of Wind Turbines, EPE Journal, Vol. 5, No. 4, Países Bajos, Bianchi D. F., De Battista H. y Mantz R. J. Wind Turbine Control Systems. Principles, Modelling and Gain Scheduling Design, Springer-Verlag, 2007.

9 55 RAÚL GARDUÑO RAMÍREZ Doctor en Filosofía por la Pennsylvania State University en el año Maestro en Ciencias por el CINVESTAV-IPN en Ingeniero Electricista por la ESIME-IPN en En 1986 trabajó en el Laboratorio Nacional de Ingeniería Mecánica de Japón. Desde 1987 trabaja en el Instituto de Investigaciones Eléctricas, en la Gerencia de Control, Electrónica y Comunicaciones, en el desarrollo de sistemas de control para centrales eléctricas. Sus áreas de investigación incluyen sistemas de control inteligente, optimización dinámica multiobjetivo y control de turbogeneradores. Ha publicado dos libros, cinco capítulos de libros y más de ochenta artículos técnicos. Es autor del libro: Fossil-Fuel Power Plant Control: An Intelligent Hybrid Approach. Es miembro del Sistema Nacional de Investigadores (SNI), Sistema Estatal de Investigadores (SEI) en Morelos y Senior Member del IEEE. ARNULFO ANTELMO RODRÍGUEZ MARTÍNEZ [armtz@iie.org.mx] Maestro en Ciencias en Control por el CENIDET en Ingeniero en Comunicaciones y Electrónica por la ESIME-IPNl en 1987, año en que ingresó al IIE, a la Gerencia de Control, Electrónica y Comunicaciones, donde ha participado y dirigido diversos proyectos de modernización de sistemas de control e instrumentación para PEMEX y la CFE, en proyectos de desarrollo de modelos bi y tridimensionales inteligentes de plataformas marítimas de PEMEX y de diseño de sistemas de seguridad contra incendio para centrales termoeléctricas e hidroeléctricas. Actualmente participa en el diseño del sistema de control de la Máquina Eólica Mexicana (MEM). MARINO SÁNCHEZ PARRA [msanchez@iie.org.mx] Doctor y Maestro en Ingeniería por la Universidad Nacional Autónoma de México (UNAM). Ingeniero en Comunicaciones y Electrónica por el Instituto Politécnico Nacional (IPN). En 1988 ingresó al IIE, a la Gerencia de Control, Electrónica y Comunicaciones, donde se ha desempeñado como investigador y Jefe de Proyecto. Ha colaborado en el desarrollo, implantación y puesta en marcha de sistemas de control digital para unidades de generación de centrales de ciclo combinado y turbinas de gas de baja potencia, así como en proyectos para desarrollo de tecnología de control usando técnicas de control inteligente. Sus temas de interés principal incluyen el control avanzado y el control inteligente, el diagnóstico de fallas y el control tolerante a fallas aplicado a unidades de generación eléctrica. MIGUEL ÁNGEL MARTÍNEZ MORALES [mamm@iie.org.mx] Ingeniero Mecánico Electricista con especialidad en Sistemas Digitales por la Universidad Nacional Autónoma de México (UNAM) en En 1993 ingresó al IIE, a la Gerencia de Control, Electrónica y Comunicaciones, donde ha participado en proyectos relacionados con el control de la generación de energía en centrales eléctricas. Actualmente participa en un proyecto para el desarrollo de un prototipo para el control de una máquina eólica de 1.2 MW, en donde ha participado en la especificación técnica de los sensores requeridos para la máquina, así como la especificación y desarrollo de la interfaz humano-máquina del sistema. MARÍA AURORA HERNÁNDEZ CUÉLLAR [mahc@iie.org.mx] Maestra en Ciencias Computacionales por el Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM). Ingeniera Industrial Química por el Instituto Tecnológico de Aguascalientes. En 1984 ingresó al IIE, a la Gerencia de Control, Electrónica y Comunicaciones, donde ha participado en proyectos de ingeniería de control e instrumentación básica de centrales termoeléctricas, mejora de estrategias de control de la Central de Ciclo Combinado de la CFE en Dos Bocas, Veracruz; supervisión y puesta en servicio de plantas de turbinas de gas, así como servicios para Pemex Exploración y Producción. Es autora y coautora de varios artículos técnicos en congresos y revistas nacionales e internacionales, así como el registro de derechos de autor. Actualmente colabora en el proyecto de la Máquina Eólica Mexicana (MEM). INDIRA XOCHIQUETZAL ALCAIDE GODÍNEZ [indira.alcaide@iie.org.mx] Ingeniera Eléctrica egresada de la Universidad Autónoma del Estado de Morelos (UAEM) en Ha colaborado en la adquisición y monitoreo remoto de un aerogenerador de 850 kw en Juchitán, Oaxaca. Ha participado en la publicación de seis artículos en congresos nacionales e internacionales y tiene un registro de Derechos de Autor: Evaluador de sistemas de control de turbogeneradores de combustión. Actualmente participa en el grupo de desarrollo del sistema de control de la Máquina Eólica Mexicana (MEM). VÍCTOR GENARO RE LÓPEZ [revic@iie.org.mx] Ingeniero en Electrónica y Comunicaciones por la Universidad de las Américas (UDLA). En 1986 se integró al IIE, a la Gerencia de Control, Electrónica y Comunicaciones, participando en diferentes proyectos de investigación y de aplicaciones tecnológicas para la CFE y PEMEX. Es especialista en electrónica analógica (acondicionamiento de señales, sistemas de adquisición de datos de alta velocidad y precisión), electrónica para medio hostil (alta temperatura), sistemas de seguridad gas y fuego, CCTV, cámaras de alta velocidad, sistemas de acceso y enlaces inalámbricos. Ha asesorado tesis de licenciatura. Actualmente colabora en el proyecto de la Máquina Eólica Mexicana (MEM). ROBERTO HERNÁNDEZ GONZÁLEZ [rhg@iie.org.mx] Ingeniero Mecánico Electricista por la UNAM en En 1973 ingresó al Plan Nacional Hidráulico y en 1978 a la Universidad Autónoma Metropolitana (UAM) Iztapalapa, desarrollando simulación de modelos hidráulicos. En 1980 ingresó al IIE como responsable del Centro de Cómputo en México y desde 1997 participa en la Gerencia de Control, Electrónica y Comunicaciones como investigador y Jefe de Proyecto. Sus áreas de interés incluyen monitoreo y adquisición de datos de generadores eléctricos, aerogeneradores, redes de computadoras, comunicaciones y administración de centros de cómputo. Ha dirigido tesis de licenciatura. De 1988 a 1997 fue profesor en la Facultad de Ingeniería de la UNAM. De izquierda a derecha atrás: Víctor Genaro Re López, Roberto Hernández González, Miguel Ángel Martínez Morales y Raúl Garduño Ramírez. De izquierda a derecha al frente: María Aurora Hernández Cuéllar, Indira Xochiquetzal Alcaide Godínez, Arnulfo Antelmo Rodríguez Martínez y Marino Sánchez Parra.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

Especificación para la Interconexión a la Red Eléctrica de Baja Tensión de Sistemas Fotovoltaicos con capacidad hasta 30 kw

Especificación para la Interconexión a la Red Eléctrica de Baja Tensión de Sistemas Fotovoltaicos con capacidad hasta 30 kw Especificación para la Interconexión a la Red Eléctrica de Baja Tensión de Sistemas Fotovoltaicos con capacidad hasta 30 kw 1 Contenido de la Especificación 1.- Objetivo 2.- Campo de aplicación 3.- Normas

Más detalles

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 Por Guillermo Martín Díaz Alumno de: 1º Ingeniería Informática Curso 2005/2006 ËQGLFH Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 2 0RWRUHVGH&RUULHQWHFRQWLQXD Son los mas

Más detalles

ENERGÍA ELÉCTRICA. Central Eólica

ENERGÍA ELÉCTRICA. Central Eólica ENERGÍA ELÉCTRICA. Central Eólica La energía eólica es la energía obtenida por el viento, es decir, la energía cinética obtenida por las corrientes de aire y transformada en energía eléctrica mediante

Más detalles

Calidad de la Alimentación Zona de Falla

Calidad de la Alimentación Zona de Falla Calidad de la Alimentación Zona de Falla La calidad de la alimentación se focaliza en la condición del voltaje y la corriente en el circuito de un motor. Una pobre calidad de la alimentación afecta enormemente

Más detalles

Al primer bimestre de 2012, la capacidad instalada para la generación de energía eléctrica con fuentes renovables fue de 14,357 MW 7

Al primer bimestre de 2012, la capacidad instalada para la generación de energía eléctrica con fuentes renovables fue de 14,357 MW 7 ENERGÍAS RENOVABLES EN MÉXICO El sector de ER, a pesar de ser una industria naciente en México, ha crecido favorablemente en los últimos años, principalmente en energía eólica y en fechas recientes se

Más detalles

Instituto de Investigaciones Eléctricas Gerencia de Energías No Convencionales. Taller de Introducción a la Tecnología de Aerogeneradores

Instituto de Investigaciones Eléctricas Gerencia de Energías No Convencionales. Taller de Introducción a la Tecnología de Aerogeneradores Instituto de Investigaciones Eléctricas Gerencia de Energías No Convencionales Taller de Introducción a la Tecnología de Aerogeneradores Módulo 1: Introducción Marco Borja (Julio de 2007) Estructura del

Más detalles

CAPÍTULO 7 7. CONCLUSIONES

CAPÍTULO 7 7. CONCLUSIONES CAPÍTULO 7 7. CONCLUSIONES 7.1. INTRODUCCIÓN 7.2. CONCLUSIONES PARTICULARES 7.3. CONCLUSIONES GENERALES 7.4. APORTACIONES DEL TRABAJO DE TESIS 7.5. PROPUESTA DE TRABAJOS FUTUROS 197 CAPÍTULO 7 7. Conclusiones

Más detalles

Tiene como fuente el viento, es decir, el aire en movimiento. Lo que se aprovecha de la energía eólica es su energía cinética.

Tiene como fuente el viento, es decir, el aire en movimiento. Lo que se aprovecha de la energía eólica es su energía cinética. Energía eólica Tiene como fuente el viento, es decir, el aire en movimiento. Lo que se aprovecha de la energía eólica es su energía cinética. Desde hace siglos el ser humano ha aprovechado la energía eólica

Más detalles

Aplicación de métodos estadísticos en el sector eólico. Evaluación del recurso energético

Aplicación de métodos estadísticos en el sector eólico. Evaluación del recurso energético Aplicación de métodos estadísticos en el sector eólico. Evaluación del recurso energético Julio 28 tema de portada 9 Henar Estévez Martín IBERDROLA RENOVABLES. Jefe del Departamento de Recurso Eólico Javier

Más detalles

1.1 EL ESTUDIO TÉCNICO

1.1 EL ESTUDIO TÉCNICO 1.1 EL ESTUDIO TÉCNICO 1.1.1 Definición Un estudio técnico permite proponer y analizar las diferentes opciones tecnológicas para producir los bienes o servicios que se requieren, lo que además admite verificar

Más detalles

Sistema de Control como herramienta de eficiencia energética

Sistema de Control como herramienta de eficiencia energética Sistema de Control como herramienta de eficiencia energética Resumen: En la actualidad, la gestión eficiente de la energía es todo un reto, por ello las propiedades se plantean cómo mejorar su eficiencia

Más detalles

DIRIGIDA A PRESENTACIÓN OBJETIVOS ESPECÍFICOS

DIRIGIDA A PRESENTACIÓN OBJETIVOS ESPECÍFICOS Maestría en Ingeniería DIRIGIDA A PRESENTACIÓN La Maestría en Ingeniería de la Universidad Autónoma de Occidente surge como respuesta a los retos actuales y futuros de la ingeniería, que requieren de profesionales

Más detalles

CARACTERÍSTICAS OPERACIONALES DE LAS TURBINAS EÓLICAS

CARACTERÍSTICAS OPERACIONALES DE LAS TURBINAS EÓLICAS CARACTERÍSTICAS OPERACIONALES DE LAS TURBINAS EÓLICAS Comportamiento en una Granja Eólica Estela de la turbina Turbulencia Déficit de velocidad Consecuencia de la estela de la turbina Pérdidas de conjunto

Más detalles

1. Introducción. Universidad de Cantabria 1-1

1. Introducción. Universidad de Cantabria 1-1 1. Introducción Las empresas de transporte y distribución de energía eléctrica tuvieron que afrontar históricamente el problema que suponía el aumento de la energía reactiva que circulaba por sus líneas.

Más detalles

Estabilizador de frecuencia y tensión basado en el volante de inercia. Proyecto de I+D+i. Subestación de Mácher 66 kv (Lanzarote)

Estabilizador de frecuencia y tensión basado en el volante de inercia. Proyecto de I+D+i. Subestación de Mácher 66 kv (Lanzarote) Estabilizador de frecuencia y tensión basado en el volante de inercia. Proyecto de I+D+i Subestación de Mácher 66 kv (Lanzarote) 24 de octubre del 2014 La inercia En física, la inercia es la propiedad

Más detalles

Energía Eólica y Solar para el Desarrollo Sustentable de México

Energía Eólica y Solar para el Desarrollo Sustentable de México Enrique Müller Llano Aalborg University 3er Semestre, Wind Power Systems emulle13@student.aau.dk Energía Eólica y Solar para el Desarrollo Sustentable de México Situación Actual del Sector Energético Mexicano

Más detalles

Qué es PRESS-SYSTEM?

Qué es PRESS-SYSTEM? Qué es PRESS-SYSTEM? Es un sistema novedoso desarrollado e implementado por Efinétika que consigue mejoras sobre el rendimiento de los sistemas de bombeo de fluidos, aportando grandes ahorros energéticos

Más detalles

PROCEDIMIENTO PARA PRUEBAS DE VALIDACION DE MODELOS MATEMATICOS DE UNIDADES GENERADORAS

PROCEDIMIENTO PARA PRUEBAS DE VALIDACION DE MODELOS MATEMATICOS DE UNIDADES GENERADORAS PROCEDIMIENTO PARA PRUEBAS DE VALIDACION DE MODELOS MATEMATICOS DE UNIDADES GENERADORAS 1. OBJETIVO Verificar la validez del modelo matemático de los sistema de control de las unidades generadoras del

Más detalles

Charlas para la Gestión del Mantenimiento Fernando Espinosa Fuentes

Charlas para la Gestión del Mantenimiento Fernando Espinosa Fuentes Charlas para la Gestión del Mantenimiento Fernando Espinosa Fuentes Conseguir una alta eficiencia de los activos es un reto importante ya que tiene un impacto significativo sobre los beneficios. Afecta

Más detalles

Requisitos técnicos para la interconexión de fuentes distribuidas de. generación en pequeña escala.

Requisitos técnicos para la interconexión de fuentes distribuidas de. generación en pequeña escala. Requisitos técnicos para la interconexión de fuentes distribuidas de 1. ALCANCE generación en pequeña escala. Este documento establece los requisitos y especificaciones técnicas para la interconexión entre

Más detalles

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN 9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN En el mercado actual hay gran cantidad de diseños de UPS. Puede llegar a ser confuso determinar que tipo de equipo es el más conveniente para nuestra carga

Más detalles

MONITOREO, CONTROL Y AUTOMATIZACIÓN DE SISTEMAS DE VENTILACIÓN - MINERÍA SUBTERRÁNEA

MONITOREO, CONTROL Y AUTOMATIZACIÓN DE SISTEMAS DE VENTILACIÓN - MINERÍA SUBTERRÁNEA MONITOREO, CONTROL Y AUTOMATIZACIÓN DE SISTEMAS DE VENTILACIÓN - MINERÍA SUBTERRÁNEA Mg. Ing. Raúl Cisternas Yáñez Consultor Principal - VDM LTDA. CHILE MONITOREO, CONTROL Y AUTOMATIZACIÓN DE SISTEMAS

Más detalles

SISTEMAS DE INFORMACIÓN II TEORÍA

SISTEMAS DE INFORMACIÓN II TEORÍA CONTENIDO: EL PROCESO DE DISEÑO DE SISTEMAS DISTRIBUIDOS MANEJANDO LOS DATOS EN LOS SISTEMAS DISTRIBUIDOS DISEÑANDO SISTEMAS PARA REDES DE ÁREA LOCAL DISEÑANDO SISTEMAS PARA ARQUITECTURAS CLIENTE/SERVIDOR

Más detalles

Vientos cambiantes. Nuevas tecnologías para el control de turbinas y parques eólicos

Vientos cambiantes. Nuevas tecnologías para el control de turbinas y parques eólicos Vientos cambiantes Nuevas tecnologías para el control de turbinas y parques eólicos ADRIAN TIMBUS A lo largo de los tiempos, uno de los principales anhelos del ser humano ha sido aprovechar la fuerza del

Más detalles

Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4

Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4 Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4 REQUISITOS MÍNIMOS DE ACCESO Y CONTENIDOS ONLINE SUGERIDOS CONOCIMIENTOS CONTENIDOS ONLINE SUGERIDOS PARA SABER MÁS... EVALUACIÓN

Más detalles

Capítulo 5. Cliente-Servidor.

Capítulo 5. Cliente-Servidor. Capítulo 5. Cliente-Servidor. 5.1 Introducción En este capítulo hablaremos acerca de la arquitectura Cliente-Servidor, ya que para nuestra aplicación utilizamos ésta arquitectura al convertir en un servidor

Más detalles

MICRODES@: una herramienta software para el diseño automatizado de hornos industriales de microondas

MICRODES@: una herramienta software para el diseño automatizado de hornos industriales de microondas Universidad Politécnica de Cartagena E.T.S. de Ingeniería de Telecomunicación Espacio-Tele o n 0 1 (2010) Revista de la ETSIT-UPCT MICRODES@: una herramienta software para el diseño automatizado de hornos

Más detalles

ANEXO I Capítulo 6 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL. ANEXO I (Capítulo 6)

ANEXO I Capítulo 6 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL. ANEXO I (Capítulo 6) ANEXO I Capítulo 6 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL RETELGAS 13/09/2002 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL

Más detalles

12 de enero de 2011 Comisión Permanente Iniciativa. Presenta: Dip. Juan José Guerra Abud (PVEM Estado de México).

12 de enero de 2011 Comisión Permanente Iniciativa. Presenta: Dip. Juan José Guerra Abud (PVEM Estado de México). PROYECTO DE DECRETO QUE REFORMA Y ADICIONA DIVERSAS DISPOSICIONES DE LA LEY PARA EL APROVECHAMIENTO DE ENERGÍAS RENOVABLES Y EL FINANCIAMIENTO DE LA TRANSICIÓN ENERGÉTICA. 12 de enero de 2011 Comisión

Más detalles

Capítulo 2, descripción de las turbinas de viento y de los parques eólicos offshore. Capítulo 3, presentación de la máquina de inducción.

Capítulo 2, descripción de las turbinas de viento y de los parques eólicos offshore. Capítulo 3, presentación de la máquina de inducción. Autor: Héctor A. López Carballido. Universidad de destino: Chalmers University of Technology Supervisor: Törbjorn Thiringer Coordinador académico: Julio Usaola Cotutor uc3m: Julio Usaola Fecha de lectura:

Más detalles

CAPITULO 1 INTRODUCCIÓN. 1.1 Antecedentes

CAPITULO 1 INTRODUCCIÓN. 1.1 Antecedentes CAPITULO 1 INTRODUCCIÓN 1.1 Antecedentes Cuando en 1973 se produjeron eventos importantes en el mercado del petróleo en el mundo, que se manifestaron en los años posteriores en un encarecimiento notable

Más detalles

Aérogenerador. Nerea Abadiano 4ºE.S.O 2010/2011 IES RONCAL

Aérogenerador. Nerea Abadiano 4ºE.S.O 2010/2011 IES RONCAL Aérogenerador Nerea Abadiano 4ºE.S.O 2010/2011 IES RONCAL índice 1-Descripción energía eólica 2-Aerogenerador 3-Control de potencia 4-Miniaerogeneradores 5-Primer aerogenerador en España 6-Impacto en el

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

HISTORIA DE LOS AE A ROGE G NE N RAD A O D RES

HISTORIA DE LOS AE A ROGE G NE N RAD A O D RES HISTORIA DE LOS AEROGENERADORES Introducción Un molino de viento es una máquina que transforma la energía del viento en energía aprovechable. Para poder realizar dicha transformación, cualquier molino

Más detalles

SECTOR ELÉCTRICO. Sector 8 JUNIO DE 2013 1. INTRODUCCIÓN

SECTOR ELÉCTRICO. Sector 8 JUNIO DE 2013 1. INTRODUCCIÓN JUNIO DE 2013 Sector 8 SECTOR ELÉCTRICO 1. INTRODUCCIÓN La Energía Eléctrica se considera un elemento fundamental en el desarrollo de un país, influenciando una región en aspectos tan cotidianos como el

Más detalles

Capítulo 2. Planteamiento del problema. Capítulo 2 Planteamiento del problema

Capítulo 2. Planteamiento del problema. Capítulo 2 Planteamiento del problema Capítulo2 Planteamientodelproblema 38 2.1Antecedentesycontextodelproyecto En lo que respecta a los antecedentes del proyecto, se describe inicialmente el contexto donde se utiliza el producto de software.

Más detalles

Curso Formación eólica. Programa. Gestión Integral y mantenimiento de parques eólicos

Curso Formación eólica. Programa. Gestión Integral y mantenimiento de parques eólicos Curso Formación eólica Programa Gestión Integral y mantenimiento de parques eólicos indice 1. Diagnostico y objetivo 1. Diagnostico y objetivo MÓDULOS ESPECÍFICOS 2. Gestión parque eólico 1. PROGRAMA DE

Más detalles

Sistemas de Alimentación Ininterrumpible (UPS) Electrónica Industrial A. Dr. Ciro Alberto Núñez Gutiérrez

Sistemas de Alimentación Ininterrumpible (UPS) Electrónica Industrial A. Dr. Ciro Alberto Núñez Gutiérrez UPS Los sistemas de alimentación ininterrumpible (UPS por sus siglas en inglés) son los equipos más completos para eliminar los problemas de la red de alimentación. Sin embargo, son equipos que dependiendo

Más detalles

CONTROL E INTEGRACIÓN EN RED DE SISTEMAS DE GENERACIÓN DISTRIBUÍDA

CONTROL E INTEGRACIÓN EN RED DE SISTEMAS DE GENERACIÓN DISTRIBUÍDA eman ta zabal zazu EUSKAL HERRIKO UNIBERTSITATEA UNIVERSIDAD DEL PAÍS VASCO Encuentro Sectorial de Energías Renovables 2006 CONTROL E INTEGRACIÓN EN RED DE SISTEMAS DE GENERACIÓN DISTRIBUÍDA J. Xabier

Más detalles

FL 30. Fiabilidad en la red con 30 kw conectados durante 15 años. Potencia nominal: 30 kw Rotor: 13 m Torre celosía: 18 / 27 m

FL 30. Fiabilidad en la red con 30 kw conectados durante 15 años. Potencia nominal: 30 kw Rotor: 13 m Torre celosía: 18 / 27 m FL 30 Fiabilidad en la red con 30 kw conectados durante 15 años Potencia nominal: 30 kw Rotor: 13 m Torre celosía: 18 / 27 m Desde que se utiliza la energía eólica el aerogenerador FL 30 ha demostrado

Más detalles

Mejora la eficiencia de los parques eólicos mediante el análisis de los datos SCADA

Mejora la eficiencia de los parques eólicos mediante el análisis de los datos SCADA Mejora la eficiencia de los parques eólicos mediante el análisis de los datos SCADA Primer Congreso Internacional Investigación Sostenible Energías Renovables y Eficiencia Energética. 28/11/2013 Carlos

Más detalles

Electrificación en zonas rurales mediante sistemas híbridos

Electrificación en zonas rurales mediante sistemas híbridos Electrificación en zonas rurales mediante sistemas híbridos Julio 2013 Pág. 1 de 6 Antecedentes y situación actual En los últimos años, el crecimiento y desarrollo del sector fotovoltaico ha sufrido un

Más detalles

La Infraestructura Eléctrica

La Infraestructura Eléctrica TICs La Infraestructura Eléctrica y Que entendemos por infraestructura. Conjunto de elementos o servicios que se consideran necesarios para la creación y funcionamiento de una organización cualquiera Es

Más detalles

Sistema de modulación inteligente de carga de vehículo eléctrico.

Sistema de modulación inteligente de carga de vehículo eléctrico. Sistema de modulación inteligente de carga de vehículo eléctrico. Ponente: Jean Gardy Germain 17 Abril 2012 1 Índice/Contenido 1. Justificación y Retos 2. Descripción y Objetivos del proyecto 3. Ejemplos

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Buscas una profesión con futuro?

Buscas una profesión con futuro? Buscas una profesión con futuro? Apúntate a al los Curso Cursos de Técnico de AEE de Mantenimiento de Parques de Parques Eólicos Eólicos Inicio: Octubre 2015 Fotografía: Asaken Organiza: Colaboran: Presentación

Más detalles

COMITÉ TÉCNICO DE VERIFICACIÓN (CTV) Orden del día: 05/03/2009

COMITÉ TÉCNICO DE VERIFICACIÓN (CTV) Orden del día: 05/03/2009 COMITÉ TÉCNICO DE VERIFICACIÓN (CTV) Orden del día: 05/03/2009 Lugar de la reunión: Calle serrano 143. Madrid Hora: 11:00 Duración prevista: 3 horas ORDEN DEL DÍA 1. Aprobación del acta de la reunión anterior.

Más detalles

La instrumentación de los generadores de potencia con sistemas de monitoreo en línea,

La instrumentación de los generadores de potencia con sistemas de monitoreo en línea, Experiencias en la instrumentación de generadores de potencia con el Sistema de Análisis de Generadores en Línea AnGeL, para el diagnóstico del estado del aislamiento interno Jaime Carrillo C. y José T.

Más detalles

Diseño conceptual. Diseño conceptual del rotor principal. Referencia Básica [Lei02] Helicópteros () Diseño Rotor principal 1 / 25

Diseño conceptual. Diseño conceptual del rotor principal. Referencia Básica [Lei02] Helicópteros () Diseño Rotor principal 1 / 25 Diseño conceptual Diseño conceptual del rotor principal Referencia Básica [Lei02] Helicópteros () Diseño Rotor principal 1 / 25 Requisitos del diseño I El diseño de un helicóptero implica un entorno multidisciplinar.

Más detalles

ENERGIA LIMPIA PARA MEXICO

ENERGIA LIMPIA PARA MEXICO ENERGIA LIMPIA PARA MEXICO ANTECEDENTES Las Mini centrales Hidroeléctricas tienen un alto potencial para el aprovechamiento de pequeñas caídas de agua. En Europa se han utilizado desde principios del siglo

Más detalles

XVI Seminario Departamental de Energías Renovables. Ing. Carlos M. Romero Fuentes Septiembre 2014. Integración que genera energía y desarrollo

XVI Seminario Departamental de Energías Renovables. Ing. Carlos M. Romero Fuentes Septiembre 2014. Integración que genera energía y desarrollo XVI Seminario Departamental de Energías Renovables Ing. Carlos M. Romero Fuentes Septiembre 2014 Integración que genera energía y desarrollo El Chaco Paraguayo La región está caracterizada por una escasa

Más detalles

Energías Renovables. Interconexión a la red eléctrica

Energías Renovables. Interconexión a la red eléctrica Energías Renovables. Interconexión a la red eléctrica Jun-2009 1 Qué son las energías renovables Las energías renovables se caracterizan porque en sus procesos de transformación y aprovechamiento en energía

Más detalles

Financiamiento para Sistemas FV Conectados a Red. Fuentes de Financiamiento. Noviembre 2011

Financiamiento para Sistemas FV Conectados a Red. Fuentes de Financiamiento. Noviembre 2011 Financiamiento para Sistemas FV Conectados a Red Fuentes de Financiamiento Noviembre 2011 1. Antecedentes Antecedentes Aunque todavía no es una fuente importante de generación de electricidad, la tecnología

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

Instalación de Sistemas de Automatización y Datos

Instalación de Sistemas de Automatización y Datos UNIVERSIDADE DE VIGO E. T. S. Ingenieros Industriales 5º Curso Orientación Instalaciones y Construcción Instalación de Sistemas de Automatización y Datos José Ignacio Armesto Quiroga http://www www.disa.uvigo.es/

Más detalles

AV Tecnología www.av.cl

AV Tecnología www.av.cl AV Tecnología www.av.cl Presentación AV Tecnología presta servicios de primera calidad en el área de la Ingeniería Eléctrica, Informática y Electrónica, desarrollando proyectos insitu a lo largo de todo

Más detalles

Sistema Remoto Integrado para la monitorización de Motores de Cambio de Agujas. Racionalice el mantenimiento preventivo y reduzca sus costes

Sistema Remoto Integrado para la monitorización de Motores de Cambio de Agujas. Racionalice el mantenimiento preventivo y reduzca sus costes Sistema Remoto Integrado para la monitorización de Motores de Cambio de Agujas Racionalice el mantenimiento preventivo y reduzca sus costes Antecedentes e Introducción: La monitorización tal y como se

Más detalles

Presenta: M.S.C. MARCO ANTONIO MORALES CAPORAL GESTIÓN DE LA ENERGÍA ELÉCTRICA GENERADA CON PANELES SOLARES

Presenta: M.S.C. MARCO ANTONIO MORALES CAPORAL GESTIÓN DE LA ENERGÍA ELÉCTRICA GENERADA CON PANELES SOLARES Presenta: M.S.C. MARCO ANTONIO MORALES CAPORAL GESTIÓN DE LA ENERGÍA ELÉCTRICA GENERADA CON PANELES SOLARES La energía solar es la energía obtenida mediante la captación de la luz y el calor emitidos por

Más detalles

Física y Tecnología Energética. 18 - Energía Eólica.

Física y Tecnología Energética. 18 - Energía Eólica. Física y Tecnología Energética 18 - Energía Eólica. Energía eólica La atmósfera es una máquina térmica Calor (Sol) Energía cinética (viento) El viento se genera por las diferencias de presión provocadas

Más detalles

Auditorías Energéticas

Auditorías Energéticas Auditorías Energéticas IMPORTANTES RESULTADOS SE OBTIENEN CON LA REALIZACION DE AUDITORIAS ENERGETICAS APLICADAS A LOS SISTEMAS DE GENERACION, DISTRIBUCION Y CONSUMO DE VAPOR. LA REDUCCION DE COSTOS ES

Más detalles

Objetivo General: Brindar al participante los conocimientos necesarios y actuales, sobre la energía eólica.

Objetivo General: Brindar al participante los conocimientos necesarios y actuales, sobre la energía eólica. Descripción: Costa Rica posee un gran potencial de Energías Renovables para sustituir la dependencia de combustibles fósiles y una de ellas, es la Energía Eólica, por lo que el curso además de dar a conocer

Más detalles

TEMA: Dossier Energía Eólica. FECHA 14 04 08 PROYECTO O TRABAJO Dossier resumen sobre Energía Eólica

TEMA: Dossier Energía Eólica. FECHA 14 04 08 PROYECTO O TRABAJO Dossier resumen sobre Energía Eólica Una instalación de energía eólica busca el aprovechamiento de la energía cinética del viento para transformarlo en energía eléctrica. Se basa en la utilización de aerogeneradores o molinos eólicos que

Más detalles

Administración Logística de Materiales

Administración Logística de Materiales Administración Logística de Materiales Para un mejor conocimiento de la industria acerca de distribución física, manufactura y compras, se estableció el programa de administración logística de materiales.

Más detalles

En este capítulo se describe la forma de cómo se implementó el sistema de video

En este capítulo se describe la forma de cómo se implementó el sistema de video En este capítulo se describe la forma de cómo se implementó el sistema de video por medio de una cámara web y un servomecanismo que permitiera al usuario ver un experimento en el mismo instante en que

Más detalles

Gestión de la Configuración

Gestión de la Configuración Gestión de la ÍNDICE DESCRIPCIÓN Y OBJETIVOS... 1 ESTUDIO DE VIABILIDAD DEL SISTEMA... 2 ACTIVIDAD EVS-GC 1: DEFINICIÓN DE LOS REQUISITOS DE GESTIÓN DE CONFIGURACIÓN... 2 Tarea EVS-GC 1.1: Definición de

Más detalles

En esta tesis se presenta el proyecto Integración de un sistema Virtual Full-

En esta tesis se presenta el proyecto Integración de un sistema Virtual Full- En esta tesis se presenta el proyecto Integración de un sistema Virtual Full- Duplex para el Desarrollo de Prácticas de Ingeniería de Alimentos a través de Internet 2, el cual es parte de un proyecto colaborativo

Más detalles

Is not jus power, is reliability and trust. Yei Systems S.A. de C.V.

Is not jus power, is reliability and trust. Yei Systems S.A. de C.V. Is not jus power, is reliability and trust Yei Systems S.A. de C.V. Nos es muy grato dirigirnos a Usted para ofrecerle nuestros servicios de Auditoría de sistemas, Desarrollo de software y Seguridad Informática

Más detalles

ÍNDICE. SECCION DE PROSPECTIVA El Mercado Energético de las Hidroeléctricas

ÍNDICE. SECCION DE PROSPECTIVA El Mercado Energético de las Hidroeléctricas ÍNDICE SECCION DE PROSPECTIVA El Mercado Energético de las Hidroeléctricas Contenido Mensajes Principales... 3 Introducción... 6 1 Caracterización de la energía a partir de fuentes hídricas... 7 1.1 Tipología...

Más detalles

NEUTRALIDAD DE RED: EN DEFENSA DE LOS DERECHOS DE LOS USUARIOS Y DE LA LIBERTAD DE ACTUACIÓN DE LOS AGENTES

NEUTRALIDAD DE RED: EN DEFENSA DE LOS DERECHOS DE LOS USUARIOS Y DE LA LIBERTAD DE ACTUACIÓN DE LOS AGENTES NEUTRALIDAD DE RED: EN DEFENSA DE LOS DERECHOS DE LOS USUARIOS Y DE LA LIBERTAD DE ACTUACIÓN DE LOS AGENTES El debate sobre la neutralidad de red trata sobre la necesidad y términos concretos de la introducción

Más detalles

REDES DE DISTRIBUCIÓN DE EE: DESAFÍOS Y TENDENCIAS

REDES DE DISTRIBUCIÓN DE EE: DESAFÍOS Y TENDENCIAS Reunión Anual Octubre 2012 Comité de Energía - AUGM REDES DE DISTRIBUCIÓN DE EE: DESAFÍOS Y TENDENCIAS Miguel Arias Albornoz D.Sc. Departamento de Ingeniería Eléctrica Universidad de Santiago de Chile

Más detalles

Generador de Energía de Viento

Generador de Energía de Viento Generador de Energía de Viento Parts Manual Manual de Partes English Español SPP-205 Modelo 2002 by ELECFURE Corporation Indice I. Lista de Partes II. Ubicación de Partes III. Caractetisticas Avanzadas

Más detalles

Capítulo IV. Manejo de Problemas

Capítulo IV. Manejo de Problemas Manejo de Problemas Manejo de problemas Tabla de contenido 1.- En qué consiste el manejo de problemas?...57 1.1.- Ventajas...58 1.2.- Barreras...59 2.- Actividades...59 2.1.- Control de problemas...60

Más detalles

LINEAMIENTOS DE RENDICIÓN DE CUENTAS DE LA CREG

LINEAMIENTOS DE RENDICIÓN DE CUENTAS DE LA CREG LINEAMIENTOS DE RENDICIÓN DE CUENTAS DE LA CREG La política de rendición de cuentas establecida por el Gobierno Nacional a través del documento CONPES 3654 de 2010 busca consolidar una cultura de apertura

Más detalles

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA ÓPTIMO RENDIMIENTO Y FLEXIBILIDAD DE USO TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA Una de las muchas exigencias de los inversores modernos son unos rangos de entrada y de tensión MPP

Más detalles

PRÁCTICAS VÍA INTERNET Célula de Clasificación

PRÁCTICAS VÍA INTERNET Célula de Clasificación PRÁCTICAS VÍA INTERNET Célula de Clasificación Operación Remota e Interfaz Web 1. Introducción Los variadores son convertidores de frecuencia encargados de modular la señal de alterna que recibe el motor.

Más detalles

Maestría en Ciencias (M.S.) en Ingeniería Mecánica con Especialidad en Energía o Aeroespacial. y

Maestría en Ciencias (M.S.) en Ingeniería Mecánica con Especialidad en Energía o Aeroespacial. y Descripción del Programa Maestría en Ciencias (M.S.) en Ingeniería Mecánica con Especialidad en Energía o Aeroespacial. y Maestría en Ingeniería (M.E.) en Ingeniería Mecánica con Especialidad en Energía

Más detalles

"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios

Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios "Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios Miguel Alfonso Flores Sánchez 1, Fernando Sandoya Sanchez 2 Resumen En el presente artículo se

Más detalles

Mismo que se adjunta en impreso y disco magnético, así como la síntesis del asunto.

Mismo que se adjunta en impreso y disco magnético, así como la síntesis del asunto. Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado SUBDIRECCION GENERAL DE ADMINISTRACIÓN OFICIO No. SGA/ 1 de octubre de 2003. Lic. Roberto Figueroa Martínez Secretario de la H.

Más detalles

SESION 2 ENERGÍA EÓLICA. Ing. Gonzalo Guerrón MSc

SESION 2 ENERGÍA EÓLICA. Ing. Gonzalo Guerrón MSc SESION 2 ENERGÍA EÓLICA Ing. Gonzalo Guerrón MSc 16/10/2014 Las maquinas eólicas han experimentado cambios en cuanto a su diseño, estos están integradas por un conjunto de subsistemas cuyo objetivo es

Más detalles

1. Descripción y objetivos

1. Descripción y objetivos Pruebas 1 1. Descripción y objetivos Las pruebas son prácticas a realizar en diversos momentos de la vida del sistema de información para verificar: El correcto funcionamiento de los componentes del sistema.

Más detalles

2. Redes de Medición de la Calidad del Aire

2. Redes de Medición de la Calidad del Aire 2. Redes de Medición de la Calidad del Aire Una red de medición de la calidad del aire es parte de un Sistema de Medición de Calidad del aire, SMCA. Es importante mencionar que un SMCA puede incluir una

Más detalles

Red Eléctrica publica en su web las emisiones de CO 2 producidas en el sistema eléctrico en tiempo real

Red Eléctrica publica en su web las emisiones de CO 2 producidas en el sistema eléctrico en tiempo real Red Eléctrica publica en su web las emisiones de CO 2 producidas en el sistema eléctrico en tiempo real Gabinete de Prensa Junio 2009 Red Eléctrica comenzará a publicar en su página web desde el 5 de junio,

Más detalles

SISTEMA DE SUPERVISIÓN REMOTA

SISTEMA DE SUPERVISIÓN REMOTA SISTEMA DE SUPERVISIÓN REMOTA E M P L A Z A M I E N T O C E N T R O D E E D U C A C I Ó N A M B I E N T A L - A L B E R G U E A S C O R C E R I Z A S M A R Z O 2 0 1 3 Fundación Agencia Intermunicipal

Más detalles

Controladores de Potencia Máquina de Corriente Continua

Controladores de Potencia Máquina de Corriente Continua Máquina de Corriente Continua 17 de febrero de 2012 USB Principio de Funcionamiento Figura 1: Principio de funcionamiento de las máquinas eléctricas rotativas USB 1 Figura 2: Esquema del circuito magnético

Más detalles

Perspectivas brillantes para una mayor rentabilidad. Turbina eólica de accionamiento directo SWT-3.0-101. Answers for energy.

Perspectivas brillantes para una mayor rentabilidad. Turbina eólica de accionamiento directo SWT-3.0-101. Answers for energy. Perspectivas brillantes para una mayor rentabilidad Turbina eólica de accionamiento directo SWT-3.0-101 Answers for energy. Cómo conseguir un máximo rendimiento con un 50 % menos de componentes? 2 A medida

Más detalles

EnergyPRO. Descripción General

EnergyPRO. Descripción General Roger de Llúria 29, 3r 2a 08009 Barcelona Tel.: (+34) 93 342 47 55 Fax: (+34) 93 342 47 56 www.aiguasol.coop EnergyPRO Descripción General EnergyPRO es un paquete de software de simulación muy avanzado

Más detalles

Ingeniería de Ejecución Electrónica (5) Ingeniería de Ejecución Informática (4) Ingeniería de Ejecución Metalúrgica (1)

Ingeniería de Ejecución Electrónica (5) Ingeniería de Ejecución Informática (4) Ingeniería de Ejecución Metalúrgica (1) Ingeniería Civil Civil Ingeniería Civil Ambiental Ingeniería Civil Eléctrica Ingeniería Civil Electrónica Ingeniería Civil Industrial Ingeniería Civil Informática Ingeniería Civil Matemática (1) Ingeniería

Más detalles

Resurgimiento de la Energía Nuclear en México: Oportunidad para el IPN? Dr. Edmundo del Valle Gallegos Prof. e Inv.

Resurgimiento de la Energía Nuclear en México: Oportunidad para el IPN? Dr. Edmundo del Valle Gallegos Prof. e Inv. Resurgimiento de la Energía Nuclear en México: Oportunidad para el IPN? Dr. Edmundo del Valle Gallegos Prof. e Inv. de la ESFM- IPN Taller sobre la Participación de las Instituciones de Educación Superior

Más detalles

Diseño electrónico de relés de protección para minicentrales hidroeléctricas

Diseño electrónico de relés de protección para minicentrales hidroeléctricas Luminotecnia ENTREGA 1 Diseño electrónico de relés de protección para minicentrales hidroeléctricas Elaborado por: Ing. Avid Román González (IEEE) Sabiendo que en la región del Cusco (Perú) existen muchas

Más detalles

INFORME SOBRE LA EDUCACIÓN SUPERIOR EN MÉXICO

INFORME SOBRE LA EDUCACIÓN SUPERIOR EN MÉXICO INFORME SOBRE LA EDUCACIÓN SUPERIOR EN MÉXICO Septiembre de 2005 PRESENTACIÓN En este documento del, se ofrece un examen sobre el sistema de educación superior considerando los siguientes cuatro aspectos:

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.4.

Más detalles

ONEPROD MVX. Mantenimiento basado en el estado para máquinas críticas. Brand of ACOEM

ONEPROD MVX. Mantenimiento basado en el estado para máquinas críticas. Brand of ACOEM ONEPROD MVX Mantenimiento basado en el estado para máquinas críticas Brand of ACOEM La fiabilidad de las máquinas críticas es un factor esencial para toda empresa industrial. Cualquier parada imprevista,

Más detalles

PLAN DIRECTOR DE SERVICIOS MÓVILES DE VALOR AÑADIDO EN LA ADMINISTRACIÓN PÚBLICA

PLAN DIRECTOR DE SERVICIOS MÓVILES DE VALOR AÑADIDO EN LA ADMINISTRACIÓN PÚBLICA PLAN DIRECTOR DE SERVICIOS MÓVILES DE VALOR AÑADIDO EN LA ADMINISTRACIÓN PÚBLICA Manager LaneFour Strategy & Management Manager LaneFour Strategy & Management Palabras clave Plan Director, Mobile Government/Administración

Más detalles

ESCUELA DE TECNOLOGÍA DE ALIMENTOS PERFIL DEL PROFESIONAL EN TECNOLOGÍA/INGENIERÍA DE ALIMENTOS

ESCUELA DE TECNOLOGÍA DE ALIMENTOS PERFIL DEL PROFESIONAL EN TECNOLOGÍA/INGENIERÍA DE ALIMENTOS PERFIL DEL PROFESIONAL EN TECNOLOGÍA/INGENIERÍA DE ALIMENTOS Su quehacer profesional se enfoca en la investigación, desarrollo y aplicación de las ciencias físicas, químicas, biológicas y biotecnológicas,

Más detalles

CONCEPTOS GENERALES DE LA GESTION DE PROYECTOS

CONCEPTOS GENERALES DE LA GESTION DE PROYECTOS CONCEPTOS GENERALES DE LA GESTION DE PROYECTOS Definición de proyecto: - Conjunto de antecedentes que permiten juzgar cualitativa y cuantitativamente las ventajas y desventajas que presenta la asignación

Más detalles

Introducción a las redes de computadores

Introducción a las redes de computadores Introducción a las redes de computadores Contenido Descripción general 1 Beneficios de las redes 2 Papel de los equipos en una red 3 Tipos de redes 5 Sistemas operativos de red 7 Introducción a las redes

Más detalles

INGETEAM TRACTION. INGEBER, sistemas de recuperación de energía para sistemas ferroviarios.

INGETEAM TRACTION. INGEBER, sistemas de recuperación de energía para sistemas ferroviarios. INGETEAM TRACTION INGEBER, sistemas de recuperación de energía para sistemas ferroviarios. Sistemas de Transporte, Medio Ambiente y Eficiencia Energética Actualmente existe un creciente interés en la mejora

Más detalles