2. MECANICA DE FRACTURA LINEAL ELASTICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. MECANICA DE FRACTURA LINEAL ELASTICA"

Transcripción

1 Mecánica de Fractura Lineal Elástica -1. MECANCA DE FRACTURA LNEAL ELASTCA.1 Criterio de Griffith La piedra angular sobre la cual descansa la mecánica de fractura lineal elástica (MFLE) ( en buena medida también la mecánica de fractura elasto plástica), es el llamado Criterio de Griffith. Este criterio nos dice que en un cuerpo sometido a una condición arbitraria de carga, que se comporte de manera totalmente elástica que contenga una fisura, la propagación de la fisura comenzará cuando la disminución de energía potencial elástica que experimente el cuerpo por unidad de espesor por unidad de longitud de avance del vértice de la fisura, sea igual o maor al incremento de energía superficial por unidad de espesor por unidad de longitud de avance de la fisura que se producirá como consecuencia de la creación de las nuevas superficies debidas a dicha propagación. Para encontrar una expresión matemática de este criterio, consideraremos el caso de una placa de material de espesor unitario dimensiones planares lo suficientemente grandes como para que puedan ser consideradas infinitas, sometida a una tensión remota uniforme conteniendo una fisura pasante de longitud a, como se muestra esquemáticamente en la Fig..1. Fig..1 Fisura pasante en placa infinita sometida a una tensión remota uniforme Para calcular la disminución de energía potencial elástica en el cuerpo como consecuencia de la extensión de la fisura, comencemos calculando el trabajo necesario para producir un elemento de longitud dx de la fisura, como se muestra en la Fig...

2 - Mecánica de Fractura Lineal Elástica Si llamamos a la tensión que actúa sobre la superficie del elemento dx de la fisura en la dirección vertical, el trabajo para la producción del elemento de fisura de altura, será Fig.. Fisura elíptica pasante du = dx d = dx d (. 1) 0 0 Ahora bien, como asumimos comportamiento elástico del material, entre = 0 e =, la tensión variará linealmente entre = = 0 (este último valor es nulo a que asumimos que sobre el elemento de superficie no actúa ninguna fuerza una vez alcanzada su posición de equilibrio) como se muestra en la Fig..3. Fig.. 3

3 Mecánica de Fractura Lineal Elástica -3 De manera que la integral en la (.1) estará dada por el área del triángulo de la Fig..3, es decir El trabajo necesario para producir toda la semifisura superior será entonces para la fisura completa resulta dx du = a a dx ab U = du = π a a = 4 (. ) U = πab A fin de eliminar b de esta expresión, tengamos en cuenta que es posible demostrar que b = a/e, donde E es el módulo de Young del material, de manera que resulta U πa = E Ahora bien, como hemos asumido que el sistema es puramente elástico, el trabajo realizado para lograr la extensión de la fisura es idéntico a la disminución de energía potencial elástica en el cuerpo durante esta propagación, de manera que la reducción de energía potencial elástica por unidad de espesor por unidad de longitud de fisura, resulta d U du d( π a / E) πa = = = d( a) da da E De acuerdo con el criterio de Griffith, la fisura comenzará su propagación cuando esta disminución de energía sea igual al incremento de energía requerido por la creación de las nuevas superficies de fisura, es decir cuando se cumple

4 -4 Mecánica de Fractura Lineal Elástica d(4 γ Supa) d( γ Supa) = = d( a) da γ Sup donde γ Sup es la energía superficial por unidad de área de superficie o tensión superficial del material considerado (en el medio en que se encuentre), 4aγ Sup representa entonces la energía superficial total de la fisura. La condición de propagación está dada entonces por π E a = γ (. 3) Sup Si bien la (.3) describe adecuadamente la condición de propagación de fisuras en materiales perfectamente frágiles, tales como el vidrio, cuando la propagación de la fisura está acompañada de trabajo plástico durante el avance del vértice, resulta necesario modificar la ecuación anterior para tener en cuenta el sumidero de energía que este trabajo plástico representa. De modo que se llama γ Plást. al trabajo plástico realizado durante la propagación del vértice de la fisura por unidad de área por unidad de espesor, la (.3) se modifica como π E a = ( γ + γ ) (. 4) Sup Plást Es habitual en Mecánica de Fractura designar a la disminución de energía potencial elástica por unidad de longitud de extensión de fisura por unidad de espesor como Fuerza mpulsora denotarla con la letra G. Asimismo, el trabajo necesario para propagar el vértice de la fisura por unidad de longitud por unidad de espesor, se suele denominar Resistencia a la Propagación (o simplemente Resistencia) denotarlo con la letra R. De manera que haciendo la identificación la condición de propagación resulta du = G da ( γ + γ ) = R Sup Plást

5 Mecánica de Fractura Lineal Elástica -5 G (. 5) = R Es necesario destacar que si bien la (.5) tiene validez completamente general, la (.4) es estrictamente válida para el caso de un fisura pasante en una placa de dimensiones planares suficientemente grandes como para ser considerada infinita. De lo contrario, la expresión hallada para G = du/da no será en general válida. De todos modos, en cuerpos fisurados sometidos a una tensión remota uniforme, se encuentra que la forma general de la fuerza impulsora G, es siempre a b πa = (,,...) (. 6) G Y W W E donde a es la longitud de fisura, b, W,... etc, longitudes características del cuerpo (por ejemplo la longitud del ligamento no fisurado) e Y(a/W, b/w,...) una función que depende exclusivamente de la geometría del cuerpo fisurado incluendo por supuesto la forma de la propia fisura.. Modos de solicitación. Criterio de rwin de la ntensidad de Tensiones. Tenacidad a la fractura. Existen tres formas básicas en las que un cuerpo fisurado puede ser solicitado para provocar un avance de la fisura. Estos modos son los indicados en la Fig..1 a continuación. Fig..4 Modos de solicitación de una fisura De manera que el análisis de la placa fisurada hecho hasta aquí se refiere al Modo de solicitación.

6 -6 Mecánica de Fractura Lineal Elástica rwin resolvió el problema del campo elástico de tensiones de deformaciones en el vértice de una fisura. La solución de rwin es: xx x zz zz θ θ 3θ = Cos (1 Sen Sen +...) 1/ ( πr ) θ θ 3θ = Cos (1 + Sen Sen +...) 1/ ( πr ) θ θ 3θ = Cos Sen Cos / ( πr ) = 0 para estado plano de tensiones = ν( + ) para estado plano de deformaciones xx (. 7) Las expresiones de los desplazamientos para el estado plano de deformaciones son r θ θ ux = Cos + Sen + M π r θ θ u = Sen ν + Cos + M π 1/ ( ) (1 ν )... 1/ ( ) ( )... (. 8) donde M es el Módulo de Corte definido por M = E/(1 + υ), siendo υ el Módulo de Poisson del material. El factor K que aparece en todas las ecuaciones, es el denominado Factor de ntensidad de Tensiones su forma explícita depende la geometría particular del cuerpo fisurado de la configuración de las cargas aplicadas. En particular, para el caso de fisura pasante en placa infinita, adopta la forma

7 Mecánica de Fractura Lineal Elástica -7 1/ = ( πa) a (. 9) Es importante destacar que las (.7) (.8) son sólo válidas en un entorno del vértice de la fisura, es decir cuando se cumple que r/a << 1, por lo tanto no describen el campo de tensiones remoto que es simplemente =. Fig..5 Extensión de fisura elíptica Es ilustrativo calcular ahora el trabajo necesario para producir un incremento unitario de longitud de fisura por unidad de espesor empleando las tensiones desplazamientos locales en el vértice en lugar de las tensiones remotas como se ha hecho anteriormente. Para ello consideremos la situación ilustrada en la Fig..5 donde se muestra el vértice de la fisura antes después de una propagación a. El trabajo realizado por unidad de longitud de extensión de fisura por unidad de espesor, que es igual a la fuerza impulsora G, está entonces dado por G a r = x u r = x ' = a x θ = 0 θ = π = dx (. 10) a 0 donde según las (.7) (.8), es r = x θ = = 0 ( π x) 1/

8 -8 Mecánica de Fractura Lineal Elástica u r = x ' = a x θ = π a x K a x = = + M π E π 1/ 1/ ( ) ( ν ) (1 ν )( ) ( ν ) ntroduciendo estas expresiones en (.10), resulta a a x 1/ (1 ν )( ) ( ν ) 1/ ( π ) π 0 1 G = + dx = a x E a ν a x 1/ ν K (1 ) (1 ) = ( ) dx = a πe x E 0 (. 11) Teniendo en cuenta la (.9), vemos que la (.11) resulta idéntica al valor a obtenido para la fuerza impulsora G = du/da = πa/e, excepto por el factor 1/(1 - ν). Esta pequeña discrepancia se debe a que en el análisis realizado en base a las tensiones remotas, se ha considerado el caso de tensión plana, mientras que la (.11) fue obtenida para una situación de deformación plana. De todos modos, la diferencia es pequeña dado que para la maoría de los materiales metálicos es 1/(1 - ν) 1. En cualquier caso sin embargo, podemos escribir en general G K E en tensión plana = = E E ν ' donde E ' /(1 ) en deformación plana (. 1) La (.1) nos permite expresar ahora el Criterio de Griffith en términos del factor de intensidad de tensiones K diciendo que la fisura se propagará cuando el factor de intensidad de tensiones en su vértice alcance un valor crítico K C = G E ' (.13) C donde K C es un parámetro que depende del material G C constitue la fuerza impulsora crítica también dependiente del material. De este modo, la condición para la extensión de la fisura se alcanza cuando se cumple que

9 Mecánica de Fractura Lineal Elástica -9 K = C (.14) La (.14) es mu útil porque no depende de la expresión particular que adopte el factor de intensidad de tensiones, que en general tomará la forma K Y a W b W a 1/ = ( /, /,...) ( π ) (.15) siendo Y(a/W, b/w,...) como a se ha visto, una función que depende exclusivamente de la geometría del cuerpo fisurado incluendo la forma de la propia fisura..3 Límite de validez de la MFLE. Corrección de rwin por plasticidad. Las Ecs. (.7) indican que las tensiones locales en las adacencias del vértice de una fisura se hacen infinitamente grandes cuando nos acercamos al vértice de aquella. Esta singularidad en el campo de tensiones se debe al hecho de haber considerado en la derivación de las (.7) un material elástico ideal. Ningún material real tolera tensiones por encima de un dado valor produciéndose entonces la rotura o la deformación plástica del mismo. En particular, si ignoramos por simplicidad el estado triaxial, podemos estimar que el material en el vértice de la fisura entrará en fluencia cuando se cumpla = Y donde Y es la tensión de fluencia uniaxial del material. De manera que en una primera aproximación, el perfil de las tensiones YY asumiendo un material elasto-plástico ideal, será el indicado en la Fig..6 donde se ha indicado una zona plástica en el vértice de la fisura. La extensión r P de la zona plástica surge inmediatamente si tenemos en cuenta que debe cumplirse que = = p 1/ 0 ( πr ) r = x= r θ = p de manera que resulta

10 -10 Mecánica de Fractura Lineal Elástica Fig..6 Zona plástica en vértice de fisura r p 1 K = (.16) π Si se tiene en cuenta la triaxialidad del estado de tensiones, es necesario aplicar algún criterio apropiado de fluencia tal como el de Von Mises o el de Tresca. En tal caso, es posible demostrar que resulta r p 1 K = (.17) 6π Dado que sobre las superficies laterales de la pieza las tensiones normales son nulas, en el material adacente al vértice de la fisura cercano a las superficies tendremos siempre un estado plano de tensiones debido a la influencia de estas superficies libres, mientras que en la región alejada de las superficies existirá un estado triaxial, por lo que la zona plástica adoptará en general una forma como la indicada esquemáticamente en la Fig..7. Fig..7 Forma de la zona plástica en el vértice de fisura

11 Mecánica de Fractura Lineal Elástica -11 Dado que la existencia de la zona plástica en el vértice de la fisura pone un límite a la validez de la hipótesis de comportamiento elástico ideal, los resultados hasta aquí obtenidos exigen para su validez que se cumpla que el tamaño de zona plástica r p sea pequeño comparado con las dimensiones características del cuerpo fisurado en consideración. Esta condición de conoce como de fluencia en pequeña escala, se alcanza cuando se cumple (.18) r << B, W, a, W a,... p Fig..8 Variación de la fractotenacidad en función del espesor Experimentalmente se ha determinado que la fractotenacidad medida se hace independiente del espesor cuando se cumple aproximadamente que 1 rp ( B, W, a, W a,...) (.19) 50 Se reserva en general la notación K C al valor de fractotenacidad cuando este se hace independiente del espesor, como se indica en la Fig..8 para el caso de un acero de SAE 4340, con = 1850 MPa. La independencia de K C del espesor nos indica que se ha alcanzado la condición de fluencia en pequeña escala el estado plano de deformaciones en el vértice de la fisura. Si tenemos en cuenta la (.17) (.19), surge inmediatamente que para asegurar la condición de fluencia en pequeña escala (deformación plana) debe cumplirse que

12 -1 Mecánica de Fractura Lineal Elástica K C B, W, a, W a,....5 (.0) George rwin demostró que una fisura real con una zona plástica pequeña en su vértice, puede ser reemplazada por un fisura ficticia sin zona plástica, pero de longitud igual a la longitud de la fisura real más el tamaño de la zona plástica, de manera que * a = a + r (.1) P donde a* es la longitud de fisura corregida por plasticidad. De manera que el factor de intensidad de tensiones corregido por plasticidad, resulta K Y a W b W a * * 1/ = ( /, /,...) ( π ) (.) Dado que r p es a su vez una función de K, teniendo en cuenta las (.1) (.), surge que en esta última K está dado en forma implícita. La (..1) expresa lo que se conoce como corrección de rwin por plasticidad. Es sin embargo importante destacar que esta corrección es válida únicamente mientras se mantenga una condición de fluencia en pequeña escala.

σ =Eε =Ex/d Fractura Elástica

σ =Eε =Ex/d Fractura Elástica Fractura Elástica Material Elástico lineal perfecto No existen fisuras ni defectos Separación es por rotura de enlaces atómicos en el plano m-n Fuerzas de atracción y repulsión son función de la solicitación

Más detalles

Seguridad Estructural (64.17)

Seguridad Estructural (64.17) TRABAJO PRACTICO 4 Resuelva los siguientes problemas calculando el índice de confiabilidad β de Hasofer y Lind. Salvo cuando se indique lo contrario expresamente, considere que las variables aleatorias

Más detalles

El esfuerzo axil. Contenidos

El esfuerzo axil. Contenidos Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones

Más detalles

División 6. Análisis de la mecánica de fractura Esquemas simples

División 6. Análisis de la mecánica de fractura Esquemas simples CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS División 6 Análisis de la mecánica de fractura Esquemas simples 1. Introducción En esta división del capítulo se analizarán someramente

Más detalles

Criterios de plasticidad y de rotura

Criterios de plasticidad y de rotura Lección 5 Criterios de plasticidad y de rotura Contenidos 5.1. Criterio de plasticidad para materiales sujetos a un estado triaxial de tensiones................... 64 5.2. Criterio de plasticidad de Von

Más detalles

PROPIEDADES ESTRUCTURALES I SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO

PROPIEDADES ESTRUCTURALES I SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO PROPIEDADES ESTRUCTURALES I - 2013 SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO Problema 1. A partir de los datos de la figura 1: a) Obtenga los valores aproximados de tenacidad a la fractura K IC para un acero

Más detalles

El diseño de un estructura. Tendra la suficiente rigidez para que las deformaciones no sean excesivas e inadmisibles?

El diseño de un estructura. Tendra la suficiente rigidez para que las deformaciones no sean excesivas e inadmisibles? PROPIEDADES DE LOS MATERIALES. Unidad. Propiedades mecánicas de los materiales. El elemento es resistente a las cargas aplicadas? El diseño de un estructura. Tendra la suficiente rigidez para que las deformaciones

Más detalles

Elasticidad Ecuaciones constitutivas

Elasticidad Ecuaciones constitutivas Elasticidad Ecuaciones constitutivas Recordemos el Tensor de Esfuerzos Ahora pensemos qué pasa cuando aplicamos una fuerza a un cuerpo, es posible que éste se deforme (cambie de forma) Cambio en el desplazamiento

Más detalles

4. CRECIMIENTO DE GRIETA

4. CRECIMIENTO DE GRIETA 4. CRECIMIENTO DE GRIETA En este proyecto se estudiará el crecimiento de grieta en el caso de grietas basado en la mecánica de la fractura elástica lineal. En este caso la parte frontal de la grieta puede

Más detalles

CAPÍTULO VIII. DATOS DE LOS MATERIALES PARA EL PROYECTO

CAPÍTULO VIII. DATOS DE LOS MATERIALES PARA EL PROYECTO TÍTULO 4.º DIMENSIONAMIENTO Y COMPROBACION CAPÍTULO VIII. DATOS DE LOS MATERIALES PARA EL PROYECTO Artículo 32.º Datos de proyecto del acero estructural 32.1. Valores de cálculo de las propiedades del

Más detalles

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide:

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide: Elasticidad resistencia de materiales Tema 2.3 (Le de Comportamiento) Nota: Salvo error u omisión, los epígrafes que aparecen en rojo no se pueden hacer hasta un punto más avanzado del temario Problema

Más detalles

Elasticidad! Ecuaciones constitutivas

Elasticidad! Ecuaciones constitutivas Elasticidad Ecuaciones constitutivas Recordemos el Tensor de Esfuerzos Ahora pensemos qué pasa cuando aplicamos una fuerza a un cuerpo, es posible que éste se deforme (cambie de forma) Cambio en el desplazamiento

Más detalles

Elementos básicos de mecánica de

Elementos básicos de mecánica de Elementos básicos de mecánica de sólidos Ignacio Romero ignacio.romero@upm.es Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid Curso 2015/16 1. Tensión El vector tensión

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

Teorías sobre la Resistencia a Rotura de una Lámina

Teorías sobre la Resistencia a Rotura de una Lámina 6 Teorías sobre la Resistencia a Rotura de una Lámina 6.1 Introducción. Existen diversos criterios de rotura relativos a una lámina ortótropa. La bondad de cada uno de ellos sólo puede ser establecida

Más detalles

Relaciones esfuerzo deformación

Relaciones esfuerzo deformación Capítulo Relaciones esfuerzo deformación En esta sección se emplea la primera ley de la termodinámica para derivar la relación esfuerzo deformación..1. Relaciones constitutivas Se llama modelo constitutivo

Más detalles

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por:

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por: PRÁCTICAS DE ELASTICIDAD AÑO ACADÉMICO 2012-201 Prob 1. El estado tensional de un punto de un sólido elástico se indica en la Figura donde las tensiones se epresan en MPa. Se pide: a. Calcular el vector

Más detalles

(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales.

(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales. 6. Vigas (Elementos) Compuestos por dos o más Materiales Las ecuaciones obtenidas en la Sección 3 se basan en la hipótesis que el material que forma la sección del elemento, además de ser lineal-elástico,

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

DETERMINACIÓN DE LOS EFECTOS DE LA POROSIDAD EN LAS PROPIEDADES MECÁNICAS DE MATERIALES SINTERIZADOS

DETERMINACIÓN DE LOS EFECTOS DE LA POROSIDAD EN LAS PROPIEDADES MECÁNICAS DE MATERIALES SINTERIZADOS DETERMINACIÓN DE LOS EFECTOS DE LA POROSIDAD EN LAS PROPIEDADES MECÁNICAS DE MATERIALES SINTERIZADOS Rafael A. Rodríguez Cruz* Roberto González Ojeda** José de Jesús Casillas Maldonado* Eduardo Aguilera

Más detalles

Mecánica de Materiales II: Ensayo a tracción

Mecánica de Materiales II: Ensayo a tracción Mecánica de Materiales II: nsayo a Andrés G. Clavijo V., Contenido nsayo a Comportamiento Módulo de Young y de Poisson Otros parámetros Límites nsayos de en obtenido de un ensayo de aceros de de esfuerzo

Más detalles

2. COMPORTAMIENTO A TRACCIÓN

2. COMPORTAMIENTO A TRACCIÓN 2. COMPORTAMIENTO A TRACCIÓN En los ensayos de tracción lo que se evalúa realmente es la resistencia del material, es decir, las tensiones que es capaz de soportar antes de comenzar a sufrir deformaciones

Más detalles

Capítulo 4. Introducción a la Formulación Lagrangiana y Hamiltoniana para Sistemas Continuos. 4.1 Transición de un sistema discreto a uno continúo

Capítulo 4. Introducción a la Formulación Lagrangiana y Hamiltoniana para Sistemas Continuos. 4.1 Transición de un sistema discreto a uno continúo Capítulo 4 Introducción a la Formulación Lagrangiana y Hamiltoniana para Sistemas Continuos Hay algunos problemas de la mecánica que implican sistemas continuos, como, el problema de un sólido elástico

Más detalles

Material 2. Fig. 12. Barra compuesta de dos materiales

Material 2. Fig. 12. Barra compuesta de dos materiales 5. Elementos Compuestos de Materiales Diferentes Considérese un elemento compuesto por dos o más materiales (elemento de sección transversal no homogénea), y supóngase que este elemento se somete a la

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Propiedades mecánicas de los materiales metálicos. MATERIALES II. Ciencia y Tecnología de la Edidificación Prof.: Ana Mª Marín Palma

Propiedades mecánicas de los materiales metálicos. MATERIALES II. Ciencia y Tecnología de la Edidificación Prof.: Ana Mª Marín Palma Propiedades mecánicas de los materiales metálicos MATERIALES II. Ciencia y Tecnología de la Edidificación Prof.: Ana Mª Marín Palma Conceptos de tensión - deformación Cuando una fuerza se aplica uniformemente

Más detalles

INTRODUCCIÓN A LAS TÉCNICAS DE EVALUACIÓN DE INTEGRIDAD ESTRUCTURAL

INTRODUCCIÓN A LAS TÉCNICAS DE EVALUACIÓN DE INTEGRIDAD ESTRUCTURAL INTRODUCCIÓN A LAS TÉCNICAS DE EVALUACIÓN DE INTEGRIDAD ESTRUCTURAL EXAMEN JUNIO 2006 Pregunta 1 (0.5 puntos) La fractura de un componente estructural puede producirse según los modos: a. Modo I (Tracción)

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO siempre mayor que el real (σ nz /ε z > E). 1-9-99 UNIDAD DOCENTE DE ELASTICIDAD Y RESISTENCIA DE MATERIALES PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-000 3.1.- Un eje de aluminio

Más detalles

TEMA 5. PROPIEDADES MECÁNICAS ESTRUCTURA DEL TEMA CTM PROPIEDADES MECÁNICAS

TEMA 5. PROPIEDADES MECÁNICAS ESTRUCTURA DEL TEMA CTM PROPIEDADES MECÁNICAS TEMA 5. PROPIEDADES MECÁNICAS Prácticamente todos los materiales, cuando están en servicio, están sometidos a fuerzas o cargas externas El comportamiento mecánico del material es la respuesta a esas fuerzas;

Más detalles

Introducción a la Mecánica de los Sólidos

Introducción a la Mecánica de los Sólidos Introducción a la Mecánica de los Sólidos Clase 1 Suposiciones introducidas, Propiedades Mecánicas de los Materiales, Coeficientes de Seguridad Reología Mecánica de los Fluidos Mecánica de las Materias

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

COMPORTAMIENTO MECÁNICO DE MATERIALES

COMPORTAMIENTO MECÁNICO DE MATERIALES COMPORTAMIENTO MECÁNICO DE MATERIALES CURSO ACADÉMICO 2009/2010 T4. Fatiga 4.1 Características de la fractura por fatiga Fatiga: rotura gradual de una estructura por la aplicación de esfuerzos (o deformaciones)

Más detalles

Auxiliar N 1. Geotecnia Minera (MI46B)

Auxiliar N 1. Geotecnia Minera (MI46B) Auxiliar N 1 Geotecnia Minera (MI46B) Fuerzas y tensiones La mecánica de sólidos asume un comportamiento ideal de los materiales: homogéneo, continuo, isótropo, lineal y elástico. Las rocas, a diferencia

Más detalles

TÚNELES Método de las curvas características. PROBLEMÁTICA DE LOS TÚNELES - G. Lombardi

TÚNELES Método de las curvas características. PROBLEMÁTICA DE LOS TÚNELES - G. Lombardi TÚNELES Método de las curvas características PROBLEMÁTICA DE LOS TÚNELES - G. Lombardi - 1974 Sostenimientos Deformaciones en el frente de avance del túnel Deformaciones en el frente de avance del túnel

Más detalles

CAPACIDAD DE CARGA EN SUELOS 1

CAPACIDAD DE CARGA EN SUELOS 1 CAPACIDAD DE CARGA EN SUELOS 1 1. INTRODUCCIÓN Para visualizar el problema de la capacidad de carga en suelos resulta útil el análisis del modelo mecánico que se presenta a continuación, debido a Khristianovich.

Más detalles

Propiedades físicas y mecánicas de los materiales Parte II

Propiedades físicas y mecánicas de los materiales Parte II Propiedades físicas y mecánicas de los materiales Parte II Propiedades físicas y mecánicas de los materiales 2.5. Propiedades mecánicas de los materiales 2.5.1 Tensión y Deformación 2.5.2 Elasticidad 2.5.3

Más detalles

Ensayo de Compresión

Ensayo de Compresión Ensayo de Compresión Consiste en la aplicación de carga de compresión uniaxial creciente en un cuerpo de prueba especifico. La deformación lineal, obtenida por la medida de la distancia entre las placas

Más detalles

Estructura estelar estática

Estructura estelar estática Estructura estelar estática Introducción A lo largo de su existencia, una estrella se encuentra en un estado de equilibrio delicado. Pequeños cambios pueden provocar inestabilidades locales o globales.

Más detalles

CAPITULO 3 PLASTICIDAD

CAPITULO 3 PLASTICIDAD MECANICA AVANZADA DE MATERIALES Dr. Luis A. Godoy 2005 CAPITULO 3 PLASTICIDAD Temario: 1. La física de la plasticidad. 2. Diversidad de comportamientos que se asocian con plasticidad. 3. Factores que afectan

Más detalles

COMPORTAMIENTO MECÁNICO Y FRACTURA DE MEZCLAS DE POLIESTIRENO Y MICROESFERAS DE VIDRIO.

COMPORTAMIENTO MECÁNICO Y FRACTURA DE MEZCLAS DE POLIESTIRENO Y MICROESFERAS DE VIDRIO. TESIS DOCTORAL COMPORTAMIENTO MECÁNICO Y FRACTURA DE MEZCLAS DE POLIESTIRENO Y MICROESFERAS DE VIDRIO. Miguel Angel Sánchez Soto 2000 COMPORTAMIENTO MECÁNICO Y FRACTURA DE MEZCLAS DE POLIESTIRENO Y MICROESFERAS

Más detalles

EUROCÓDIGO 3. CRITERIO DE ROTURA PARA ACEROS ESTRUCTURALES

EUROCÓDIGO 3. CRITERIO DE ROTURA PARA ACEROS ESTRUCTURALES EUROCÓDIGO 3. CRITERIO DE ROTURA PARA ACEROS ESTRUCTURALES PROFESOR: ANDRÉS VALIENTE CANCHO CURSO 2009-2010 ALBERTO RUIZ-CABELLO LÓPEZ EJERCICIO 1 La figura muestra la ubicación más probable de una fisura

Más detalles

A los efectos de la mecánica de materiales, usaremos una definición funcional de falla (Muchos autores prefieren hablar de estado limite).

A los efectos de la mecánica de materiales, usaremos una definición funcional de falla (Muchos autores prefieren hablar de estado limite). MECANICA AVANZADA DE MATERIALES Dr. Luis A. Godoy 2005 6. ANALISIS DE FALLAS ESTRUCTURALES A los efectos de la mecánica de materiales, usaremos una definición funcional de falla (Muchos autores prefieren

Más detalles

PROBLEMAS MÓDULO FATIGA

PROBLEMAS MÓDULO FATIGA PROBLEMA 1 Un elemento estructural, asimilable a una placa de grandes dimensiones, se encuentra sometido a una solicitación variable, siendo de 200 MPa durante 12 horas y de 20 MPa durante las siguientes

Más detalles

CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS

CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS 19.0. SIMBOLOGÍA E c módulo de elasticidad del hormigón, en MPa (ver el artículo 8.5.1.). f' c resistencia especificada a la compresión del hormigón, en MPa. f '

Más detalles

1.- De las siguientes afirmaciones, marque la que considere FALSA:

1.- De las siguientes afirmaciones, marque la que considere FALSA: APLIACIÓN DE RESISTENCIA DE ATERIALES. CURSO 0-3 CONVOCATORIA ETRAORDINARIA. 8jun03 Fecha de publicación de la preacta: de Julio Fecha hora de revisión: 9 de Julio a las 0:30 horas TEST (tiempo: 5 minutos)

Más detalles

3.8. Análisis elastoplástico

3.8. Análisis elastoplástico 41 3.8. Análisis elastoplástico De todos los modelos descritos anteriormente, en este trabajo fueron analizados los siguientes: von Mises, EDP Lineal, EDP Cuadrático o de Raghava et ál. y una versión 2D

Más detalles

II Parte. Comportamiento Mecánico de Materiales Plasticidad : Dislocaciones y Fenómenos de Deslizamiento. ID42A: Ciencia de los Materiales II

II Parte. Comportamiento Mecánico de Materiales Plasticidad : Dislocaciones y Fenómenos de Deslizamiento. ID42A: Ciencia de los Materiales II ID42A: Ciencia de los Materiales II II Parte Comportamiento Mecánico de Materiales Plasticidad : Dislocaciones y Fenómenos de Deslizamiento Profesor: Donovan E. Díaz Droguett Miércoles 17 de octubre de

Más detalles

MMCs reforzados por partículas

MMCs reforzados por partículas MMCs reforzados por partículas 2003-04 Escuela Superior de Ingenieros UNIVERSIDAD DE NAVARRA MMCs reforzados por partículas Introducción Partículas de refuerzo Propiedades mecánicas Módulo elástico Resistencia

Más detalles

Introducción a la Elasticidad y Resistencia de Materiales

Introducción a la Elasticidad y Resistencia de Materiales Lección 1 Introducción a la Elasticidad y Resistencia de Materiales Contenidos 1.1. Mecánica del Sólido Rígido y Mecánica del Sólido Deformable............................. 2 1.1.1. Sólido Rígido..........................

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 3. Propiedades mecánicas 3.1 Ensayos de esfuerzo - deformación unitaria Materiales Ley de esfuerzo cortante - deformación

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE 1- Una barra prismática de sección transversal circular está cargada por fuerzas P, de acuerdo a la figura siguiente.

Más detalles

Termoelasticidad lineal

Termoelasticidad lineal Capítulo 5 Termoelasticidad lineal n el capítulo anterior estudiamos el modelo más sencillo de la mecánica de sólidos, a saber, el de los cuerpos elásticos. n este análisis encontramos la relación que

Más detalles

7. CONCLUSIONES 7.1 Comparación con otros datos experimentales

7. CONCLUSIONES 7.1 Comparación con otros datos experimentales 7. CONCLUSIONES 7.1 Comparación con otros datos experimentales En este capítulo se observarán los resultados obtenidos estableciendo comparaciones con otros resultados conocidos con la finalidad de comprobar

Más detalles

Criterios de Fractura

Criterios de Fractura Criterios de Fractura Comportamiento elástico y plástico. Notar la deformación no recuperable durante la etapa plástica Comportamiento perfectamente plástico Criterios de Fractura Lo diferentes criterios

Más detalles

GUIA N o 1: ONDAS Física II

GUIA N o 1: ONDAS Física II GUIA N o 1: ONDAS Física II Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Laboratorio 4. Medición del módulo de elasticidad de Young

Laboratorio 4. Medición del módulo de elasticidad de Young Laboratorio 4. Medición del módulo de elasticidad de Young Objetivo Determinación del módulo de Young de diversos materiales a partir de la flexión estática y dinámica de una viga en voladizo. Ley de Hooke

Más detalles

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo.

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo. 1.11 Ecuaciones del movimiento 1.11. Ecuaciones del movimiento La descripción más elemental del movimiento del Medio Continuo puede llevarse a cabo mediante funciones matemáticas que describan la posición

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Estimación regional de los parámetros elásticos de la corteza terrestre utilizando series temporales de la componente vertical de SIRGAS-CON

Estimación regional de los parámetros elásticos de la corteza terrestre utilizando series temporales de la componente vertical de SIRGAS-CON Estimación regional de los parámetros elásticos de la corteza terrestre utilizando series temporales de la componente vertical de SIRGAS-CON R. Galván, M. Gende, C. Brunini Universidad Nacional de La Plata,

Más detalles

Programa de la asignatura Curso: 2007 / 2008 MECÁNICA DE MEDIOS CONTINUOS Y CIENCIA DE MATERIALES (3168)

Programa de la asignatura Curso: 2007 / 2008 MECÁNICA DE MEDIOS CONTINUOS Y CIENCIA DE MATERIALES (3168) Programa de la asignatura Curso: 2007 / 2008 MECÁNICA DE MEDIOS CONTINUOS Y CIENCIA DE MATERIALES (3168) PROFESORADO Profesor/es: JESÚS MANUEL ALEGRE CALDERÓN - correo-e: jalegre@ubu.es FICHA TÉCNICA Titulación:

Más detalles

5.7. ANEJO DE CÁLCULO DE ESTRUCTURA METÁLICA DE ESCALERA

5.7. ANEJO DE CÁLCULO DE ESTRUCTURA METÁLICA DE ESCALERA PROYECTO DE REFORMA, REDISTRIBUCIÓN INTERIOR Y RENOVACIÓN DE INSTALACIONES EN PLANTA ALTA Y LOCAL EN PLANTA BAJA DE LA SEDE DE LA DELEGACIÓN TERRITORIAL SITUADA EN PLAZA SAN JUAN DE LA CRUZ MÁLAGA 5.7.

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

2 Principios de teoría de la plasticidad

2 Principios de teoría de la plasticidad carga y para la que se estimarán las tensiones y deformaciones máximas según los dichos métodos. Para analizar la validez de los resultados obtenidos del análisis de la probeta anterior es necesario establecer

Más detalles

Ensayo de falla/fatiga Moreno López Marco Antonio Metodologia del diseño

Ensayo de falla/fatiga Moreno López Marco Antonio Metodologia del diseño Ensayo de falla/fatiga Moreno López Marco Antonio Metodologia del diseño Teorías de falla La falla de un elemento se refiere a la pérdida de su funcionalidad, es decir cuando una pieza o una máquina dejan

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

ANÁLISIS ESTRUCTURAL DE POLEA TENSORA DM800x

ANÁLISIS ESTRUCTURAL DE POLEA TENSORA DM800x Maestranza Valle Verde EIRL Mantenimientos Especiales Antecedentes: Fabricó y Diseñó: Maestranza Valle Verde EIRL. Calculó: René Callejas Ingeniero Civil Mecánico Rut: 13.012.752-5 INFORME DE INGENIERÍA

Más detalles

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos

Más detalles

Cálculo de un laminado arbitrario

Cálculo de un laminado arbitrario Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID MATERIALES COMPUESTOS ESTRUCTURALES Cálculo de un laminado arbitrario CURSO 2009-2010

Más detalles

Capítulo VI ENSAYOS IN SITU

Capítulo VI ENSAYOS IN SITU Capítulo VI ENSAYOS IN SITU 6.1 Introducción La determinación de las propiedades del suelo a partir de ensayos realizados en el laboratorio presenta algunos inconvenientes. Según se indica en el capítulo

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama.

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. TRABAJO PRÁCTICO N 7 Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. CONSIDERACIONES TEÓRICAS GENERALES Se denomina tracción axial al caso de solicitación de un cuerpo donde

Más detalles

9. PROPIEDADES MECÁNICAS EN SÓLIDOS

9. PROPIEDADES MECÁNICAS EN SÓLIDOS 9. PROPIEDADES MECÁNICAS EN SÓLIDOS MATERIALES I 12/13 Introducción Bloque I Teoría Elástica Tensión-deformación Propiedades mecánicas Bloque II Desgaste Dureza 2 Resistencia de Materiales Cantidad de

Más detalles

EJERCICIOS TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA

EJERCICIOS TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA Ejercicio 1 EJERCICIOS TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA A la vista de la siguiente gráfica tensión-deformación obtenida en un ensayo de tracción: a) Explique qué representan los

Más detalles

ESTRUCTURAS I. FACULTAD DE ARQUITECTURA, DISEÑO Y URBANISMO l UDELAR 2018

ESTRUCTURAS I. FACULTAD DE ARQUITECTURA, DISEÑO Y URBANISMO l UDELAR 2018 ESTRUCTURAS I FACULTAD DE ARQUITECTURA, DISEÑO Y URBANISMO l UDELAR 2018 EQUILIBRIO DE LAS PARTES: MÉTODO DE LAS SECCIONES. RESULTANTE IZQUIERDA Y SOLICITACIONES. EQUILIBRIO ESTABLE Una estructura se encuentra

Más detalles

Tema 2: Propiedades de los Materiales Metálicos.

Tema 2: Propiedades de los Materiales Metálicos. Tema 2: Propiedades de los Materiales Metálicos. 1. Propiedades mecánicas. 2. Mecanismos de deformación (Defectos). 3. Comportamiento elasto-plástico. 4. Comportamiento viscoso (fluencia y relajación).

Más detalles

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 )

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 ) 1 Interferencia Como adelantamos al discutir la diferencia entre partí culas y ondas, el principio de superposición da a lugar al fenómeno de interferencia. Sean dos ondas idénticas que difieren en la

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

Notación. Mayúsculas latinas. Minúsculas latinas

Notación. Mayúsculas latinas. Minúsculas latinas Notación Mayúsculas latinas A A c A s E E a E c E cm E p E s I K M M fis M u N N 0 N u N ext N d P k P k T V u V u1 V u2 V cu V su W W h Área Área de hormigón Área de acero Módulo de deformación Módulo

Más detalles

CONSIDERACIONES PARA EL DISEÑO

CONSIDERACIONES PARA EL DISEÑO CAPITULO II CONSIDERACIONES PARA EL DISEÑO 1.- ACCIONES SOBRE LAS ESTRUCTURAS 1.1.- Acciones a considerar sobre las estructuras Las acciones a tener en cuenta sobre una estructura o elemento estructural,

Más detalles

4 Métodos analíticos para el cálculo de tensiones y deformaciones plásticas

4 Métodos analíticos para el cálculo de tensiones y deformaciones plásticas +3Δ =3 = 3( Δ) Ec. 3.10 Ahora bien, como una vez iniciada la plastificación debe cumplirse el criterio de Von Mises debido a la condición de consistencia, se tiene: = =0 = 3( Δ) 3( Δ) = 0 Ec. 3.11 Qué

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO.

ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO. ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO. Cualquier punto del interior de la Tierra está sometido a un complejo sistema de esfuerzos. Esto es debido a que sobre él actúa el

Más detalles

OBJETO DEL ENSAYO DE TRACCION

OBJETO DEL ENSAYO DE TRACCION OBJETO DEL ENSAYO DE TRACCION UN CUERPO SE ENCUENTRA SOMETIDO A TRACCION SIMPLE CUANDO SOBRE SUS SECCIONES TRANSVERSALES SE LE APLICAN CARGAS NORMALES UNIFORMEMENTE REPARTIDAS Y DE MODO DE TENDER A PRODUCIR

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO 2010-11 9.1.- Una viga indeformable de longitud 4 m, de peso despreciable, está suspendida por dos hilos verticales de 3 m de longitud. La viga

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

Dinámica del billar. F. Javier Gil Chica

Dinámica del billar. F. Javier Gil Chica Dinámica del billar F. Javier Gil Chica Resumen La dinámica del choque entre dos bolas de billar es un problema clásico que se encuentra al menos citado en multitud de textos elementales de física. En

Más detalles

ENSAYO DE TENSIÓN PARA METALES. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión.

ENSAYO DE TENSIÓN PARA METALES. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión. ENSAYO DE TENSIÓN PARA METALES 1. OBJETIVO 1.1 Objetivo general. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión. 1.2 Objetivos Específicos Conocer las normas

Más detalles

Ensayo de tracción real ( o verdadero)

Ensayo de tracción real ( o verdadero) Ensayo de tracción real ( o verdadero) Los resultados obtenidos por la curva de tensión convencional (ingeniería) están sujetos a errores porque todos los cálculos están en base a la sección inicial del

Más detalles

Resumen de Criterios de Fractura

Resumen de Criterios de Fractura Resumen de Criterios de Fractura Comportamiento elástico y plástico. Notar la deformación no recuperable durante la etapa plástica Comportamiento perfectamente plástico Criterios de Fractura Lo diferentes

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE.............................................. APELLIDOS........................................... CALLE................................................

Más detalles

Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA:

Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA: Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA: Problema 1 (Duración 45 minutos) (Puntuación máxima: 2.5 puntos) La estructura de la figura está compuesta

Más detalles