REGRESION simple. Correlación Lineal:
|
|
|
- Guillermo Martínez Cortés
- hace 10 años
- Vistas:
Transcripción
1 REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente) el valor de una de ellas conocido el valor de la otra; en este sentido, decimos que la correlación es positiva si al aumentar una de las variables aumenta también la otra, y negativa en caso contrario. Si queremos predecir el valor de Y a partir de X, decimos que X es el regresor, e Y la variable explicada. Si X e Y no están relacionadas en modo alguno, decimos que son incorreladas. Si X e Y están correlacionadas, tiene sentido buscar la fórmula que permita aproximar una de ellas, digamos Y, conocida la otra. Según el tipo de fórmula que mejor se adapte a los datos, hablamos de correlación lineal (Y = a+bx), correlación cuadrática (Y = a + bx + cx 2 ), exponencial (Y = ab X ), etc. En nuestro caso, nos centraremos en la correlación lineal. Medida de la Correlación Lineal: Para evaluar la fuerza de la correlación lineal entre dos variables X e Y, es decir, la idoneidad de una aproximacón Y = a + bx, lo primero que haremos será reunir datos del tipo (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ); es decir, mediremos los valores de X e Y sobre n individuos de una cierta población; a un conjunto de datos de este tipo se le llama una distribución bidimensional. A partir de estos datos, calcularemos los siguientes parámetros, que permiten evaluar distintos aspectos de la correlación lineal. (1) Nube de Puntos: Es la representación gráfica de los datos (x i, y i ). La forma de la región que configuran permite evaluar si hay o no correlación entre las variables: si la nube de puntos se aproxima a una curva con forma geométrica definida, hay correlación entre ambas; si la nube de puntos no se aproxima a ninguna curva en particular (es decir, es más bien informe), entonces son incorreladas. En el primer caso, la curva a la que se aproxime la nube de puntos sugerirá el modelo a utilizar: lineal (Y = a + bx) si es una recta, cuadrática (Y = a+bx +cx 2 ) si es una parábola, etc. En el caso de la correlación lineal, la nube de puntos debe ser alargada, y próxima a una recta intermedia. (2) Covarianza: Es un parámetro que depende tanto de la fuerza de la correlación lineal, como de la dispersión y el tamaño de las x i, por un lado, y 1
2 las y j, por otro. Cuanto más próxima esté a 0, más débil será la correlación lineal entre las variables. Se calcula como: s xy = i=1,...,n(x i x)(y i ȳ) n = i=1,...,n x i y i xȳ n Si la correlación es positiva, entonces s xy > 0; si es negativa, s xy < 0. (3) Coeficiente de correlación lineal de Pearson: ρ = s xy s x s y Se cumple que: Depende sólo de la fuerza de la correlación lineal. 1 ρ 1 Si ρ > 0, la correlación es positiva; si ρ < 0, negativa. La correlación es tanto más fuerte cuanto más próximo esté ρ a 1 o 1. (4) Coeficiente de correlación lineal de Spearman (o por Rangos): Es más robusto que ρ (es decir, menos sensible a datos atípicos). Si representamos por R x, R y los rangos de los x i, y j, respectivamente, entonces r s = s R x,r y s Rx s Ry Sus propiedades son completamente análogas a las de ρ. Modelo de Correlación Lineal: Con más precisión, decimos que la relación entre dos variables X e Y puede ser descrita a partir de un modelo lineal, cuando puede afirmarse que Y = a + bx + ɛ donde ɛ recibe el nombre de residuo, de modo que se cumple: (i) La relación entre Y y X es lineal (es decir, la fórmula Y = a + bx aproxima bien el valor de Y, conocido X) (ii) La media de los residuos es 0. (iii) Los residuos son normales. (iv) La varianza de Y no depende del valor de X (homocedasticidad). (v) Los residuos son aleatorios. En resumen, ɛ = N(0, σ), donde σ recibe el nombre de error experimental, y permite evaluar hasta qué punto pueden desviarse las predicciones, de los valores reales. 2
3 Los valores a, b se estiman como: b = s xy s 2 x a = ȳ b x donde x, ȳ son las medias de los x i, y j, respectivamente, y s 2 x es la varianza de los x i. El parámetro a se llama ordenada, y b pendiente. En general, dado un cierto valor x i, representaremos por ŷ i el valor esperado de la variable Y, correspondiente al valor x i de la variable X, conforme al modelo anterior; es decir, ŷ i = a + bx i Se tiene que ɛ i = y i ŷ i (el valor real menos el predicho ). Variabilidad y Correlación Lineal: Puede realizarse una descomposición de la variabilidad de la variable Y similar a la del ANOVA simple, a partir del modelo anterior. Concretamente, si ȳ representa la media de la variable Y, entonces: (yi ȳ) 2 = (y i ŷ i ) 2 + (ŷ i ȳ) 2 } {{ } } {{ } } {{ } SCT SCR SCE Se llama coeficiente de determinación o R 2, a R 2 = SCE SCT 100 Este coeficiente debe entenderse como el porcentaje de variabilidad de los datos que está siendo explicado por el modelo (de hecho, si el modelo es bueno ŷ i, y i serán muy similares, luego SCR será próxima a cero. Si R 2 es suficientemente grande, entonces entenderemos que el modelo Y = a+bx está explicando bien la variabilidad encontrada, y por tanto que se ajusta bien a los datos. En particular, cuanto más próximo a 100 sea R 2, más fuerte será la correlación lineal. Además, aplicando técnicas similares a las del ANOVA, podemos producir un p-valor para la hipótesis H 0 : no hay correlación lineal, frente a la alternativa H 1 : hay correlación lineal. Finalmente, R 2 es exactamente igual al cuadrado del coeficiente de correlación lineal de Pearson, multiplicado por 100; de ahí el hecho de que el coeficiente de correlación de Pearson mida la fuerza de la correlación. Tests de Hipótesis para contrastar la existencia de correlación lineal: Si b es la pendiente del modelo de regresión, aceptar H 0 : b = 0, H 1 : b 0 equivale a admitir que no hay correlación lineal. En ese caso, las variables pueden ser incorreladas, o puede existir entre ellas una correlación de otro tipo. 3
4 Si ρ es el coeficiente de correlación de Pearson, aceptar H 0 : ρ = 0, H 1 : ρ 0 equivale a admitir que no hay correlación lineal. Idem para el coeficiente de correlación de Spearman, r s. 4
5 REGRESION múltiple En este caso hay una variable explicada Y, y varios regresores X 1,..., X n, de modo que el modelo que se intenta ajustar es Y = a 1 X a n X n Con mayor exactitud, Y = a 1 X a n X n + ɛ, donde ɛ recibe, como en el caso de la regresión simple, el nombre de residuo; las propiedades que esta variable debe cumplir son las mismas que en el caso anterior. Además, se exige también que las variables X 1,..., X n no estén linealmente correlacionadas (ya que, de otro modo, el modelo tendría más variables de las necesarias). Cuando dos de las variables X i, X j están linealmente correlacionadas, se dice que existe multicolinealidad. Para comprobar si el modelo de regresión múltiple se ajusta bien a un cierto conjunto de observaciones, examinaremos si el coeficiente de determinación, o R 2, es próximo a 100. Esto se traduce también en un cierto p-valor que permite contrastar la hipótesis H 0 : no hay correlación lineal, H 1 : hay correlación lineal. 5
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
CORRELACIÓN Y PREDICIÓN
CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una
DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009
Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis
Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79
. Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.
Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3
Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar
Análisis de componentes principales
Capítulo 2 Análisis de componentes principales 2.1. INTRODUCCIÓN El Análisis de componentes principales trata de describir las características principales de un conjunto de datos multivariantes, en los
Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11
Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Pruebas de. Hipótesis
Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar
15 ESTADÍSTICA BIDIMENSIONAL
ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
Correlación entre variables
Correlación entre variables Apuntes de clase del curso Seminario Investigativo VI Por: Gustavo Ramón S.* * Doctor en Nuevas Perspectivas en la Investigación en Ciencias de la Actividad Física y el Deporte
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................
FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS
AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada
GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008
1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto
Finanzas de Empresas Turísticas
Finanzas de Empresas Turísticas Prof. Francisco Pérez Hernández ([email protected]) Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid 1 Departamento de Financiación e Investigación
Tema 3: El modelo de regresión lineal múltiple
Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal
6 Sexta. 6.1 Parte básica. Unidad Didáctica "REGRESIÓN Y CORRELACIÓN"
352 6 Sexta Unidad Didáctica "REGRESIÓN Y CORRELACIÓN" 6.1 Parte básica 353 6.1.1 Introducción Regresión es una palabra un tanto rara. La utilizan los biólogos, los médicos, los psicólogos... y suena como
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
TEMA 4: Variables binarias
TEMA 4: Variables binarias Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 4: Variables binarias Curso 2011-12 1 / 51 Variables
Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones
Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C
Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA
ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)
Empresarial y Financiero
Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),
Movimiento a través de una. José San Martín
Movimiento a través de una curva José San Martín 1. Introducción Una vez definida la curva sobre la cual queremos movernos, el siguiente paso es definir ese movimiento. Este movimiento se realiza mediante
Validation. Validación Psicométrica. Validation. Central Test. Central Test. Centraltest CENTRAL. L art de l évaluation. El arte de la evaluación
Validation Validación Psicométrica L art de l évaluation Validation Central Test Central Test Centraltest L art de l évaluation CENTRAL test.com El arte de la evaluación www.centraltest.com Propiedades
Capítulo 9. Regresión lineal simple
Capítulo 9. Regresión lineal simple 9.1 Introducción Uno de los aspectos más relevantes de la Estadística es el análisis de la relación o dependencia entre variables. Frecuentemente resulta de interés
Tema 12: Contrastes Paramétricos
Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de
GRADO TURISMO TEMA 3: ANÁLISIS DE DATOS TURÍSTICOS BIDIMENSIONALES
GRADO TURISMO TEMA 3: ANÁLISIS DE DATOS TURÍSTICOS BIDIMENSIONALES Prof. Rosario Martínez Verdú TEMA 3: ANÁLISIS DE DATOS TURÍSTICOS BIDIMENSIONALES 1. Distribuciones bidimensionales de frecuencias y diagrama
Medidas de tendencia central o de posición: situación de los valores alrededor
Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias
Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía
ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso
ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 26 - Junio - 2.8 Primera Parte - Test Nota : En la realización de este examen sólo esta permitido utilizar calculadoras que, a lo sumo, tengan funciones
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Funciones polinomiales de grados cero, uno y dos
Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso
ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta
Curso Práctico de Bioestadística Con Herramientas De Excel
Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA [email protected] (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister
Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal
Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se
La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota
La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas
ANÁLISIS DE DATOS NO NUMERICOS
ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas
Aula Banca Privada. La importancia de la diversificación
Aula Banca Privada La importancia de la diversificación La importancia de la diversificación La diversificación de carteras es el principio básico de la operativa en mercados financieros, según el cual
Función exponencial y Logaritmos
Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes
Aplicaciones de Estadística Descriptiva
Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos
Análisis de Regresión y Correlación con MINITAB
Análisis de Regresión y Correlación con MINITAB Primeras definiciones y conceptos de la regresión El análisis de la regresión es una técnica estadística que se utiliza para estudiar la relación entre variables
Estimación. Intervalos de Confianza para la Media y para las Proporciones
Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
TEMA 5 ESTUDIOS CORRELACIONALES.
TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.
Clase 8: Distribuciones Muestrales
Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas
Metodología. del ajuste estacional. Tablero de Indicadores Económicos
Metodología del ajuste estacional Tablero de Indicadores Económicos Metodología del ajuste estacional Componentes de una serie de tiempo Las series de tiempo están constituidas por varios componentes que,
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
Procesos de Media Móvil y ARMA
Capítulo 4 Procesos de Media Móvil y ARMA Los procesos AR no pueden representar series de memoria muy corta, donde el valor actual de la serie sólo está correlado con un número pequeño de valores anteriores
LECCION 1ª Introducción a la Estadística Descriptiva
LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,
Servicio de Medicina Interna. Hospital Universitario Virgen Macarena. Sevilla
DOCUWEB FABIS Dot. úm 0702005 Cómo realizar paso a paso un contraste de hipótesis con SPSS para Windows: (III) Relación o asociación y análisis de la dependencia (o no) entre dos variables cuantitativas.
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.
QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no
Otras medidas descriptivas usuales
Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.
El concepto de integral con aplicaciones sencillas
El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:
Grado en Finanzas y Contabilidad
Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 5.2 Estimadores de Variables Instrumentales La endogeneidad aparece
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde
NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:
NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o
ACCIONES Y OTROS TÍTULOS DE INVERSIÓN
ACCIONES Y OTROS TÍTULOS DE INVERSIÓN TASAS EFECTIVAS DE RENDIMIENTO ANUAL Y MENSUAL: Es aquélla que se emplea en la compraventa de algunos valores en el Mercado Bursátil o Bolsa de Valores. Estas tasas
CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA
I E S E Universidad de Navarra CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA INFORME SOBRE LA RELACION ENTRE CONSUMO, MOROSIDAD Y CICLOS BURSATILES Miguel A. Ariño* María Coello de Portugal** DOCUMENTO
Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68.
Departamento de Economía Aplicada: UDI de Estadística. Universidad Autónoma de Madrid Notas sobre el manejo de Excel para el análisis descriptivo y exploratorio de datos. (Descriptiva) 1 1 Introducción
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones
TEMA 9 DISTRIBUCIONES BIDIMENSIONALES
Tema 9 Distribuciones bidimensional Matemáticas CCI 1º Bachillerato 1 TEMA 9 DITRIBUCIONE BIDIMENIONALE NUBE DE PUNTO Y COEFICIENTE DE CORRELACIÓN EJERCICIO 1 : Las notas de 10 alumnos y alumnas de una
1. MEDIDAS DE TENDENCIA CENTRAL
1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas
ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH
ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH Cuando se estudian en forma conjunta dos características (variables estadísticas) de una población o muestra, se dice que estamos analizando una variable
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.
Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes
2 Resolución de algunos ejemplos y ejercicios del tema 2.
INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 8 2 Resolución de algunos ejemplos y ejercicios del tema 2. 2.1 Ejemplos. Ejemplo 13 La siguiente tabla de frecuencias absolutas corresponde a 200 observaciones
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
Los valores de las respuesta son las puntuaciones que, de cada individuo, o cluster, obtenemos semanalmente durante cinco semanas consecutivas:
Sobre los modelos lineales mixtos Ejemplo: Recuperación de infarto. Para estudiar las diferencias entre dos procedimientos diferentes de recuperación de pacientes de un infarto, se consideraron dos grupos
Análisis de medidas conjuntas (conjoint analysis)
Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los
Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales
Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector
En la siguiente gráfica se muestra una función lineal y lo que representa m y b.
FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son
ESTADÍSTICA SEMANA 4
ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...
CORRELACIONES CON SPSS
ESCUEL SUPERIOR DE INFORMÁTIC Prácticas de Estadística CORRELCIONES CON SPSS 1.- INTRODUCCIÓN El concepto de relación o correlación entre dos variables se refiere al grado de parecido o variación conjunta
1. Funciones de varias variables: representaciones gráficas, límites y continuidad.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Funciones de varias variables: representaciones gráficas, límites y continuidad. En el análisis de los problemas de la ciencia y de la técnica, las cantidades
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
REGRESIÓN LINEAL MÚLTIPLE
REGRESIÓN LINEAL MÚLTIPLE.- Planteamiento general....- Métodos para la selección de variables... 5 3.- Correlaciones parciales y semiparciales... 8 4.- Multicolinealidad en las variables explicativas...
Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción
Capítulo 18 Análisis de regresión lineal: El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables.
UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS
UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS I. INTRODUCCIÓN Y MANEJO DE DATOS MANUAL DE SPSS 1 MASTER CALIDAD TOTAL 1/ INTRODUCCIÓN Las aplicaciones de la Estadística en la
Inferencia Estadística
EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL
MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
Transformación de gráfica de funciones
Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
ANÁLISIS DESCRIPTIVO CON SPSS
ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:
CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO
Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal
