Pruebas de. Hipótesis
|
|
|
- Purificación Vidal Herrero
- hace 10 años
- Vistas:
Transcripción
1 Pruebas de ipótesis
2 Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar basada en alguna creencia o experiencia pasada que será contrastada con la evidencia que nosotros obtengamos a través de la información contenida en la muestra. Esto es a lo que llamamos Prueba de ipótesis
3 Una prueba de hipótesis comprende cuatro componentes principales: -ipótesis Nula -ipótesis Alternativa -Estadística de Prueba -Región de Rechazo
4 La ipótesis Nula, denotada como 0 siempre especifica un solo valor del parámetro de la población si la hipótesis es simple o un conjunto de valores si es compuesta (es lo que queremos desacreditar) 0 : µ = µ 0 0 : µ " µ 0 0 : µ " µ 0 La ipótesis Alternativa, denotada como es la que responde nuestra pregunta, la que se establece en base a la evidencia que tenemos. Puede tener cuatro formas: : µ = µ : µ < µ 0 : µ > µ : µ µ 0 0
5 Como las conclusiones a las que lleguemos se basan en una muestra, hay posibilidades de que nos equivoquemos. Dos decisiones correctas son posibles: Rechazar 0 cuando es falsa No Rechazar 0 cuando es verdadera. Dos decisiones incorrectas son posibles: Rechazar 0 cuando es verdadera No Rechazar 0 cuando es falsa.
6 Tamaño de los errores al tomar una decisión incorrecta en una Prueba de ipótesis 0 Verdadera 0 Falsa Rechazamos 0 Error Tipo I P(error Tipo I) = α Decisión Correcta No Rechazamos 0 Decisión Correcta Error Tipo II P(error Tipo II) = β
7 La Probabilidad de cometer un error Tipo I se conoce como Nivel de Significancia, se denota como α y es el tamaño de la región de rechazo El complemento de la región de rechazo es α y es conocido como el Coeficiente de Confianza En una prueba de ipótesis de dos colas la región de no rechazo corresponde a un intervalo de confianza para el parámetro en cuestión
8 La Región de Rechazo es el conjunto de valores tales que si la prueba estadística cae dentro de este rango, decidimos rechazar la ipótesis Nula Su localización depende de la forma de la ipótesis Alternativa: Si : µ > µ 0 entonces la región se encuentra en la cola derecha de la distribución de la estadística de prueba.
9 Si entonces la región se encuentra en : µ < µ 0 la cola izquierda de la distribución de la estadística de prueba Si : µ µ 0 entonces la región se divide en dos partes, una parte estará en la cola derecha de la distribución de la estadística de prueba y la otra en la cola izquierda de la distribución de la estadística de prueba.
10 Conclusiones de una Prueba de ipótesis Si rechazamos la ipótesis Nula, concluimos que hay suficiente evidencia estadística para inferir que la hipótesis nula es falsa Si no rechazamos la ipótesis Nula, concluimos que no hay suficiente evidencia estadística para inferir que la hipótesis nula es falsa
11 : µ > µ 0
12 : µ µ 0
13 La Estadística de Prueba es una estadística que se deriva del estimador puntual del parámetro que estemos probando y en ella basamos nuestra decisión acerca de si rechazar o no rechazar la ipótesis Nula Ejemplo: Z = ˆ µ " µ 0 # n Siempre se calcula considerando la ipótesis Nula como si fuera verdadera.
14 Para el caso específico de la media poblacional µ, el estimador es µˆ = X cuya varianza es n. Supondremos que conocemos la varianza poblacional ipótesis Nula Alternativa Estadística de Prueba R. Rechazo : µ = µ 0 0 : µ < µ 0 : µ > µ 0 : µ µ 0 Z µ " µ 0 = ˆ { } { } { Z : Z < Z " } Z : Z > Z "# Z : Z > Z "# / X
15 Si nuestro propósito está en la proporción de éxitos p, el estimador será p ˆ = X que tiene distribución n aproximada normal con media p y varianza p(-p)/n, donde p toma el valor propuesto por la hipótesis nula. ipótesis Nula Alternativa Estadística de Prueba R. Rechazo : p = p 0 0 : p < p 0 : p > p : p p 0 0 p Z = ˆ " p 0 # p ˆ { } { Z : Z < Z " } Z : Z > Z "# Z : Z > Z "# / { }
16 Cuando la varianza poblacional no es conocida, sabemos que la podemos estimar con la varianza muestral, siendo la distribución de la estadística de prueba una t - Student con n- grados de libertad. ipótesis Nula Alternativa Estadística de Prueba R. Rechazo : µ = µ 0 0 : µ < µ 0 : µ > µ : µ µ 0 0 { T : T < t n",# } T = ˆ µ " µ 0 S n { T : T > t n","# } { T : T > t n","# / }
17 Para el caso de comparar las medias de dos poblaciones independientes (tamaño de muestras grande), y las varianzas son conocidas, la prueba se realiza de la siguiente manera: ipótesis Nula Alternativa Estadística de Prueba R. Rechazo : µ = µ 0 : µ > µ : µ µ : µ < µ Z = X " X # + # { Z : Z < Z " } { Z : Z > Z "# } { Z : Z > Z "# / } X X
18 Si la comparación es de proporciones de dos poblaciones independientes, la prueba será ipótesis Nula Alternativa Estadística de Prueba = : p p 0 : p > p : p < p : p p Z = p ˆ " p ˆ ( ) p ˆ (" p ˆ ) n + n R. Rechazo X donde ˆ. p = n + X + n Recordemos que para usar la aproximación normal es necesario que, donde n es el tamaño de la muestra i (i=,) n i p > 5 { } Z : Z < Z " i { Z : Z > Z "# } { Z : Z > Z "# / }
19 Para la diferencia de medias podemos suponer que las varianzas poblacionales son iguales (este hecho se tiene que probar como se muestra mas adelante). ipótesis Nula Alternativa Estadística de Prueba 0 : µ = µ : µ > µ : µ < µ : µ µ T = X " X S p n + n R. Rechazo ( n ) S + ( n ) S Donde S = es el estimador de varianza mínima para σ p. n + n { } T : T < t n",# { T : T > t n","# } La prueba se basa en una t con n -n - grados de libertad. { T : T > t n","# / }
20 Para la diferencia de medias cuando nuestras muestras están pareadas (misma medición, misma unidad experimental, circunstancias diferentes) podemos usar la prueba de diferencia de medias. Sin embargo debemos notar que la varianza de la diferencia de medias lleva implícita la covarianza entre los estimadores ipótesis Nula Alternativa Estadística de Prueba R. Rechazo 0 X y X ( ) : µ µ " : µ = 0 µ = µ µ = 0 D D : µ D < 0 : µ D > 0 : µ D 0 { T : T < t n",# } T = S D D n ( = + # " ) D { T : T > t n","# } { T : T > t n","# / }
21 Con frecuencia nuestro interés está en el parámetro de variabilidad, en cuyo caso podemos hacer las pruebas sobre un valor específico de la varianza poblacional. Para ello nos basamos en el estimador del estimador de σ que es una χ con n- grados de libertad. ipótesis Nula Alternativa : < 0 : = 0 0 : > 0 : " 0 Estadística de Prueba X = (n " )S # 0 R. Rechazo X : X { < " n#,$ } X : X { > " n#,#$ } %' & (' X : X < " n#,$ / X : X > " n#,#$ / ó )' * + '
22 El supuesto de varianzas iguales que se ha hecho al comparar las medias de dos poblaciones, deberá ahora probarse mediante la estadística F ipótesis Nula Alternativa Estadística de Prueba R. Rechazo : < : = 0 : > { } { } F = max S,S min S,S { F : F > F n ",n ","#} : " { F : F > F n ",n ","# / }
23 valor-p es el nivel de significancia alcanzado. El nivel de significancia más pequeño al cual los datos observados indican que la hipótesis nula debe ser rechazada. Si W es una estadística de prueba y w 0 es el valor observado, el valor-p nos indica la probabilidad de que w 0 sea un valor extremo: ( w cuando es cierta) valor " p = P W 0, 0 ( w cuando es cierta) valor " p = P W, 0 0
24 Prueba acerca del Coeficiente de Correlación Si queremos ver si realmente existe una medida de relación lineal entre dos variables X y Y en una población que tiene una distribución bivariada normal, la hipótesis será o : " = 0. Usamos la estadística de prueba que tiene una distribución t-student con n- grados de libertad. T = r n " " r
25 Si la población bivariada está lejos de una normal, podemos usar los rangos de las medidas de cada variable y calcular la medida de relación conocida como coeficiente de correlación rangos de Spearman d i r s =" 6 n # i= n 3 " n donde d i es la diferencia entre los rangos de X y los de Y. El valor crítico se busca en tablas de Coeficiente de Correlación de Rangos de Spearman (Cf. J..Zar.- Biostatistical Analysis)
26 Referencias Zar, Jerrold.- Biostatistical Analysis.- 4rd ed.- Prentice all, Inc
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Pruebas de ipótesis de Una y Dos Muestras UCR ECCI CI-35 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides ipótesis Estadísticas Conceptos Generales En algunos casos el científico
Test ( o Prueba ) de Hipótesis
Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a
Curso Práctico de Bioestadística Con Herramientas De Excel
Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA [email protected] (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister
Tema 12: Contrastes Paramétricos
Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se
Tests de hipótesis estadísticas
Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para
ANÁLISIS DE DATOS NO NUMERICOS
ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas
TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística
TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud
Inferencia Estadística
Felipe José Bravo Márquez 11 de noviembre de 2013 Para realizar conclusiones sobre una población, generalmente no es factible reunir todos los datos de ésta. Debemos realizar conclusiones razonables respecto
Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMAS RESUELTOS DE CONTRASTE DE HIPÓTESIS
Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMA REUELTO DE CONTRATE DE HIPÓTEI 1 Un investigador quiere contrastar si el peso medio de ciertas hortalizas está en los 1,9 Kg. que
PRUEBAS DE HIPÓTESIS
PRUEBAS DE HIPÓTESIS Muchos problemas de ingeniería, ciencia, y administración, requieren que se tome una decisión entre aceptar o rechazar una proposición sobre algún parámetro. Esta proposición recibe
Inferencia Estadística
EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre
Estimación de una probabilidad
Estimación de una probabilidad Introducción En general, la probabilidad de un suceso es desconocida y debe estimarse a partir de una muestra representativa. Para ello, deberemos conocer el procedimiento
Hipótesis Alternativa: Afirmación sobre las posibles alternativas que se tienen a la afirmación hecha en la hipótesis nula.
PRUEBA DE HIPÓTESIS Introducción (10 min) En el mundo de las finanzas, la administración y la economía tan importante como saber hacer y entender a cabalidad las estimaciones que nos ayudaran a la toma
Nombre...Apellidos... Grado en:...grupo:...
ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA - Soluciones Estadística- Curso 01/1. 9 de Julio de 01 Nombre...Apellidos... Grado en:...grupo:... 1. Considera la variable aleatoria (v.a.) X cuyos posibles
Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2
Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación
Capítulo 7: Distribuciones muestrales
Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.
Estimación. Intervalos de Confianza para la Media y para las Proporciones
Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo
Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16
3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una
CONTRASTES DE HIPÓTESIS DE 1 POBLACIÓN
CONTRASTES DE IPÓTESIS DE POBLACIÓN Autores: Alicia Vila ([email protected]), Máximo Sedano ([email protected]), Ángel A. Juan ([email protected]), Anna López ([email protected]). ESQUEMA DE CONTENIDOS Definición
Grado en Finanzas y Contabilidad
Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 5.2 Estimadores de Variables Instrumentales La endogeneidad aparece
Tema 3. Comparaciones de dos poblaciones
Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:
Problemas de Probabilidad resueltos.
Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose
REGRESION simple. Correlación Lineal:
REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)
Asignatura: Econometría. Conceptos MUY Básicos de Estadística
Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes
SPSS: ANOVA de un Factor
SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de
CORRELACIONES CON SPSS
ESCUEL SUPERIOR DE INFORMÁTIC Prácticas de Estadística CORRELCIONES CON SPSS 1.- INTRODUCCIÓN El concepto de relación o correlación entre dos variables se refiere al grado de parecido o variación conjunta
ESTIMACION DE INTERVALOS DE CONFIANZA
pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones
Problemas. Intervalos de Confianza y Contrastes de Hipótesis
Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población
Tema 5: Introducción a la inferencia estadística
Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas
APLICACIONES DE INFERENCIA
APLICACIONES DE INFERENCIA CONTENIDO DE LA PRESENTACIÓN Un ejemplo desarrollado dentro del marco del proyecto MaMaEuSch como aplicación de la Inferencia. Una serie de applets relacionados con la inferencia.
Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.
Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables
7.- PRUEBA DE HIPOTESIS
7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información
Práctica 5. Contrastes paramétricos en una población
Práctica 5. Contrastes paramétricos en una población 1. Contrastes sobre la media El contraste de hipótesis sobre una media sirve para tomar decisiones acerca del verdadero valor poblacional de la media
Inferencia Estadística
MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics
INFERENCIA ESTADÍSTICA
INFERENCIA ESTADÍSTICA Pensemos en los tres siguientes ejemplos: Hacemos una encuesta entre los clientes de una tienda para preguntarles su opinión sobre cambios generales que pretendemos hacer en diversas
1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros
TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación
Muestreo estadístico. Relación 2 Curso 2007-2008
Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los
Estadística y Método Científico Hugo S. Salinas. Fuente: http://dta.utalca.cl/estadistica/
Estadística y Método Científico Hugo S. Salinas Fuente: http://dta.utalca.cl/estadistica/ Estadística y Método Científico Podemos definir Estadística como la ciencia de los datos. La palabra ciencia viene
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
MUESTREO CONCEPTOS GENERALES
MUESTREO CONCEPTOS GENERALES Resumen del libro Muestreo para la investigación en Ciencias de la Salud Luis Carlos Silva Ayçaguer (páginas de la 1 a la 14) Cuando se decide cuantificar sólo una parte de
TEMA 7: Análisis de la Capacidad del Proceso
TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad
Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1
Biometría Clase 8 Pruebas de hipótesis para una muestra Adriana Pérez 1 Qué es una prueba de hipótesis? Es un proceso para determinar la validez de una aseveración hecha sobre la población basándose en
Aplicaciones de Estadística Descriptiva
Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos
Matemáticas 2º BTO Aplicadas a las Ciencias Sociales
Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD
DESCRIPCIÓN ESPECÍFICA
DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad
8.2.2. Intervalo para la media (caso general)
182 Bioestadística: Métodos y Aplicaciones 100 de ellos se obtiene una media muestral de 3 kg, y una desviación típica de 0,5 kg, calcular un intervalo de confianza para la media poblacional que presente
Clase 8: Distribuciones Muestrales
Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas
Tema 10. Estimación Puntual.
Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener
Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n
Un diseño experimental que se utiliza muy a menudo es el de un grupo control y uno de tratamiento. En el caso de que los datos sean cuantitativos y sigan una distribución normal, la hipótesis de interés
8. Estimación puntual
8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores
Otras medidas descriptivas usuales
Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.
MANUAL PARA EL USO DE SPSS
MANUAL PARA EL USO DE SPSS 1 INTRODUCCIÓN El propósito de este manual, es ilustrar con un ejemplo cómo generar tablas de frecuencia, tablas de contingencia, cálculos de medias, así como la generación de
TEMA 4: Variables binarias
TEMA 4: Variables binarias Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 4: Variables binarias Curso 2011-12 1 / 51 Variables
Curso de Estadística no-paramétrica
Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació
PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)
PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A. I. Suponga que en una estación con un solo servidor
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:
Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11
Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales
Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local
21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable
ESTIMACION POR INTERVALOS
ESTIMACION POR INTERVALOS En muchas situaciones, una estimación puntual no proporciona información suficiente sobre el parámetro. Por esta razón se construyen intervalos de confianza en donde el parámetro
Curso Comparabilidad de resultados
Curso Comparabilidad de resultados Director: Gabriel A. Migliarino. Docente: Evangelina Hernández. Agenda Introducción. n. Protocolos iniciales de comparación de métodos. m * EP9-A2. CLSI. * Comparación
Tema 2 - Introducción
Tema 2 - Introducción 1 Tema 1. Introducción a la inferencia estadística Planteamientos y objetivos. Revisión de distribuciones multivariantes. Esperanza y varianza de sumas de v.a. independientes. Tema
Selectividad Junio 2008 JUNIO 2008 PRUEBA A
Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo
TEMA 5 ESTUDIOS CORRELACIONALES.
TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I
Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................
INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL SECCIÓN DE EPIDEMIOLOGÍA-BIOESTADÍSTICA INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS Objetivo:
TEMA UNIDAD III:INFERENCIA ESTADÍSTICA 11.1. INTRODUCCIÓN
PRUEBA DE HIPÓTESIS TEMA..INTRODUCCIÓN..ELEMENTOS DE LAS PRUEBAS DE HIPÓTESIS.3.PRUEBA DE HIPÓTESIS PARA UNA MEDIA POBLACIONAL.3.. Caso: muestra grande.3.. Caso: muestra pequeña.4.prueba DE HIPÓTESIS PARA
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las
PSICOLOGÍA EXPERIMENTAL
09 PSICOLOGÍA EXPERIMENTAL Juan Antequera Iglesias Psicólogo Especialista en Psicología Clínica. FEA Psicología Clínica Hospital Virgen de la Misericordia de Toledo. Laura Hernangómez Criado Psicóloga
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características
IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado
1.1. Introducción y conceptos básicos
Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson
ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;
CORRELACIÓN Y PREDICIÓN
CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
ESTADÍSTICA SEMANA 4
ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,
(.$263*7.5"4+%#,"8..9$ $.$ - -. 7.# "4< $ 8 $ 7 "% @
!"#$%!& ' ($ 2 ))!"#$%& '$()!& *($$+%( & * $!" "!,"($"$ -(.$!- ""& +%./$$&,-,$,". - %#,"0# $!01 "23(.4 $4$"" ($" $ -.#!/ ". " " ($ "$%$(.$2.3!- - *.5.+%$!"$,"$ (.$263*7.5"4+%#,"8..9$ $.$ - $,"768$"%$,"$%$!":7#;
GRAFICOS DE CONTROL DATOS TIPO VARIABLES
GRAFICOS DE CONTROL DATOS TIPO VARIABLES PROCESO Maquinaria Métodos Materias Primas Proceso Producto Mano de Obra Condiciones Ambientales VARIACIÓN Fundamentalmente, las cinco fuentes más importantes de
Tamaño muestral Cómo estimar n adecuadamente? Estimación puntual. Marta Cuntín González Biostatech Advice, Training and Innovation in Biostatistics
Tamaño muestral Cómo estimar n adecuadamente? Estimación puntual Marta Cuntín González Biostatech Advice, Training and Innovation in Biostatistics Índice Conceptos básicos Diseño Problemas Qué es necesario?
ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral
ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
Grado en Ingeniería. Estadística. Tema 3
Grado en Ingeniería Asignatura: Estadística Tema 3. Control Estadístico de Procesos (SPC) Control Estadístico de Procesos (SPC) Introducción Variabilidad de un proceso de fabricación Causas asignables
Series de Tiempo. Una Introducción
Series de Tiempo. Una Introducción Series de Tiempo Muchas veces, sobretodo para realizar pronósticos, resulta conveniente no suponer un modelo explícito para que explique la variables de interés, sino
Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.
Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio
INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS
INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS Página 311 REFLEXIONA Y RESUELVE Máuina empauetadora El fabricante de una máuina empauetadora afirma ue, si se regula para ue empauete palés con 100 kg, los
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.
PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis
UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año
UNIVERSIDAD DEL SALVADOR PROGRAMA UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria DIVISIÓN / COMISIÓN: Primer Año TURNO: Único OBLIGACIÓN ACADÉMICA: ESTADÍSTICA Y DISEÑO
1 Ejemplo de análisis descriptivo de un conjunto de datos
1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos
Bioestadística: Inferencia Estadística. Análisis de Dos Muestras
Bioestadística: Inferencia Estadística. Análisis de Dos Muestras M. González Departamento de Matemáticas. Universidad de Extremadura MUESTRAS INDEPENDIENTES: TEST PARAMÉTRICO: VARIANZAS POBLACIONALES IGUALES:Test
INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98
Conceptos básicos de estadística para clínicos
Conceptos básicos de estadística para clínicos Víctor Abraira A Coruña. Noviembre 2008 Programa Valor p : qué significa? Aleatorización Pruebas de hipótesis para variables continuas Pruebas de hipótesis
Tema 5: Estimación puntual y por intervalos
Tema 5: Estimación puntual y por intervalos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Estimación puntual y por intervalos Curso
Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción
V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
1 Introducción a contrastes de hipótesis
Inferencia Estadística II Teoría, handout 1 1 Introducción a contrastes de hipótesis En este curso vamos a aprender a usar los datos para cuestionar la validez de ciertas afirmaciones teóricas. Los fenómenos
